Over the past 20 years, the Internet saw an exponential grown of traffic, users, services and applications. Currently, it is estimated that the Internet is used everyday by more than 3.6 billions users, who generate 20 TB of traffic per second. Such a huge amount of data challenge network managers and analysts to understand how the network is performing, how users are accessing resources, how to properly control and manage the infrastructure, and how to detect possible threats. Along with mathematical, statistical, and set theory methodologies machine learning and big data approaches have emerged to build systems that aim at automatically extracting information from the raw data that the network monitoring infrastructures offer. In this thesis I will address different network monitoring solutions, evaluating several methodologies and scenarios. I will show how following a common workflow, it is possible to exploit mathematical, statistical, set theory, and machine learning methodologies to extract meaningful information from the raw data. Particular attention will be given to machine learning and big data methodologies such as DBSCAN, and the Apache Spark big data framework. The results show that despite being able to take advantage of mathematical, statistical, and set theory tools to characterize a problem, machine learning methodologies are very useful to discover hidden information about the raw data. Using DBSCAN clustering algorithm, I will show how to use YouLighter, an unsupervised methodology to group caches serving YouTube traffic into edge-nodes, and latter by using the notion of Pattern Dissimilarity, how to identify changes in their usage over time. By using YouLighter over 10-month long races, I will pinpoint sudden changes in the YouTube edge-nodes usage, changes that also impair the end users’ Quality of Experience. I will also apply DBSCAN in the deployment of SeLINA, a self-tuning tool implemented in the Apache Spark big data framework to autonomously extract knowledge from network traffic measurements. By using SeLINA, I will show how to automatically detect the changes of the YouTube CDN previously highlighted by YouLighter. Along with these machine learning studies, I will show how to use mathematical and set theory methodologies to investigate the browsing habits of Internauts. By using a two weeks dataset, I will show how over this period, the Internauts continue discovering new websites. Moreover, I will show that by using only DNS information to build a profile, it is hard to build a reliable profiler. Instead, by exploiting mathematical and statistical tools, I will show how to characterize Anycast-enabled CDNs (A-CDNs). I will show that A-CDNs are widely used either for stateless and stateful services. That A-CDNs are quite popular, as, more than 50% of web users contact an A-CDN every day. And that, stateful services, can benefit of A-CDNs, since their paths are very stable over time, as demonstrated by the presence of only a few anomalies in their Round Trip Time. Finally, I will conclude by showing how I used BGPStream an open-source software framework for the analysis of both historical and real-time Border Gateway Protocol (BGP) measurement data. By using BGPStream in real-time mode I will show how I detected a Multiple Origin AS (MOAS) event, and how I studies the black-holing community propagation, showing the effect of this community in the network. Then, by using BGPStream in historical mode, and the Apache Spark big data framework over 16 years of data, I will show different results such as the continuous growth of IPv4 prefixes, and the growth of MOAS events over time. All these studies have the aim of showing how monitoring is a fundamental task in different scenarios. In particular, highlighting the importance of machine learning and of big data methodologies.

Machine Learning and Big Data Methodologies for Network Traffic Monitoring / Giordano, Danilo. - (2017). [10.6092/polito/porto/2668398]

Machine Learning and Big Data Methodologies for Network Traffic Monitoring

GIORDANO, DANILO
2017

Abstract

Over the past 20 years, the Internet saw an exponential grown of traffic, users, services and applications. Currently, it is estimated that the Internet is used everyday by more than 3.6 billions users, who generate 20 TB of traffic per second. Such a huge amount of data challenge network managers and analysts to understand how the network is performing, how users are accessing resources, how to properly control and manage the infrastructure, and how to detect possible threats. Along with mathematical, statistical, and set theory methodologies machine learning and big data approaches have emerged to build systems that aim at automatically extracting information from the raw data that the network monitoring infrastructures offer. In this thesis I will address different network monitoring solutions, evaluating several methodologies and scenarios. I will show how following a common workflow, it is possible to exploit mathematical, statistical, set theory, and machine learning methodologies to extract meaningful information from the raw data. Particular attention will be given to machine learning and big data methodologies such as DBSCAN, and the Apache Spark big data framework. The results show that despite being able to take advantage of mathematical, statistical, and set theory tools to characterize a problem, machine learning methodologies are very useful to discover hidden information about the raw data. Using DBSCAN clustering algorithm, I will show how to use YouLighter, an unsupervised methodology to group caches serving YouTube traffic into edge-nodes, and latter by using the notion of Pattern Dissimilarity, how to identify changes in their usage over time. By using YouLighter over 10-month long races, I will pinpoint sudden changes in the YouTube edge-nodes usage, changes that also impair the end users’ Quality of Experience. I will also apply DBSCAN in the deployment of SeLINA, a self-tuning tool implemented in the Apache Spark big data framework to autonomously extract knowledge from network traffic measurements. By using SeLINA, I will show how to automatically detect the changes of the YouTube CDN previously highlighted by YouLighter. Along with these machine learning studies, I will show how to use mathematical and set theory methodologies to investigate the browsing habits of Internauts. By using a two weeks dataset, I will show how over this period, the Internauts continue discovering new websites. Moreover, I will show that by using only DNS information to build a profile, it is hard to build a reliable profiler. Instead, by exploiting mathematical and statistical tools, I will show how to characterize Anycast-enabled CDNs (A-CDNs). I will show that A-CDNs are widely used either for stateless and stateful services. That A-CDNs are quite popular, as, more than 50% of web users contact an A-CDN every day. And that, stateful services, can benefit of A-CDNs, since their paths are very stable over time, as demonstrated by the presence of only a few anomalies in their Round Trip Time. Finally, I will conclude by showing how I used BGPStream an open-source software framework for the analysis of both historical and real-time Border Gateway Protocol (BGP) measurement data. By using BGPStream in real-time mode I will show how I detected a Multiple Origin AS (MOAS) event, and how I studies the black-holing community propagation, showing the effect of this community in the network. Then, by using BGPStream in historical mode, and the Apache Spark big data framework over 16 years of data, I will show different results such as the continuous growth of IPv4 prefixes, and the growth of MOAS events over time. All these studies have the aim of showing how monitoring is a fundamental task in different scenarios. In particular, highlighting the importance of machine learning and of big data methodologies.
2017
File in questo prodotto:
File Dimensione Formato  
Danilo_Giordano_Thesis.pdf

accesso aperto

Descrizione: Final version of the thesis
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 7.24 MB
Formato Adobe PDF
7.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2668398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo