This thesis has dealt with the preparation and the characterization of piezoelectric 0-3 composite materials. The technological aim is to evaluate a material potentially suitable for the development of a sensitive skin for human robotics. As secondary objectives this material should be cheap (relatively) and easy processable in order to make it possibly adaptable for industrial production. For these reasons, 0-3 composites were prepared and characterized. Raw materials were selected among the most commonly used for piezoelectric applications. PVDF is the most widely used ferroelectric polymer. It was used along with two of its copolymers: PVDF-HeFP, developed to have improved flexibility but no piezoelectricity and PVDF-TrFE, developed to obtain the crystalline piezoelectric phase whatever the process. PMMA was also studied. Barium titanate submicron-powder was chosen as piezo-active filler. Composites were prepared with increasing volume percentages of fillers. Two different processing methods were explored in order to evaluate their effect on the microstructure and the piezoelectric response

Development of composite piezoelectric materials for tactile sensing / DI DONATO, Marco. - (2015). [10.6092/polito/porto/2591164]

Development of composite piezoelectric materials for tactile sensing

DI DONATO, MARCO
2015

Abstract

This thesis has dealt with the preparation and the characterization of piezoelectric 0-3 composite materials. The technological aim is to evaluate a material potentially suitable for the development of a sensitive skin for human robotics. As secondary objectives this material should be cheap (relatively) and easy processable in order to make it possibly adaptable for industrial production. For these reasons, 0-3 composites were prepared and characterized. Raw materials were selected among the most commonly used for piezoelectric applications. PVDF is the most widely used ferroelectric polymer. It was used along with two of its copolymers: PVDF-HeFP, developed to have improved flexibility but no piezoelectricity and PVDF-TrFE, developed to obtain the crystalline piezoelectric phase whatever the process. PMMA was also studied. Barium titanate submicron-powder was chosen as piezo-active filler. Composites were prepared with increasing volume percentages of fillers. Two different processing methods were explored in order to evaluate their effect on the microstructure and the piezoelectric response
2015
File in questo prodotto:
File Dimensione Formato  
Di Donato - Thesis.compressed.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 9.4 MB
Formato Adobe PDF
9.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2591164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo