The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kapton™ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown films is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices.

Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications / Mastronardi, VINCENZO MARIANO. - (2016). [10.6092/polito/porto/2645173]

Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications

MASTRONARDI, VINCENZO MARIANO
2016

Abstract

The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kapton™ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown films is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices.
2016
File in questo prodotto:
File Dimensione Formato  
Tesi_finale_vincenzo_mastronardi_2016_PON_ITEM.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2645173
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo