This thesis describes the analytical design and the performance analysis of optimum receivers for Multiple Input - Multiple Output (MIMO) fading channels. In particular, a novel Optimum Receiver for separately-correlated MIMO channels is proposed. This novel pilot-aided receiver is able to process jointly the pilot symbols, transmitted within each time frame as a preamble, and the information symbols and to decode the transmitted data in a single step, avoiding the explicit estimation of the channel matrix. The optimum receiver is designed for the following two scenarios, corresponding to different transmission schemes and channel models: 1) Narrowband Rician fading MIMO channel with spatial separate correlation; 2) MIMO-OFDM Rician fading channel with space and frequency separate correlation. For each system the performance of the optimum receiver is studied in detail under different channel conditions. The optimum receiver is compared with: - the ideal Genie Receiver, knowing perfectly the Channel State Information (CSI) at no cost; - the standard Mismatched Receiver, estimating the CSI in a first step, then using this imperfect estimate in the ideal channel metric. Since the optimum receiver requires the knowledge of the channel parameters for the decoding process, an estimation algorithm is proposed and tested. Moreover, a complexity analysis is carried out and methods for complexity reduction are proposed. Furthermore, the narrowband receiver is tested in realistic conditions using measured channel samples. Finally, a blind version of the receiver is proposed.

Optimum Receiver Design for MIMO Fading Channels / Coluccia, Giulio. - (2008). [10.6092/polito/porto/2502249]

Optimum Receiver Design for MIMO Fading Channels

COLUCCIA, GIULIO
2008

Abstract

This thesis describes the analytical design and the performance analysis of optimum receivers for Multiple Input - Multiple Output (MIMO) fading channels. In particular, a novel Optimum Receiver for separately-correlated MIMO channels is proposed. This novel pilot-aided receiver is able to process jointly the pilot symbols, transmitted within each time frame as a preamble, and the information symbols and to decode the transmitted data in a single step, avoiding the explicit estimation of the channel matrix. The optimum receiver is designed for the following two scenarios, corresponding to different transmission schemes and channel models: 1) Narrowband Rician fading MIMO channel with spatial separate correlation; 2) MIMO-OFDM Rician fading channel with space and frequency separate correlation. For each system the performance of the optimum receiver is studied in detail under different channel conditions. The optimum receiver is compared with: - the ideal Genie Receiver, knowing perfectly the Channel State Information (CSI) at no cost; - the standard Mismatched Receiver, estimating the CSI in a first step, then using this imperfect estimate in the ideal channel metric. Since the optimum receiver requires the knowledge of the channel parameters for the decoding process, an estimation algorithm is proposed and tested. Moreover, a complexity analysis is carried out and methods for complexity reduction are proposed. Furthermore, the narrowband receiver is tested in realistic conditions using measured channel samples. Finally, a blind version of the receiver is proposed.
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2502249
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo