Nowadays, typical methodologies employed in statistical physics are successfully applied to a huge set of problems arising from different research fields. In this thesis I will propose several statistical mechanics based models able to deal with two types of problems: optimization and inference problems. The intrinsic difficulty that characterizes both problems is that, due to the hard combinatorial nature of optimization and inference, finding exact solutions would require hard and impractical computations. In fact, the time needed to perform these calculations, in almost all cases, scales exponentially with respect to relevant parameters of the system and thus cannot be accomplished in practice. As combinatorial optimization addresses the problem of finding a fair configuration of variables able to minimize/maximize an objective function, inference seeks a posteriori the most fair assignment of a set of variables given a partial knowledge of the system. These two problems can be re-phrased in a statistical mechanics framework where elementary components of a physical system interact according to the constraints of the original problem. The information at our disposal can be encoded in the Boltzmann distribution of the new variables which, if properly investigated, can provide the solutions to the original problems. As a consequence, the methodologies originally adopted in statistical mechanics to study and, eventually, approximate the Boltzmann distribution can be fruitfully applied for solving inference and optimization problems. The structure of the thesis follows the path covered during the three years of my Ph.D. At first, I will propose a set of combinatorial optimization problems on graphs, the Prize collecting and the Packing of Steiner trees problems. The tools used to face these hard problems rely on the zero-temperature implementation of the Belief Propagation algorithm, called Max Sum algorithm. The second set of problems proposed in this thesis falls under the name of linear estimation problems. One of them, the compressed sensing problem, will guide us in the modelling of these problems within a Bayesian framework along with the introduction of a powerful algorithm known as Expectation Propagation or Expectation Consistent in statistical physics. I will propose a similar approach to other challenging problems: the inference of metabolic fluxes, the inverse problem of the electro-encephalography and the reconstruction of tomographic images.
Statistical mechanics approaches to optimization and inference / Muntoni, ANNA PAOLA. - (2017). [10.6092/polito/porto/2669186]
Statistical mechanics approaches to optimization and inference
MUNTONI, ANNA PAOLA
2017
Abstract
Nowadays, typical methodologies employed in statistical physics are successfully applied to a huge set of problems arising from different research fields. In this thesis I will propose several statistical mechanics based models able to deal with two types of problems: optimization and inference problems. The intrinsic difficulty that characterizes both problems is that, due to the hard combinatorial nature of optimization and inference, finding exact solutions would require hard and impractical computations. In fact, the time needed to perform these calculations, in almost all cases, scales exponentially with respect to relevant parameters of the system and thus cannot be accomplished in practice. As combinatorial optimization addresses the problem of finding a fair configuration of variables able to minimize/maximize an objective function, inference seeks a posteriori the most fair assignment of a set of variables given a partial knowledge of the system. These two problems can be re-phrased in a statistical mechanics framework where elementary components of a physical system interact according to the constraints of the original problem. The information at our disposal can be encoded in the Boltzmann distribution of the new variables which, if properly investigated, can provide the solutions to the original problems. As a consequence, the methodologies originally adopted in statistical mechanics to study and, eventually, approximate the Boltzmann distribution can be fruitfully applied for solving inference and optimization problems. The structure of the thesis follows the path covered during the three years of my Ph.D. At first, I will propose a set of combinatorial optimization problems on graphs, the Prize collecting and the Packing of Steiner trees problems. The tools used to face these hard problems rely on the zero-temperature implementation of the Belief Propagation algorithm, called Max Sum algorithm. The second set of problems proposed in this thesis falls under the name of linear estimation problems. One of them, the compressed sensing problem, will guide us in the modelling of these problems within a Bayesian framework along with the introduction of a powerful algorithm known as Expectation Propagation or Expectation Consistent in statistical physics. I will propose a similar approach to other challenging problems: the inference of metabolic fluxes, the inverse problem of the electro-encephalography and the reconstruction of tomographic images.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Muntoni.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
18.9 MB
Formato
Adobe PDF
|
18.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2669186
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo