Several studies have been conducted in Africa to assist local governments in addressing the risk situation related to natural hazards. Geospatial data containing information on vulnerability, impacts, climate change, disaster risk reduction is usually part of the output of such studies and is valuable to national and international organizations to reduce the risks and mitigate the impacts of disasters. Nevertheless this data isn't efficiently widely distributed and often resides in remote storage solutions hardly reachable. Spatial Data Infrastructures are technical solutions capable to solve this issue, by storing geospatial data and making them widely available through the internet. Among these solutions, GeoNode, an open source online platform for geospatial data sharing, has been developed in recent years. GeoNode is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode data management tools allow for integrated creation of data, metadata, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains (geonode.org). This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several other-disasters related information. Moreover this platform will help to ensure that the data created by a number of past or ongoing projects is maintained and that this information remains accessible and useful. An Integrated Flood Risk Management Plan for a river basin has already been included in the platform and other data from future disaster risk management projects will be added as well.
A public platform for geospatial data sharing for disaster risk management / Balbo, Simone; Boccardo, Piero; Dalmasso, Simone; Pasquali, P. - In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS ArchivesELETTRONICO. - [s.l] : International Society for Photogrammetry and Remote Sensing, 2013. - pp. 189-195 [10.5194/isprsarchives-XL-5-W3-189-2013]
A public platform for geospatial data sharing for disaster risk management
BALBO, SIMONE;BOCCARDO, PIERO;DALMASSO, SIMONE;
2013
Abstract
Several studies have been conducted in Africa to assist local governments in addressing the risk situation related to natural hazards. Geospatial data containing information on vulnerability, impacts, climate change, disaster risk reduction is usually part of the output of such studies and is valuable to national and international organizations to reduce the risks and mitigate the impacts of disasters. Nevertheless this data isn't efficiently widely distributed and often resides in remote storage solutions hardly reachable. Spatial Data Infrastructures are technical solutions capable to solve this issue, by storing geospatial data and making them widely available through the internet. Among these solutions, GeoNode, an open source online platform for geospatial data sharing, has been developed in recent years. GeoNode is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode data management tools allow for integrated creation of data, metadata, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains (geonode.org). This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several other-disasters related information. Moreover this platform will help to ensure that the data created by a number of past or ongoing projects is maintained and that this information remains accessible and useful. An Integrated Flood Risk Management Plan for a river basin has already been included in the platform and other data from future disaster risk management projects will be added as well.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2642909
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo