Nowadays, people can easily obtain a huge amount of information from the Web, but often they have no criteria to discern it. This issue is known as information overload. Recommender systems are software tools to suggest interesting items to users and can help them to deal with a vast amount of information. Linked Data is a set of best practices to publish data on the Web, and it is the basis of the Web of Data, an interconnected global dataspace. This thesis discusses how to discover information useful for the user from the vast amount of structured data, and notably Linked Data available on the Web. The work addresses this issue by considering three research questions: how to exploit existing relationships between resources published on the Web to provide recommendations to users; how to represent the user and his context to generate better recommendations for the current situation; and how to effectively visualize the recommended resources and their relationships. To address the first question, the thesis proposes a new algorithm based on Linked Data which exploits existing relationships between resources to recommend related resources. The algorithm was integrated into a framework to deploy and evaluate Linked Data based recommendation algorithms. In fact, a related problem is how to compare them and how to evaluate their performance when applied to a given dataset. The user evaluation showed that our algorithm improves the rate of new recommendations, while maintaining a satisfying prediction accuracy. To represent the user and their context, this thesis presents the Recommender System Context ontology, which is exploited in a new context-aware approach that can be used with existing recommendation algorithms. The evaluation showed that this method can significantly improve the prediction accuracy. As regards the problem of effectively visualizing the recommended resources and their relationships, this thesis proposes a visualization framework for DBpedia (the Linked Data version of Wikipedia) and mobile devices, which is designed to be extended to other datasets. In summary, this thesis shows how it is possible to exploit structured data available on the Web to recommend useful resources to users. Linked Data were successfully exploited in recommender systems. Various proposed approaches were implemented and applied to use cases of Telecom Italia.

Content Recommendation Through Linked Data / Vagliano, Iacopo. - (2017). [10.6092/polito/porto/2670692]

Content Recommendation Through Linked Data

VAGLIANO, IACOPO
2017

Abstract

Nowadays, people can easily obtain a huge amount of information from the Web, but often they have no criteria to discern it. This issue is known as information overload. Recommender systems are software tools to suggest interesting items to users and can help them to deal with a vast amount of information. Linked Data is a set of best practices to publish data on the Web, and it is the basis of the Web of Data, an interconnected global dataspace. This thesis discusses how to discover information useful for the user from the vast amount of structured data, and notably Linked Data available on the Web. The work addresses this issue by considering three research questions: how to exploit existing relationships between resources published on the Web to provide recommendations to users; how to represent the user and his context to generate better recommendations for the current situation; and how to effectively visualize the recommended resources and their relationships. To address the first question, the thesis proposes a new algorithm based on Linked Data which exploits existing relationships between resources to recommend related resources. The algorithm was integrated into a framework to deploy and evaluate Linked Data based recommendation algorithms. In fact, a related problem is how to compare them and how to evaluate their performance when applied to a given dataset. The user evaluation showed that our algorithm improves the rate of new recommendations, while maintaining a satisfying prediction accuracy. To represent the user and their context, this thesis presents the Recommender System Context ontology, which is exploited in a new context-aware approach that can be used with existing recommendation algorithms. The evaluation showed that this method can significantly improve the prediction accuracy. As regards the problem of effectively visualizing the recommended resources and their relationships, this thesis proposes a visualization framework for DBpedia (the Linked Data version of Wikipedia) and mobile devices, which is designed to be extended to other datasets. In summary, this thesis shows how it is possible to exploit structured data available on the Web to recommend useful resources to users. Linked Data were successfully exploited in recommender systems. Various proposed approaches were implemented and applied to use cases of Telecom Italia.
2017
File in questo prodotto:
File Dimensione Formato  
Iacopo_VAGLIANO_PhD_Thesis_porto.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 17.26 MB
Formato Adobe PDF
17.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2670692
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo