The main purpose of this dissertation is to study coupled thermoelastic behaviors in disks subjected to thermal shock loads based on the generalized and classic theories of coupled thermoelasticity. To this end, this research has been carried out in two stages. In the first stage, thermoelasticity problems in an axisymmetric rotating disk with constant thickness made of a homogeneous isotropic material are analytically solved and closed-form formulations are presented for temperature and displacement fields. Since, the analytical solution is not always feasible, the finite element (FE) method can be employed for more sophisticated coupled thermoelasticity problems. Accordingly, in the second stage of the research, a novel refined 1D finite element approach with 3D-like accuracies are developed for theories of coupled thermoelasticity. Then, the developed FE models are applied for a 3D solution of the dynamic generalized coupled thermoelasticity problem in disks. Use of the reduced models with low computational costs may be of interest in a laborious time history analysis of the dynamic problems. The obtained analytical and numerical solutions are in good agreement with the results available in the literature. It is further shown that the proposed analytical and FE methods are quite efficient with very high rate of convergence.
Solution of Coupled Thermoelasticity Problem in Rotating Disks / Entezari, Ayoob. - (2017). [10.6092/polito/porto/2684953]
Solution of Coupled Thermoelasticity Problem in Rotating Disks
ENTEZARI, AYOOB
2017
Abstract
The main purpose of this dissertation is to study coupled thermoelastic behaviors in disks subjected to thermal shock loads based on the generalized and classic theories of coupled thermoelasticity. To this end, this research has been carried out in two stages. In the first stage, thermoelasticity problems in an axisymmetric rotating disk with constant thickness made of a homogeneous isotropic material are analytically solved and closed-form formulations are presented for temperature and displacement fields. Since, the analytical solution is not always feasible, the finite element (FE) method can be employed for more sophisticated coupled thermoelasticity problems. Accordingly, in the second stage of the research, a novel refined 1D finite element approach with 3D-like accuracies are developed for theories of coupled thermoelasticity. Then, the developed FE models are applied for a 3D solution of the dynamic generalized coupled thermoelasticity problem in disks. Use of the reduced models with low computational costs may be of interest in a laborious time history analysis of the dynamic problems. The obtained analytical and numerical solutions are in good agreement with the results available in the literature. It is further shown that the proposed analytical and FE methods are quite efficient with very high rate of convergence.File | Dimensione | Formato | |
---|---|---|---|
My Polito PhD thesis.pdf
accesso aperto
Descrizione: Doctoral Thesis
Tipologia:
Tesi di dottorato
Licenza:
Pubblico dominio
Dimensione
4.69 MB
Formato
Adobe PDF
|
4.69 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2684953
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo