There is being observed high variability in the spatial and temporal rainfall patterns under changing climate, enhancing both the intensity and frequency of the natural disasters like floods. Pakistan, a country which is highly prone to climate change, is recently facing the challenges of both flooding and severe water shortage as the surface water storage capacity is too limited to cope with heavy flows during rainy months. Thus, an effective and timely predication and management of high flows is a dire need to address both flooding and long term water shortage issues. The work of this thesis was aimed at developing and evaluating different open source data based methodologies for floods detection and analysis in Pakistan. Specifically, the research work was conducted for developing and evaluating a hydrologic model being able to run in real time based on satellite rainfall data, as well as to perform flood hazard mapping by analyzing seasonality of flooded areas using MODIS classification approach. In the first phase, TRMM monthly rainfall data (TMPA 3B43) was evaluated for Pakistan by comparison with rain gauge data, as well as by further focusing on its analysis and evaluation for different time periods and climatic zones of Pakistan. In the next phase, TRMM rainfall data and other open source datasets like digital soil map and global land cover map were utilized to develop and evaluate an event-based hydrologic model using HEC-HMS, which may be able to be run in real time for predicting peak flows due to any extreme rainfall event. Finally, to broaden the study canvas from a river catchment to the whole country scale, MODIS automated water bodies classification approach with MODIS daily surface reflectance products was utilized to develop a historical archive of reference water bodies and perform seasonal analysis of flooded areas for Pakistan. The approach was found well capable for its application for floods detection in plain areas of Pakistan. The open source data based hydrologic modeling approach devised in this study can be helpful for conducting similar rainfall-runoff modeling studies for the other river catchments and predicting peak flows at a river catchment scale, particularly in mountainous topography. Similarly, the outcomes of MODIS classification analysis regarding reference and seasonal water and flood hazard maps may be helpful for planning any management interventions in the flood prone areas of Pakistan.

Geoinformatic and Hydrologic Analysis using Open Source Data for Floods Management in Pakistan / Shahid, MUHAMMAD ADNAN. - (2015). [10.6092/polito/porto/2604981]

Geoinformatic and Hydrologic Analysis using Open Source Data for Floods Management in Pakistan

SHAHID, MUHAMMAD ADNAN
2015

Abstract

There is being observed high variability in the spatial and temporal rainfall patterns under changing climate, enhancing both the intensity and frequency of the natural disasters like floods. Pakistan, a country which is highly prone to climate change, is recently facing the challenges of both flooding and severe water shortage as the surface water storage capacity is too limited to cope with heavy flows during rainy months. Thus, an effective and timely predication and management of high flows is a dire need to address both flooding and long term water shortage issues. The work of this thesis was aimed at developing and evaluating different open source data based methodologies for floods detection and analysis in Pakistan. Specifically, the research work was conducted for developing and evaluating a hydrologic model being able to run in real time based on satellite rainfall data, as well as to perform flood hazard mapping by analyzing seasonality of flooded areas using MODIS classification approach. In the first phase, TRMM monthly rainfall data (TMPA 3B43) was evaluated for Pakistan by comparison with rain gauge data, as well as by further focusing on its analysis and evaluation for different time periods and climatic zones of Pakistan. In the next phase, TRMM rainfall data and other open source datasets like digital soil map and global land cover map were utilized to develop and evaluate an event-based hydrologic model using HEC-HMS, which may be able to be run in real time for predicting peak flows due to any extreme rainfall event. Finally, to broaden the study canvas from a river catchment to the whole country scale, MODIS automated water bodies classification approach with MODIS daily surface reflectance products was utilized to develop a historical archive of reference water bodies and perform seasonal analysis of flooded areas for Pakistan. The approach was found well capable for its application for floods detection in plain areas of Pakistan. The open source data based hydrologic modeling approach devised in this study can be helpful for conducting similar rainfall-runoff modeling studies for the other river catchments and predicting peak flows at a river catchment scale, particularly in mountainous topography. Similarly, the outcomes of MODIS classification analysis regarding reference and seasonal water and flood hazard maps may be helpful for planning any management interventions in the flood prone areas of Pakistan.
2015
File in questo prodotto:
File Dimensione Formato  
full thesis_adnan.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 8.39 MB
Formato Adobe PDF
8.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2604981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo