Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation tech- nique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynami- cally generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Re- view on RS based on Linked Data. (ii) A framework to execute and an- alyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for develop- ing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommen- dations, because of the graph structure of the datasets. (iv) Graph-based algo- rithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learn- ing algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A log- ical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to ex- plore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data.

Recommender Systems based on Linked Data / FIGUEROA MARTINEZ, CRISTHIAN NICOLAS. - (2017). [10.6092/polito/porto/2669963]

Recommender Systems based on Linked Data

FIGUEROA MARTINEZ, CRISTHIAN NICOLAS
2017

Abstract

Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation tech- nique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynami- cally generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Re- view on RS based on Linked Data. (ii) A framework to execute and an- alyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for develop- ing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommen- dations, because of the graph structure of the datasets. (iv) Graph-based algo- rithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learn- ing algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A log- ical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to ex- plore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data.
2017
File in questo prodotto:
File Dimensione Formato  
PhD Thesis Cristhian Figueroa.pdf

accesso aperto

Descrizione: PhD Thesis of Cristhian Figueroa
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 11.04 MB
Formato Adobe PDF
11.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2669963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo