This thesis deals with the design of exact and heuristic algorithms for scheduling and clustering combinatorial optimization problems. All the works are linked by the fact that all the presented methods arebasically hybrid algorithms, that mix techniques used in the world of combinatorial optimization. The algorithms are all efficient in practice, but the one presented in Chapter 4, that has mostly theoretical interest. Chapter 2 presents practical solution algorithms based on an ILP model for an energy scheduling combinatorial problem that arises in a smart building context. Chapter 3 presents a new cutting stock problem and introduce a mathematical formulation and a heuristic solution approach based on a heuristic column generation scheme. Chapter 4 provides an exact exponential algorithm, whose importance is only theoretical so far, for a classical scheduling problem: the Single Machine Total Tardiness Problem. The relevant aspect is that the designed algorithm has the best worst case complexity for the problem, that has been studied for several decades. Furthermore, such result is based on a new technique, called Branch and Merge, that avoids the solution of several equivalent sub-problems in a branching algorithm that requires polynomial space. As a consequence, such technique embeds in a branching algorithm ideas coming from other traditional computer science techniques such as dynamic programming and memorization, but keeping the space requirement polynomial. Chapter 5 provides an exact approach based on semidefinite programming and a matheuristic approach based on a quadratic solver for a fractional clustering combinatorial optimization problem, called Max-Mean Dispersion Problem. The matheuristic approach has the peculiarity of using a non-linear MIP solver. The proposed exact approach uses a general semidefinite programming relaxation and it is likely to be extended to other combinatorial problems with a fractional formulation. Chapter 6 proposes practical solution methods for a real world clustering problem arising in a smart city context. The solution algorithm is based on the solution of a Set Cover model via a commercial ILP solver. As a conclusion, the main contribution of this thesis is given by several approaches of practical or theoretical interest, for two classes of important combinatorial problems: clustering and scheduling. All the practical methods presented in the thesis are validated by extensive computational experiments, that compare the proposed methods with the ones available in the state of the art.
Exact and Heuristic Hybrid Approaches for Scheduling and Clustering Problems / Garraffa, Michele. - (2016). [10.6092/polito/porto/2639115]
Exact and Heuristic Hybrid Approaches for Scheduling and Clustering Problems
GARRAFFA, MICHELE
2016
Abstract
This thesis deals with the design of exact and heuristic algorithms for scheduling and clustering combinatorial optimization problems. All the works are linked by the fact that all the presented methods arebasically hybrid algorithms, that mix techniques used in the world of combinatorial optimization. The algorithms are all efficient in practice, but the one presented in Chapter 4, that has mostly theoretical interest. Chapter 2 presents practical solution algorithms based on an ILP model for an energy scheduling combinatorial problem that arises in a smart building context. Chapter 3 presents a new cutting stock problem and introduce a mathematical formulation and a heuristic solution approach based on a heuristic column generation scheme. Chapter 4 provides an exact exponential algorithm, whose importance is only theoretical so far, for a classical scheduling problem: the Single Machine Total Tardiness Problem. The relevant aspect is that the designed algorithm has the best worst case complexity for the problem, that has been studied for several decades. Furthermore, such result is based on a new technique, called Branch and Merge, that avoids the solution of several equivalent sub-problems in a branching algorithm that requires polynomial space. As a consequence, such technique embeds in a branching algorithm ideas coming from other traditional computer science techniques such as dynamic programming and memorization, but keeping the space requirement polynomial. Chapter 5 provides an exact approach based on semidefinite programming and a matheuristic approach based on a quadratic solver for a fractional clustering combinatorial optimization problem, called Max-Mean Dispersion Problem. The matheuristic approach has the peculiarity of using a non-linear MIP solver. The proposed exact approach uses a general semidefinite programming relaxation and it is likely to be extended to other combinatorial problems with a fractional formulation. Chapter 6 proposes practical solution methods for a real world clustering problem arising in a smart city context. The solution algorithm is based on the solution of a Set Cover model via a commercial ILP solver. As a conclusion, the main contribution of this thesis is given by several approaches of practical or theoretical interest, for two classes of important combinatorial problems: clustering and scheduling. All the practical methods presented in the thesis are validated by extensive computational experiments, that compare the proposed methods with the ones available in the state of the art.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2639115
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo