The homological scaffold leverages persistent homology to construct a topologically sound summary of a weighted network. However, its crucial dependency on the choice of representative cycles hinders the ability to trace back global features onto individual network components, unless one provides a principled way to make such a choice. In this paper, we apply recent advances in the computation of minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the standard scaffold is a good proxy of the minimal one for sufficiently complex networks.
Homological Scaffold via Minimal Homology Bases / Guerra, Marco; DE GREGORIO, Alessandro; Fugacci, Ulderico; Petri, Giovanni; Vaccarino, Francesco. - ELETTRONICO. - (2020).
Homological Scaffold via Minimal Homology Bases
Marco Guerra;Alessandro De Gregorio;Ulderico Fugacci;Francesco Vaccarino
2020
Abstract
The homological scaffold leverages persistent homology to construct a topologically sound summary of a weighted network. However, its crucial dependency on the choice of representative cycles hinders the ability to trace back global features onto individual network components, unless one provides a principled way to make such a choice. In this paper, we apply recent advances in the computation of minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the standard scaffold is a good proxy of the minimal one for sufficiently complex networks.File | Dimensione | Formato | |
---|---|---|---|
2004.11606.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.85 MB
Formato
Adobe PDF
|
2.85 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2816618