Ionospheric Scintillation Monitoring Receivers (ISMR) are specialized GNSS receivers able to track and monitor scintillations in order to collect data that can be used to model the phenomenon, study its affects at receiver level and possibly predict its occurrence in the future. Such receivers are able to measure the amount of scintillation affecting a satellite signal in both amplitude and phase by making use of correlation data from the tracking processing blocks. This is normally done by computing two indices: the S4 for amplitude scintillation and the phase deviation due to scintillations [3]. However, as more telecommunication systems are likely to work in frequency bands close to GNSS signals in the next years, monitoring of scintillation activity might be threatened by the presence of Radio Frequency Interference (RFI) in the operation area. It is of interest to study the effects these systems may have on the estimation of scintillation indices due to unintentional leakages of power out of their allocated bandwidth [4]. Robust tracking of GNSS signals under such conditions must be guaranteed and it must also be ensured as best as possible that the typical scintillation indices are not affected by the additional error source.

Towards Analyzing the Effect of Interference Monitoring in GNSS Scintillation / ROMERO GAVIRIA, RODRIGO MANUEL; Dovis, Fabio. - ELETTRONICO. - (2014), pp. 37-48. [10.5772/58768]

Towards Analyzing the Effect of Interference Monitoring in GNSS Scintillation

ROMERO GAVIRIA, RODRIGO MANUEL;DOVIS, Fabio
2014

Abstract

Ionospheric Scintillation Monitoring Receivers (ISMR) are specialized GNSS receivers able to track and monitor scintillations in order to collect data that can be used to model the phenomenon, study its affects at receiver level and possibly predict its occurrence in the future. Such receivers are able to measure the amount of scintillation affecting a satellite signal in both amplitude and phase by making use of correlation data from the tracking processing blocks. This is normally done by computing two indices: the S4 for amplitude scintillation and the phase deviation due to scintillations [3]. However, as more telecommunication systems are likely to work in frequency bands close to GNSS signals in the next years, monitoring of scintillation activity might be threatened by the presence of Radio Frequency Interference (RFI) in the operation area. It is of interest to study the effects these systems may have on the estimation of scintillation indices due to unintentional leakages of power out of their allocated bandwidth [4]. Robust tracking of GNSS signals under such conditions must be guaranteed and it must also be ensured as best as possible that the typical scintillation indices are not affected by the additional error source.
9789535116424
Mitigation of Ionospheric Threats to GNSS: an Appraisal of the Scientific and Technological Outputs of the TRANSMIT Project
File in questo prodotto:
File Dimensione Formato  
47142.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2555545
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo