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 A B S T R A C T

Uniform and smooth data collection is often infeasible in real-world scenarios. In this paper, we propose an 
identification framework to effectively handle the so-called non-uniform observations, i.e., data scenarios that 
include missing measurements, multiple runs, or aggregated observations. The goal is to provide a general 
method for recovering the dynamics of nonlinear systems from non-uniform data, enabling accurate tracking 
of system behavior over time. The approach integrates domain-specific physical principles with black-box 
models, overcoming the limits of traditional linear or purely black-box methods. The description of this novel 
framework is supported by a theoretical study on the effect of non-uniform observations on the accuracy of 
parameter estimation. Specifically, we demonstrate the existence of upper bounds on the parametric error 
resulting from missing measurements and aggregated observations. Then, the effectiveness of the approach 
is demonstrated through two case studies. These include a practical application with missing samples, i.e., 
the identification of a continuous stirred-tank reactor using real data, and a simulated Lotka–Volterra system 
under aggregated observations. The results highlight the ability of the framework to robustly estimate the 
system parameters and to accurately reconstruct the model dynamics despite the availability of non-uniform 
measurements.
1. Introduction

Dynamic system identification is a well-established problem in con-
trol theory, with a wide range of applications, spanning from en-
gineering to biological systems. When output observations are non-
uniform (Aguero et al., 2007; Sleem & Lagoa, 2024), conventional iden-
tification methods – which assume regularly sampled data – become 
ineffective. In this situation, it becomes crucial to adopt identifica-
tion techniques capable of integrating non-uniform observations and 
ensuring consistency despite experimental variability.

1.1. Case studies and motivations

The term non-uniform observations refers to data scenarios that may 
include: (i) missing measurements, (ii) multiple runs, i.e., repeated 
simulations of the system with different initial conditions, or (iii) ag-
gregated outputs, where only averaged or accumulated system outputs 
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over a time window are available, instead of individual readings. For 
example, sensor failures or varying sampling rates can create data 
gaps, while multiple runs may result from different experimental setups 
or varying external conditions (Yılmaz et al., 2018). On the other 
hand, aggregated outputs commonly arise in fields where continuous 
sampling is impractical. In such cases, monitoring the evolution of 
certain quantities can involve sampling measurements at extended 
intervals, providing only average values or accumulated information 
over these periods. In atmospheric or meteorological modeling, for 
example, weather stations record average temperature, humidity, or 
precipitation levels over several hours or days rather than continu-
ously (Amin & Mourshed, 2024; Huntley & Hakim, 2010). In ecological 
and biological studies, averaged samples are used to study long-term 
ecological changes (Kidwell & Tomasovych, 2013) or to improve the 
robustness of statistical analyses and provide a better understanding 
of population variability (Nakagawa & Freckleton, 2011; Wangersky, 
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1978). In economics and finance, data such as gross domestic product, 
growth rates, or quarterly earnings are typically collected at extended 
intervals to provide a broader view of the economic trends and financial 
health over time (see, e.g., Givoly and Palmon (1982)). Similarly, in 
chemical industries, processes like the simulated moving bed involve 
the collection of samples at extended intervals due to a time-consuming 
and costly analysis (Grossmann et al., 2009).

1.2. State-of-the-art

Within this context, the majority of the literature focuses on system 
identification techniques under the assumption of missing data and 
multiple runs, i.e., measurements are either sporadically absent or 
completely missing for certain time steps. For example, an expectation 
maximization-based strategy is presented in Raghavan et al. (2006) 
for data-driven identification with missing output observations. In this 
work, model parameters and missing observations are simultaneously 
and iteratively estimated using linear state-space models. In Isaksson 
(1993), several reconstruction methods for ARX models with missing 
measurements were compared, including Kalman filtering, maximum 
likelihood estimation, and iterative reconstruction. All these meth-
ods often rely on the exploitation of specific model structures, such 
as ARX or linear state-space models, which may not generalize well 
to a large variety of real systems. Furthermore, with this class of 
approaches, the computational cost for reconstructing missing data 
becomes increasingly expensive as the amount of missing data grows.

Another class of approaches dealing with missing measurements 
leverages nuclear norm subspace identification methods, as in Gross-
mann et al. (2009), Liu et al. (2013), Varanasi and Jampana (2020), 
where a convex optimization problem is formulated to estimate, in 
one step, both missing data and model parameters. Despite this class 
of techniques demonstrates robustness in handling incomplete dataset, 
their reliance on linear state-space models may jeopardize the model 
identification if the systems governing equations are highly nonlinear. 
Alternatively, an expectation–maximization algorithm that employs a 
particle filter and a particle smoother is employed in Gopaluni et al. 
(2009) and Gopaluni (2010) for the identification of a nonlinear black 
box model under missing observations. Analogously, solutions based on 
black-box neural networks are proposed in Demeester (2020) and Yuan 
et al. (2023) to effectively handle missing observations while identi-
fying a system. Nonetheless, the effectiveness of black-box methods 
in modeling complex systems is limited by the lack of interpretabil-
ity (Ljung, 2010; Pillonetto et al., 2025). This drawback compromises 
the possibility to rely on, e.g., prior knowledge of the model structure 
and physical constraints to compensate for the information lost due 
to missing measurements. Other recent approaches to missing data 
recovery include statistical and graph-based methods, such as kernel-
based fault detection (Fan et al., 2021) and spatio-temporal graph 
convolutional networks (Yu et al., 2023), which have shown good 
performance in their respective domains but are not directly tailored 
to dynamic system identification tasks involving physical priors.

On the other hand, to the best of our knowledge, the specific chal-
lenge of aggregated outputs has not been investigated in the existing 
literature, leaving a notable gap in addressing the challenges posed by 
this type of observation data. This is a critical issue, as aggregation 
smooths short-term fluctuations, masks underlying dynamics, and dis-
torts high-frequency components, leading to information loss between 
observation points. 

1.3. Main contribution

Motivated by the discussion so far, in this paper, we present a 
novel approach for the identification of nonlinear systems able to 
handle non-uniform observation conditions, including missing data, 
multiple runs, and aggregated measurements. Specifically, we enhance 
2 
the identification performance beyond the available sequence of input–
output observations by integrating off-white models — domain-specific 
physical principles where some parameters have unknown or uncertain 
numerical values (Ljung, 2010) — with black-box approximators. By 
leveraging the known physical structure of the system, we ensure 
that the model remains interpretable, while the black-box term com-
pensates not only the unknown or unmodeled dynamics but also the 
discrepancies that cannot be resolved due non-uniform observations. 
Building on the framework introduced in Donati et al. (2025a), our 
approach formulates the identification task as a multi-step optimization 
using first-order methods. Then, unlike most existing techniques (see, 
e.g., Liu et al. (2013), Raghavan et al. (2006)), a modification on 
either the cost function (for missing measurements and multiple runs) 
or the estimation model (for aggregated data) allows the method to 
handle non-uniform observations. On the other hand, it is important to 
highlight that the considered framework relies on first-order methods 
and the ensuing multi-step problem is in general nonconvex. This 
clearly leads to the possibility of converging to a sub-optimal solution, 
and implies an evident sensitivity to initial conditions and black-box 
approximator choice, necessitating careful tuning of the algorithm’s 
hyper-parameters and appropriate functions selection to ensure ro-
bustness. Despite these limitations, the efficacy of this approach in 
the case on uniform observations has been already proven in Do-
nati et al. (2025a), where the results showed how significantly this 
novel framework outperformed state-of-the-art methods. Here, we focus 
on demonstrating how such an informed framework proves particu-
larly advantageous also in scenarios with non-uniform measurements, 
addressing limitations of traditional linear and black-box methods, 
and providing a more accurate and interpretable representation of 
the system dynamics. Moreover, we show how this framework can 
also be employed for case studies involving temporally averaged or 
accumulated data over fixed time windows, filling the gap in the 
literature.

The investigation of the flexibility of the framework is integrated 
with a rigorous analysis of the impact of data loss on parameter 
estimation through the definition of specific theoretical bounds on the 
estimation error. In particular, we show the existence of an upper 
bound on the parametric error in the case of missing measurements. 
This bound depends on the percentage of missing data and the total 
number of observations. Analogously, we demonstrate that a similar 
bound also exists for aggregated observations. In this case, the accuracy 
of the identified parameters is influenced by the length of the aggrega-
tion window. Then, we showcase the effectiveness and robustness of 
the proposed approach when applied to real-world case studies char-
acterized by challenging dynamics and different types of non-uniform 
observations. Specifically, we select two different application fields. 
The first case study involves the identification with a dataset affected 
by missing measurements. In this case, real data of a continuous stirred-
tank reactor provided by the DaISy database (De Moor et al., 1997) – 
a collection of real-world datasets frequently used to validate system 
identification techniques, also including scenarios with missing data 
(see e.g., Markovsky (2013), Varanasi and Jampana (2020)) – are 
utilized. The second case study targets the challenges of working with 
aggregated data, focusing on the identification of nonlinear ecologic 
systems. More specifically, we select a Lotka–Volterra model, which 
has been widely used to represent not only the standard predator–
prey interactions (Wangersky, 1978) but also the nonlinear dynamics of 
economic agents or market behaviors (Malcai et al., 2002). In both case 
studies, the results highlight the efficacy of the proposed framework in 
accurately reconstructing the system dynamics despite the presence of 
non-uniform data.

1.4. Paper outline

The remainder of this paper is structured as follows. In Section 2 the 
proposed identification framework is briefly introduced. The extension 
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to multiple runs and missing observations is discussed in Section 3. 
Section 4 focuses on the case of aggregated observations, which are 
treated as a combination of the previous scenarios by the introduction 
of an extended system model. Results on the two practical case studies 
affected by non-uniform observations are discussed in Section 5 and 
main conclusions are drawn in  Section 6.

Notation. Given integers 𝑎, 𝑏 ∈ N, 𝑎 ≤ 𝑏, we denote by [𝑎, 𝑏] the se-
quence of integers {𝑎,… , 𝑏}. Given an integer 𝑁 > 0 and 𝑁 vectors 
𝑣𝑖 ∈ R𝑛, ∀𝑖, ∀𝑛, we denote as 𝐯𝑁  the set of 𝑁 vectors {𝑣1,… ,𝑣𝑁}. 
Given a sequence 𝐧𝑁  of 𝑁 integers and a sequence of vectors in 
time 𝑣𝑘 ∈ R𝑛, ∀𝑘, we denote as 𝐯[𝐧𝑁 ] the sequence of vectors at the 
times contained in 𝐧𝑁 , i.e., {𝑣𝑛1 ,…, 𝑣𝑛𝑁 }. Moreover, given integers 
𝑎, 𝑏 ∈ N, 𝑎 < 𝑏, we denote as 𝐯𝑎∶𝑏 the sequence of vectors from time 𝑎 to 
time 𝑏, i.e., {𝑣𝑎, 𝑣𝑎+1,… , 𝑣𝑏−1, 𝑣𝑏}. The 𝑛 × 𝑛 identity matrix is denoted 
with I𝑛 ∈ R𝑛,𝑛, 1𝑛 ∈ R𝑛 represents a vector of 𝑛 ones, and 0𝑛 ∈ R𝑛

represents a vector of 𝑛 zeros. Similarly, 1𝑛,𝑚 ∈ R𝑛,𝑚 and 0𝑛,𝑚 ∈ R𝑛,𝑚

represent an 𝑛 × 𝑚 matrix of all ones and all zeros, respectively. Given 
a matrix 𝐴 ∈ R𝑚,𝑛, we define its 𝓁𝑝 norm as ‖𝐴‖𝑝 = sup𝑥≠0

‖𝐴𝑥‖𝑝
‖𝑥‖𝑝

.

2. Proposed identification approach

In this section, we briefly outline the physics-based system identifi-
cation approach proposed in Donati et al. (2025a), which combines an 
off-white model with black-box approximators.

We consider a nonlinear, time-invariant system described by the 
following mathematical model 
 ∶ 𝑥𝑘+1 = 𝑓

(

𝑥𝑘, 𝑢𝑘; 𝜃
)

+ 𝛥(𝑥𝑘, 𝑢𝑘),

𝑧𝑘 = ℎ
(

𝑥𝑘; 𝜃
)

,
(1)

where 𝑥 ∈ R𝑛𝑥  is the state vector, 𝜃 ∈ R𝑛𝜃  is the parameter vector, 
𝑢 ∈ R𝑛𝑢  is the input, and 𝑧 ∈ R𝑛𝑧  is the output. Functions 𝑓 and ℎ
are known and assumed to be nonlinear, time-invariant, and continu-
ously differentiable. The term 𝛥, representing unmodeled dynamics, is 
unknown.

Given a multi-step input/output sequence of length 𝑇 , 
𝐮0∶𝑇−1 = {𝑢̃0,… , 𝑢̃𝑇−1}, 𝑢̃𝑘 = 𝑢𝑘 + 𝜂𝑢𝑘,

𝐳̃0∶𝑇−1 = {𝑧0,… , 𝑧𝑇−1}, 𝑧𝑘 = 𝑧𝑘 + 𝜂𝑧𝑘,
(2)

with 𝜂𝑢𝑘 and 𝜂𝑧𝑘 being the input and output measurement noise, re-
spectively, we seek to estimate the unknown system parameters 𝜃 and 
initial condition 𝑥0 while compensating for the unknown term 𝛥. To 
this aim, we define the following estimation model  to approximate 
the system 
 ∶ 𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘; 𝜃) + 𝛿(𝑥𝑘, 𝑢𝑘;𝜔),

𝑧𝑘 = ℎ(𝑥𝑘; 𝜃),
(3)

where 𝛿 is a generic approximator of the unknown term 𝛥, e.g., a 
linear combination of basis functions from a given dictionary, with 
parameters 𝜔 ∈ R𝑛𝜔  to be learned.

For uniform observations, the framework uses the prediction error 
𝑒𝑘 ≐ 𝑧𝑘 − 𝑧𝑘 and aims to estimate the optimal values of 𝜃, 𝑥0, and 𝜔 by 
solving the optimization problem 
(

𝜃⋆, 𝑥⋆0 , 𝜔
⋆) ≐ arg min

𝜃,𝑥0 ,𝜔
𝑇 (𝜃, 𝑥0, 𝜔; 𝐞0∶𝑇 , 𝐱̂1∶𝑇 ). (4)

Here, 𝑇  is a twice continuously differentiable, multi-step cost function, 
generally defined as 

𝑇 ≐ 1
𝑇

𝑇−1
∑

𝑘=0
𝑘

(

𝜃, 𝑥0, 𝜔; 𝑒𝑘, 𝑥𝑘
)

, 𝑘 = ‖𝑧𝑘 − 𝑧𝑘‖
2
2. (5)

Specifically, the optimal estimation of the unknown system parameters 
𝜃, initial condition 𝑥0, and black-box parameters 𝜔 is achieved by 
minimizing 𝑇  in (5) over a given horizon1 𝑇 . Here, 𝑇  incorporates 
3 
terms that account for the squared prediction errors and may also 
include additional regularization or physics-based penalty terms to 
enforce constraints derived from the system knowledge (see Donati 
et al. (2025a) for further details). As discussed in Donati et al. (2024), 
the optimization problem is addressed by using first-order methods. In 
particular, the gradient of the cost function 𝑇  is computed at each 
iteration, and the parameters are updated accordingly, converging to a 
(potentially sub-optimal) solution. Specifically, we adopt the gradient 
computation framework from (Donati et al., 2025b), which leverages 
automatic differentiation in the context of system identification to 
find a solution to (4) (Donati et al., 2025b, Algorithm 1). Within this 
context, we note that, in multi-step nonlinear identification, recursive 
prediction can lead to unstable gradients as the horizon or parameter 
dimension increases. In Donati et al. (2025b), we formally analyze the 
gradient evolution and provide guarantees for gradient stability using 
a linear parameter-varying formulation. These results support the use 
of forward-mode automatic differentiation and justify the robustness of 
the proposed first-order optimization scheme in practice. In particular, 
it is shown that the gradient computation scales linearly with both 
the number of parameters and the prediction horizon, making the 
proposed first-order approach also suitable for nonlinear systems with 
higher dimensions. On the other hand, as is common in nonlinear 
system identification, the resulting optimization problem is generally 
non-convex, and convergence may depend on initialization and step 
size (Ghadimi & Lan, 2016).

3. Missing observations and multiple runs

In numerous practical scenarios, it is necessary to identify a system 
from irregular sampling, like in the case of missing data, or from multiple 
runs with unknown initial conditions. In this section, we show how the 
physics-based approach can be seamlessly extended to include these 
scenarios.

3.1. Missing observations

First, we present the scenario of missing observations, which arises 
when only a limited set of output measurements are collected at non-
uniform time steps in a given multi-step setting. Practically, this applies 
to, e.g., sensor failure, data loss, data cleaning, or limited sampling 
capabilities.

To formally define this setup, we consider the uniform sequence 
of observations in (2) and the set of available time steps 𝜿𝑁 , i.e., a set 
of 𝑁 < 𝑇  ordered integers defined as 
𝜿𝑁 = {𝑘1,… , 𝑘𝑁}, 𝑘𝑗 ∈ [0, 𝑇 − 1], ∀𝑗 ∈ [1, 𝑁], (6)

where a time index 𝑘𝑗 ∈ 𝜿𝑁  is included if at least one output com-
ponent is available at time 𝑘𝑗 . Accordingly, the sequence of available 
measurements is defined as follows 
𝐳[𝜿𝑁 ] = {𝑧𝑘1 ,… , 𝑧𝑘𝑁 }. (7)

In this case, the cost function 𝑇  is defined by selecting only the time 
steps at which measurements are known to be available, i.e., 

𝑇 = 1
𝑇

𝑁
∑

𝑗=1
𝑘𝑗 , 𝑘𝑗 = ‖𝑧𝑘𝑗 − 𝑧𝑘𝑗 ‖

2
2, (8)

with 𝑘𝑗 the 𝑗th element of 𝜿𝑁 . Moreover, we note that the special 
case of partial measurements, i.e., when only a subset of the output 
components is available at a given time, can be seamlessly incorporated 

1 In our framework, the horizon 𝑇  corresponds to the available data 
length; while larger 𝑇  values generally improve estimation accuracy, they may 
also increase computational cost (Donati et al., 2025b), requiring a trade-off 
between information richness and numerical complexity.
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into the cost function (8). Specifically, we redefine the loss as 𝑘𝑗 =
(𝑧𝑘𝑗 − 𝑧𝑘𝑗 )

⊤𝑃𝑘𝑗 (𝑧𝑘𝑗 − 𝑧𝑘𝑗 ), where 𝑃𝑘𝑗 = diag(𝑝11,… , 𝑝𝑛𝑧𝑛𝑧 ) is a diagonal 
matrix such that, for 𝑖 ∈ [1, 𝑛𝑧], 𝑝𝑖𝑖 = 1 if the 𝑖th output component is 
available at time 𝑘𝑗 , and 𝑝𝑖𝑖 = 0 otherwise.

Despite the simplicity of accounting for missing measurements in 
the optimization problem, it is crucial to assess their effect on the 
estimation error in the identified parameters, relying on the assumption 
on the local identifiability reported in the follows. 

Assumption 1 (Local Identifiability). The system is locally identifiable 
according to, e.g., Bellman and Åström (1970) and Donati et al. (2025a, 
Definition 1). In other words, the Hessian of the loss function evaluated 
in 𝜃⋆ is always positive definite, i.e.,

𝐻 ≐
𝜕2𝑇 (𝜃; ⋅)

𝜕2𝜃

|

|

|

|

|𝜃=𝜃⋆
≻ 0.

In the following theorem, which proof is reported in Appendix  A, 
we demonstrate that there exists an upper bound on the discrepancy 
between the parameters identified with 𝑁 available measurements and 
those obtained with a complete set of 𝑇  data. This bound grows propor-
tionally to the square root of the percentage of missing measurements 
and inversely proportional to 

√

𝑇 .

Theorem 1 (Error Bound with Missing Measurements). Let 𝜃⋆𝑇  represents 
the vector of identified parameters obtained by solving problem (4) using 
a complete set of 𝑇  observations. Similarly, let 𝜃⋆𝑁  denotes the identified 
parameters when only 0 < 𝑁 ≤ 𝑇  observations are available, due to missing 
data. Define 𝑝miss = 𝑇−𝑁

𝑇  as the percentage of missing observations and let 
Assumption  1 hold. Then, the error between the identified parameters under 
missing measurements and those from the complete dataset satisfies 

‖𝜃⋆𝑇 − 𝜃⋆𝑁‖2 ≤ 𝜎𝜉
1

√

𝑇

√

𝑝miss, (9)

for some constant 𝜎𝜉 ∈ R.

Theorem  1 establishes a link between the percentage of missing 
observations, 𝑝miss, the multi-step horizon 𝑇 , and the error in the 
identified parameters. This bound indicates that the worst-case para-
metric error increases with the square root of the missing data fraction, 
highlighting the sensitivity of parameter estimation to the gaps in the 
data. On the other hand, the factor 1

√

𝑇
 highlights that being the missing 

data percentage fixed, the datasets collected over shorter horizons 
(i.e., lower 𝑇 ) are inherently more sensitive to missing data, thus 
leading to a relatively larger error. At the same time, larger datasets 
effectively help to mitigate the negative impact of missing entries. The 
proportionality constant 𝜎𝜉 depends on the maximum singular value of 
a matrix whose columns describe how the optimal parameters vary with 
respect to data weighting (see Appendix  A for details). This suggests 
that systems with certain structural properties (i.e., small 𝜎𝜉) are more 
robust to incomplete datasets.

In the following section, we present a numerical examples that 
showcases the adherence of the retrieved upper bound with a simulated 
system subject to missing measurements.

Numerical analysis of the upper bound on missing data
To support the result of Theorem  1, we demonstrate how missing 

observations quantitatively affect the parameter identification accuracy 
by comparing the identification of a second-order linear system with 
and without missing measurements. The system, presented in Yılmaz 
et al. (2018), is described by the following transfer function

𝑔(𝑧) =
(𝜃1𝑧 + 𝜃2)

(𝑧2 + 𝜃3𝑧 + 𝜃4)
,

and in the canonical companion state-space form as

𝑥𝑘+1 =
[

−𝜃3 −𝜃4
1 0

]

𝑥𝑘 +
[

1
0

]

𝑢,
[ ]
𝑧𝑘 = 𝜃1 𝜃2 𝑥𝑘,

4 
Fig. 1. Box-plot illustrating the distribution of parameter estimation errors for varying 
percentages of missing data (𝑝miss). Each box represents the interquartile range (IQR) 
of errors, with the median shown as the horizontal line, while the whiskers extend the 
range of errors to values within 1.5 × IQR (≈ 3𝜎) beyond the quartiles. Dots represent 
errors that fall outside this range. The solid line represents the upper bound trajectory 
from Theorem  1.

with 𝜃1 = 0.1037, 𝜃2 = −0.08657, 𝜃3 = −1.78, 𝜃4 = 0.9. First, we excite 
the system’s step response with a perturbation defined by  (0, 0.01), 
measured over a horizon 𝑇 = 104. Then, we use this signal within the 
proposed approach to identify the system parameters, accounting for 
different percentages of missing measurements, i.e., from 𝑝miss = 0.05
to 𝑝miss = 0.95. To achieve this goal, we minimize a cost function of the 
form (8) using a first-order optimization method. The predicted states 
and outputs are propagated along the horizon 𝑇 , while the gradient 
is computed via automatic differentiation, relying on the approach 
outlined in Donati et al. (2024, 2025b).

Fig.  1 shows the relationship between the percentage of missing 
observations (𝑝miss) and the 𝓁2 norm of the difference between param-
eters identified with 𝑝miss𝑇  missing data and in the complete-data case 
(i.e., 𝑝miss = 0), respectively. Results are collected from 50 simulations 
for each percentage of missing data, with each simulation featuring dif-
ferent noise values and initial parameter conditions. We can notice that 
the error bound scales with the proportion of missing data. Moreover, 
when overlapping the upper bound derived in Theorem  1 for 𝜎𝜉 = 4.2
to the numerical data, we can observe that this bound well retrace the 
data behavior, and it appears more conservative at lower values of 𝑝miss. 
Furthermore, we can observe that the shorter boxes reflect estimation 
errors tightly clustered around the mean, with few outliers approaching 
the upper bound. This suggests that, for lower percentages of missing 
data, the identified parameters are more accurate and stable, exhibiting 
limited variability even in the presence of some data gaps. Conversely, 
as 𝑝miss increases, the spread of estimation errors around the mean 
widens, as indicated by the larger boxes. This behavior denotes greater 
uncertainty and variability in the parameter estimates and it also 
suggests that a higher amount of missing data makes the identification 
process less reliable, resulting in a tighter and less conservative upper 
bound.

To complete the analysis, Fig.  2 shows the root mean square error 
(RMSE) between predictions and observations for varying percentages 
of missing data. In this case, the plot reveals, as expected, an increasing 
RMSE trend with higher 𝑝miss values, thus underscoring the growing 
discrepancy between predictions and observations as the proportion of 
missing data rises.

3.2. Multiple runs

We now consider the case of multiple runs, where identification 
relies on data from different system trajectories. This is the case, for 
example, of repeated experiments under varying initial conditions, 
different inputs, environmental disturbances, or sensor placements. 
Additionally, multiple runs are also exploited to identify a more robust 
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Fig. 2. Box-plot illustrating the RMSE for varying percentages of missing data (loga-
rithmic scale).

model, capable of capturing a wider range of system behaviors and 
generalizing well to unseen scenarios. Alternatively, multiple runs can 
be defined from a single trajectory by dividing it into smaller segments 
(see, e.g., the multiple shooting method in Ribeiro et al. (2020)) to 
obtain specific optimization properties, such as smoothing the cost 
function and improving numerical stability. In this setup, we consider 
𝑀 different runs of the system  (1), starting from 𝑀 different initial 
conditions. For each 𝑖th experiment, with 𝑖 = [1,𝑀], the following 
noise-corrupted sequences of input–output data, each of length2 𝑇𝑟, are 
available, i.e., 
𝐮(𝑖)[0∶𝑇𝑟−1] = {𝑢̃(𝑖)0 ,… , 𝑢̃(𝑖)𝑇𝑟−1},

𝐳̃(𝑖)[0∶𝑇𝑟−1] = {𝑧(𝑖)0 ,… , 𝑧(𝑖)𝑇𝑟−1}.
(10)

Hence, the cost function 𝑇  in (4) can be redefined as 

𝑇 = 1
𝑀𝑇𝑟

𝑀
∑

𝑖=1

𝑇𝑟−1
∑

𝑘=0
(𝑖)
𝑘 , (𝑖)

𝑘 = ‖𝑧(𝑖)𝑘 − 𝑧(𝑖)𝑘 ‖

2
2. (11)

In the case of multiple runs, the number of decision variables in the 
optimization problem (4) increases. Indeed, since each run starts from a 
different initial condition 𝑥(𝑖)0 , 𝑖 ∈ [1,𝑀], the optimization problem (4) 
must be minimized with respect to all initial conditions 𝑥(1)0 ,… , 𝑥(𝑀)

0 . 
Moreover, it is worth noting that missing measurements and multiple 
runs can occur simultaneously, as remarked in the following. 

Remark 1 (Multiple Runs with Missing Measurements). Let us consider 
𝑀 runs, each of length 𝑇𝑟. Then, we define the set of 𝑁 < 𝑇𝑟 available 
time steps3 for the 𝑖th run as
𝜿(𝑖)
𝑁 = {𝑘(𝑖)1 ,… , 𝑘(𝑖)𝑁 }, 𝑘𝑗 ∈ [0, 𝑇𝑟 − 1], ∀𝑗 ∈ [1, 𝑁].

Accordingly, the available measurements at each run are
𝐳(𝑖)
[𝒌(𝑖)𝑁 ]

= {𝑧(𝑖)
𝑘(𝑖)1

,… , 𝑧(𝑖)
𝑘(𝑖)𝑁

}.

Hence, in the case of multiple runs with missing measurements, the cost 
function 𝑇  can be defined by combining (8) and (11), i.e., 

𝑇 = 1
𝑀𝑇𝑟

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
(𝑖)
𝑘(𝑖)𝑗

, (𝑖)
𝑘(𝑖)𝑗

= ‖𝑧(𝑖)
𝑘(𝑖)𝑗

− 𝑧(𝑖)
𝑘(𝑖)𝑗

‖

2
2. (12)

To enhance the clarity of the proposed method, Algorithm 1 sum-
marizes the key steps of the identification procedure in the presence of 
missing data and multiple runs.

2 For simplicity, we assume that each trajectory has the same length 
𝑇𝑟. However, this non-restrictive assumption can be easily relaxed to 
accommodate sequences of different lengths.

3 Without loss of generality, we use the same 𝑁 and 𝑇  for each run.
𝑟

5 
Algorithm 1 Identification with multiple runs and missing measure-
ments
1: Inputs: Non-uniform dataset with missing data (7), and multiple 
runs (10). Time indices with available outputs 𝜿(𝑖)

𝑁 (6) for each run. 
Initial guesses for 𝜃, 𝜔, and 𝑥(𝑖)0 .

2: while not converged do
3:  for each run 𝑖 = 1 to 𝑀 do
4:  Simulate model over 𝑇𝑟 using current (𝜃, 𝜔, 𝑥(𝑖)0 ).
5:  Compute error 𝑒𝑘 at times 𝑘 ∈ 𝜿(𝑖)

𝑁 .
6:  end for
7:  Compute total cost function over all runs (12).
8:  Update 𝜃, 𝜔, 𝑥(𝑖)0  using gradient descent (Donati et al., 2025b).
9: end while
10: Output: Estimated parameters 𝜃⋆, 𝜔⋆, and 𝑥(𝑖)⋆0 .

4. Aggregated observations

The case of aggregated — cumulative or averaged — observations 
occurs when over a given time window only gathered information 
of multiple individual measurements is accessible. This is the case, 
for example, of monitoring changes of some quantities over extended 
periods rather than capturing short-term data for practical reasons. In 
this context, it is important to differentiate two concepts. On one side, 
we have the so-called running averages, where each measurement is 
computed as the average of a set of preceding measurements, including 
the current one. On the other hand, periodic averaging, i.e., averaged 
observations considered as the mean of a fixed set of measurements 
over a specified time window, without, in general, overlapping between 
consecutive windows. While the proposed framework can accommo-
date running averages as a special case, the primary focus will be on
periodic averaging.

While missing measurements and multiple runs can be handled with 
minor adjustments to the cost function (5), aggregated measurements 
require differently refining the initial formulation. Specifically, let us 
consider 𝑇  observations and 𝑀 (possibly consequent) time windows 
of length 𝑇𝑟 ≐ 𝑇 ∕𝑀 for system (1). Then, the sequence of available 
measurements can be defined as 
𝐙̃𝑀 = {𝑍(1)

𝑇𝑟
,… , 𝑍(𝑀)

𝑇𝑟
}, 𝑍(𝑖)

𝑇𝑟
= 𝑍(𝑖)

𝑇𝑟
+ 𝜂𝑍𝑖 ,

𝑍(𝑖)
𝑇𝑟

≐ 𝛼
𝑇𝑟−1
∑

𝑘=0
𝑧(𝑖)𝑘 , ∀𝑖 ∈ [1,𝑀],

(13)

with 𝜂𝑍𝑖  the measurement noise related to the 𝑖th cumulative obser-
vation, and the parameter 𝛼 defined according to the type of data, 
i.e., 𝛼 = 1 for cumulative measurements and 𝛼 = 1

𝑇𝑟
 when considering 

averaged measurements.
This non-standard representation of the observations compresses 

multiple individual measurements into a single data point, concealing 
short-term dynamics and making it difficult to directly apply standard 
identification techniques. To address this challenge, we propose an 
extended system model that reinterprets the problem as one involving 
both missing measurements and multiple runs, as detailed next.

First, we define the following extended system, 
̄ ∶ 𝑥𝑘+1 = 𝑓

(

𝑥𝑘, 𝑢𝑘; 𝜃
)

+ 𝛥(𝑥𝑘, 𝑢𝑘), (14a)

𝑐𝑘+1 = 𝑐𝑘 + ℎ
(

𝑥𝑘; 𝜃
)

, (14b)

𝑧̄𝑘 = 𝛼𝑐𝑘, (14c)

 described by the extended state vector 𝑥̄ = [𝑥⊤𝑘 , 𝑐
⊤
𝑘 ]

⊤, with 𝑐 ∈ R𝑛𝑧  the 
cumulative state, which aggregates the outputs ℎ(𝑥𝑘; 𝜃) over time, and 
the new output 𝑧̄𝑘 ∈ R𝑛𝑧 . The extended system configuration is depicted 
in Fig.  3.

The following theorem, which proof is reported in Appendix  B, 
describes how the case of aggregated measurements can be handled by 
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Fig. 3. Extended system configuration.

exploiting the tools previously defined for missing measurements and 
multiple runs, by properly integrating the extended system ̄ (14).

Theorem 2 (Systems Equivalence). Let us consider 𝑀 aggregated (cu-
mulative or averaged) observations defined by (13) for the system (1), 
collected from 𝑀 (possibly consecutive) time windows of length 𝑇𝑟. Let 𝑥(𝑖)0
be the initial condition of the 𝑖th time window. Then, let us consider 𝑀
multiple runs of length 𝑇𝑟 + 1 of the system (14), having initial conditions 
[𝑥(𝑖)⊤0 , 0⊤𝑛𝑧 ]

⊤. For each run, let us consider missing measurements, as detailed 
in Section 3.1, with a vector of available time steps 𝜿𝟏 = {𝑇𝑟}. The resulting 
sequence of available 𝑀 observations for the extended system in (14), 
i.e., ̄𝐳(𝑖)[𝜿1] with 𝑖 ∈ [1,𝑀], corresponds to the aggregated observations defined 
by (13) for system (1). That is 
𝐳̄(𝑖)[𝜿1] = 𝑍(𝑖)

𝑇𝑟
, ∀𝑖 ∈ [1,𝑀]. (15)

Now, let us define the extended estimation model as 
̄ ∶ 𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘; 𝜃) + 𝛿(𝑥𝑘, 𝑢𝑘;𝜔),

𝑐𝑘+1 = 𝑐𝑘 + ℎ(𝑥𝑘; 𝜃),
̂̄𝑧𝑘 = 𝛼𝑐𝑘.

(16)

From Theorem  2 and Remark  1, it follows that, considering 𝑀 multiple 
runs and 𝜿𝟏 = {𝑇𝑟}, the cost function 𝑇  can be redefined as 

𝑇 = 1
𝑀

𝑀
∑

𝑖=1

1
∑

𝑗=1
(𝑖)
𝑘𝑗

= 1
𝑀

𝑀
∑

𝑖=1
(𝑖)
𝑇𝑟
, (17)

with (𝑖)
𝑇𝑟

= ‖𝑍(𝑖)
𝑇𝑟

− ̂̄𝑧
(𝑖)
𝑇𝑟
‖

2
2 and 𝑐

(𝑖)
0 = 0𝑛𝑧  for all 𝑖 ∈ [1,𝑀].

The proposed method streamlines both analysis and implementation 
by treating aggregated measurements in the same way as missing 
data and multiple runs, as discussed in Remark  1. Once the data are 
represented within this framework, previously established algorithms 
can be applied directly for identification, avoiding the need for non-
standard formulations to handle data aggregation in the cost function. 
A practical implementation of the proposed framework for aggregated 
observations is provided in Algorithm 2.

Next, we need to assess the contribution of the aggregated observa-
tions to the estimation error of the identified parameters. Similar to 
the case of missing data, in the following theorem, we demonstrate 
the existence of an upper bound on the discrepancy between the 
parameters identified with aggregated data (with a window of length 
𝑇𝑟 < 𝑇 ) and those from a complete dataset. This bound increases 
proportionally to √𝑇𝑟.

Theorem 3 (Error Bound with Aggregated Observations). Let 𝜃⋆𝑇  be the 
vector of identified parameters obtained as the solution to the optimization 
problem (4) when a complete set of 𝑇  observations is available. Similarly, 
let 𝜃⋆  represent the vector of identified parameters obtained when the 
𝑇𝑟

6 
Algorithm 2 Identification with aggregated observations
1: Input: Aggregated outputs 𝑍(𝑖)

𝑇𝑟
(13) for 𝑀 time windows of length 

𝑇𝑟, input sequences for each window, scaling factor 𝛼. Initial 
guesses for 𝜃, 𝜔, and 𝑥(𝑖)0 .

2: while not converged do
3:  for each window 𝑖 = 1 to 𝑀 do
4:  Simulate extended model (16) over horizon 𝑇𝑟.
5:  Use ̂𝑧𝑇𝑟  as predicted cumulative output.
6:  Compute error 𝑒(𝑖)𝑇𝑟 = 𝑍(𝑖)

𝑇𝑟
− 𝑧(𝑖)𝑇𝑟 .

7:  end for
8:  Compute total cost (17).
9:  Update 𝜃, 𝜔, and 𝑥(𝑖)0  using gradient descent (Donati et al., 
2025b).

10: end while
11: Output: Estimated parameters 𝜃⋆, 𝜔⋆, and 𝑥(𝑖)⋆0 .

observations are aggregated over a window of length 𝑇𝑟. Let Assumption 
1 hold. Then, the error between the identified parameters under aggregated 
observations and those obtained from the complete dataset satisfies 
‖𝜃⋆𝑇 − 𝜃⋆𝑇𝑟‖2 ≤ 𝐿𝜃𝛽𝑇𝑟 , (18)

for some constant 𝐿𝜃 ∈ R, where 𝛽𝑇𝑟  is bounded and depends on 
√

𝑇𝑟 as 
follows 
√

𝑇𝑟 − 1 ≤ 𝛽𝑇𝑟 ≤
√

𝑇𝑟 + 1. (19)

Theorem 3, which proof is provided in Appendix  C, implies that 
larger aggregation windows (or fewer measurements), can lead to 
greater deviations in the identified parameters. Similar to the case 
with missing measurements, this behavior emphasizes the effect of 
non-uniform observation on the parameter estimation accuracy: while 
aggregating data may be more practical in some scenarios, the re-
sulting effect can mask short-term dynamics, leading to less accurate 
identification.

5. Case studies

In this section, we present two case studies to demonstrate the 
efficacy of the proposed framework in handling missing and aggre-
gated observations, respectively. We remark that in both examples the 
optimization is carried out using a first-order method, propagating 
the predictions while the gradient is computed through automatic 
differentiation (Donati et al., 2024, 2025b).

5.1. Identification with missing measurements

To explore the practical use of the proposed identification method 
for handling the case of missing data, we consider the continuous 
stirred-tank reactor (CSTR) described in Morningred et al. (1992). 
Specifically, we aim to identify the dynamical models for the CSTR 
relying on a real dataset with different rates of missing observation 
extracted from the DaISy benchmarks collection (De Moor et al., 1997).

5.1.1. System description
The continuous stirred-tank reactor, depicted in Fig.  4, is governed 

by an exothermic process with irreversible reaction, where the product 
concentration is controlled by regulating the coolant flow. This system 
has been widely investigated and it is recognized as a highly chal-
lenging benchmark for nonlinear process modeling, optimization, and 
control (see, e.g., Gopaluni (2008), Lu and Huang (2014), Morningred 
et al. (1992) and references therein). From a system identification 
perspective, its inherent nonlinear dynamics and sensitivity to operat-
ing conditions make it an ideal test-bench for validating identification 
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Fig. 4. Schematic illustration of a CSTR system.

Table 1
Nominal CSTR parameter values.
 Name Description Value Unit  
 𝐶𝐴 product concentration 𝑥1 [mol/l]  
 𝑇 reactor temperature 𝑥2 [K]  
 𝑞𝑐 coolant flow rate 𝑢 [l/min]  
 𝑞 process flow rate 100 [l/min]  
 𝐶0 feed concentration 1 [mol/l]  
 𝑇0 feed temperature 350 [K]  
 𝑇𝑐0 inlet coolant temp 350 [K]  
 𝑉 CSTR volume 100 [l]  
 ℎ𝐴 heat transfer term 7 ⋅ 105 [cal/min/K] 
 𝑘0 reaction rate constant 7.2 ⋅ 1010 [min−1]  
 𝐸

𝑅
activation energy term 1 ⋅ 104 [K]  

 𝛥𝐻 heat of reaction −2 ⋅ 105 [cal/mol]  
 𝜌, 𝜌𝑐 liquid densities 1 ⋅ 103 g/l  
 𝐶𝑝 , 𝐶𝑝𝑐 specific heats 1 [cal/g/K]  
 𝛥𝑡 sampling time 0.1 [min]  

strategies. This process has been studied in the literature also in the case 
of missing data conditions. Some works, such as (Deng & Huang, 2012; 
Gopaluni et al., 2009; Yang et al., 2018), focus on the same system but 
rely on different datasets, while others, such as (Demeester, 2020; Liu 
et al., 2013; Yuan et al., 2023), specifically investigate the same dataset 
used in this paper.

As described in Morningred et al. (1992), the CSTR system is gov-
erned by the following discretized dynamical first-principle equations

𝐶𝑘+1 = 𝐶𝑘 + 𝛥𝑡
[

𝑞
𝑉

(

𝐶0 − 𝐶𝑘
)

− 𝑘0𝐶𝑘𝑒
− 𝐸

𝑅𝑇𝑘

]

,

𝑇𝑘+1 = 𝑇𝑘 + 𝛥𝑡
[ 𝑞
𝑉

(

𝑇0 − 𝑇𝑘
)

−
(−𝛥𝐻) 𝑘0

𝜌𝐶𝑝
𝐶𝑘𝑒

− 𝐸
𝑅𝑇𝑘

+
𝜌𝑐𝐶𝑝𝑐

𝜌𝐶𝑝𝑉
𝑞𝑐,𝑘

(

1 − 𝑒
− ℎ𝐴

𝑞𝑐,𝑘𝜌𝐶𝑝

)

(

𝑇𝑐0 − 𝑇𝑘
)

]

,

(20)

where the product concentration 𝐶𝑘 and the reactor temperature 𝑇𝑘
are the state variables, whereas the coolant flow rate 𝑞𝑐,𝑘 is the input. 
Moreover, in this system, the outputs coincide with the states, i.e., ̃𝑧𝑘 =
[

𝐶𝑘, 𝑇𝑘
]⊤. The goal is to identify the following vector of parameters 𝜃 =

[

𝑘0,
(−𝛥𝐻)𝑘0

𝜌𝐶𝑝
, ℎ𝐴

]⊤
, as in Gopaluni (2008), Gopaluni et al. (2009). The 

nominal parameter values used in the simulations and their physical 
description are reported in Table  1. The input–output dataset for this 
process is illustrated in Fig.  5. It includes 7500 samples, 5000 allocated 
for the identification task (black line) and the remaining 2500 (red line) 
reserved for validation.

In the following simulations, we numerically verify Assumption  1 
by approximating the Hessian using both the Gauss–Newton method 
(see, e.g., Björck (1996)), i.e., 𝐻(𝜃) ≈ 𝐽⊤𝐽 where 𝐽 is the Jacobian of 
7 
Fig. 5. Identification (black) and validation (red) input–output measurements related 
to the CSTR system. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

the residual vector with respect to the parameters and finite-difference 
perturbations of the gradient. In both cases, the approximate Hessians 
are positive definite. The Hessian exhibits a condition number ≈ 108, 
primarily due to the large variation in the scale of the estimated 
parameters, which ranged from 105 to over 1013. While such disparities 
in parameter magnitudes can lead to ill-conditioned Hessians, the 
optimization process is stable and convergent over al the simulations, 
confirming the practical validity of Assumption  1.

5.1.2. Identification results
Identification is achieved by minimizing a cost function of the form 

(8) over the identification data, generating different versions of the 
original dataset with missing measurement rates ranging from 𝑝miss =
0% to 𝑝miss = 75%. For each rate of missing data, the results are 
collected over 200 simulations, each one employing different initial 
values for the parameters to be identified. Specifically, the estimated 
parameters are initialized randomly, with each initial value ̂𝜃𝑖,0 selected 
within a ball around the nominal parameter value 𝜃𝑖 and a radius of 
30% of 𝜃𝑖. That is, 𝜃𝑖,0 is chosen such that 𝜃𝑖,0 ∈ [𝜃𝑖 − 0.3𝜃𝑖, 𝜃𝑖 + 0.3𝜃𝑖]. 
The states initial conditions to be estimated are initialized at ̂𝑥0,0 = 𝑧0.

The black-box compensation term 𝛿(⋅) is introduced into the dy-
namical model to handle the process nonlinearities and to guarantee 
adaptation to unmodeled variations in system parameters. Indeed, the 
CSTR system is typically subject to changes in the environmental and 
operational conditions, and it may experience fluctuations that the 
basic physics-based model (20) alone cannot capture accurately (Deng 
& Huang, 2012; Morningred et al., 1992). In this example, 𝛿 is de-
fined as a linear combination of sigmoid, softplus, hyperbolic tangent, 
trigonometric, and polynomial functions. Then, a regularization term 
is introduced in the cost function (8) to promote a sparse black-box 
component. This is done by minimizing an approximation of the 𝓁1-
norm of the black-box weights 𝜔 (see Donati et al. (2025a) for further 
details). The results presented next are computed on the validation 
dataset.

Fig.  6 depicts the effect of missing observations on the model fitness 
scores, which are computed for the 𝑖th output as

fit(𝑖)% = 100
⎛

⎜

⎜

⎝

1 −
∑𝑇−1

𝑘=0 (𝑧
(𝑖)
𝑘 − 𝑧(𝑖)𝑘 )2

∑𝑇−1
𝑘=0 (𝑧

(𝑖)
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The box plot highlights the distribution of the model fitness across 200
simulations for each output and for each level of data loss. The global 
fitness (yellow boxes) represents the average between the two outputs’ 
fitness, i.e., fit(1)%  (green boxes) for the first output and fit(2)%  (red boxes) 
for the second one. Hence, we have fit = (fit(1) + fit(2))∕2.
% % %
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Fig. 6. Box-plot illustrating the distribution of the fitness scores for varying percentages 
of missing data. The bottom plot presents a zoom on the fitness scores for the second 
output specifically. Each box shows the IQR, with the median as a horizontal line and 
whiskers extending to 1.5×IQR. Asterisks represent fitness scores that fall outside this 
range. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Table 2
Global fitness scores.
 𝑝miss fit% (mean ± 1𝜎) Nuc-SId PF-NSId 
 0 94.3 ± 4.84 84.7 89.0  
 10 93.7 ± 5.47 86.2 88.0  
 20 91.9 ± 7.49 85.3 87.0  
 25 91.8 ± 7.61 ∕ ∕  
 30 91.4 ± 8.62 85.4 ∕  
 40 91.8 ± 8.40 85.2 ∕  
 50 92.1 ± 8.28 83.7 ∕  
 75 91.2 ± 9.70 ∕ ∕  

These results demonstrate the robustness of the proposed approach 
in the case of missing data. Indeed, as the percentage of missing 
data increases, the average fitness scores remain consistently high, 
with a gradual decrease only at higher levels of data loss. Moreover, 
the narrow IQR across simulations for lower values of 𝑝miss indicates 
low variability in the identified models. As 𝑝miss increases, the IQR 
becomes wider, reflecting the expected growth in variability due to 
reduced information availability. Within this context, we remark that 
robustness does not imply invariance to missing data but rather refers 
to the ability of the framework to maintain high average performance 
and reconstruct meaningful system behavior despite increasing 𝑝miss. 
This behavior is indeed consistent with the theoretical error bounds, 
which grow with √𝑝miss: as the number of available measurements 
decreases, errors in parameter estimation naturally increase (see The-
orem  1), leading to greater variability in prediction quality. Notably, 
the second output retains better fitness overall, as highlighted in the 
zoomed section, suggesting a higher resilience of this output to missing 
observations.

These outcomes are also reflected in Table  2, which presents the 
global fitness scores, compared to the results obtained in Liu et al. 
(2013) (Nuc-SId) and Gopaluni et al. (2009) (PF-NSId) for the same 
amount of missing data. In this case, the results confirm the ability of 
the approach in maintaining high global fitness scores across varying 
levels of missing data, outperforming benchmark results obtained with 
linear (Nuc-SId) and black-box based (PF-SId) identification methods.

Then, the true and predicted trajectories of the CSTR system under 
four different percentages of missing observations 𝑝miss are compared in 
Fig.  7, where we have also reported the ±1 standard deviation bands 
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Table 3
RMSE scores (mean ± 1𝜎).
 𝑝miss RMSE𝐶 × 103 RMSE𝑇  
 0 4.54 ± 2.54 0.29 ± 0.06 
 10 4.88 ± 2.85 0.29 ± 0.06 
 20 5.61 ± 3.81 0.31 ± 0.09 
 25 5.80 ± 3.97 0.31 ± 0.10 
 30 6.09 ± 4.76 0.32 ± 0.10 
 40 5.94 ± 4.96 0.31 ± 0.07 
 50 5.76 ± 4.79 0.31 ± 0.09 
 75 6.39 ± 7.60 0.34 ± 0.16 

Table 4
RRSE scores.
 𝑝miss RRSE ODE-RSSM NSM-SId  
 (mean ± 1𝜎) (mean ± 1𝜎)  
 0 0.0787 ± 0.0161 0.0659 0.0220 ± 0.005  
 10 0.0775 ± 0.0152 ∕ ∕  
 20 0.0804 ± 0.0173 ∕ ∕  
 25 0.0785 ± 0.0161 ∕ ∕  
 30 0.0839 ± 0.0192 ∕ ∕  
 40 0.0825 ± 0.0166 ∕ ∕  
 50 0.0834 ± 0.0187 0.1336 0.0920 ± 0.0140 
 75 0.0864 ± 0.0249 0.2595 ∕  

around the mean trajectories. The results highlight the ability of the 
proposed method to approximate the system’s dynamics and confirm 
its inherent robustness to substantial missing data.

Table  3 collects the RMSE scores for the two outputs. The reported 
values demonstrate the ability of the proposed framework to maintain 
low the prediction errors across varying levels of missing data for both 
the outputs, while the relatively small standard deviations indicate sta-
ble performance, even under significant data loss. Then, Table  4 shows 
a comparison with (Yuan et al., 2023) (ODE-RSSM), and Demeester 
(2020) (NSM-SId) in terms of the relative root squared error (RRSE), 
calculated as in Demeester (2020),

RRSE = 1
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Here, an RRSE of 1 indicates performance equivalent to predicting 
the mean. For consistency with (Yuan et al., 2023), and Demeester 
(2020), the outputs and predictions were normalized in this phase by 
subtracting their mean and dividing by their standard deviation before 
calculation. In this case, the results reported in Table  4 highlight how 
the proposed approach is able to provide RRSE values comparable with 
the ones obtained with the black-box-based benchmark. In particular, 
better performance are obtained under moderate levels of missing data. 
Moreover, compared to black-box methods, the proposed approach 
offers improved interpretability of the identified parameters.

Last, the parameters identified for varying percentages of missing 
data are reported in Table  5. Here, the results reflect the level of 
accuracy and consistency of the parameter estimation achievable under 
different levels of data loss, demonstrating the ability of the framework 
to accurately recover interpretable system parameters, maintaining 
relative reliability across different data loss scenarios. However, it is 
also important to highlight how the identified parameter may differ 
from the nominal one, as in the case of 𝜃1. In the considered case study, 
this discrepancy may be caused by the variations due to environmental 
and operational conditions, as it commonly happens in real systems.

Summarizing, the application of the proposed approach to the CSTR 
system in the presence of missing measurements demonstrates its ro-
bustness in handling real-world scenarios with substantial missing data. 
Despite the inherent challenges, the combination of the physics-based 
model and the black-box component effectively compensates for miss-
ing data, accurately identifying the system parameters. Moreover, the 
obtained results align with those reported in the literature, and a 
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Fig. 7. Comparison of true and predicted trajectories for the CSTR system under varying percentages of missing data (indicated in the legend), represented with ±1 standard 
deviation bands around the mean trajectories. The plots on the right provide a zoomed-in view of the interval [700, 750] minutes to highlight detailed behavior. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Identified parameters (mean ± 1𝜎).
 𝑝miss 𝜃1 × 10−10 𝜃2 × 10−13 𝜃3 × 10−5  
 0 7.64 ± 0.40 −1.44 ± 0.13 7.00 ± 0.57 
 10 7.64 ± 0.37 −1.45 ± 0.12 6.93 ± 0.50 
 20 7.64 ± 0.40 −1.44 ± 0.13 6.97 ± 0.55 
 25 7.64 ± 0.43 −1.44 ± 0.12 6.88 ± 0.55 
 30 7.60 ± 0.43 −1.42 ± 0.14 6.99 ± 0.51 
 40 7.58 ± 0.40 −1.43 ± 0.13 7.01 ± 0.52 
 50 7.59 ± 0.46 −1.42 ± 0.13 6.91 ± 0.55 
 75 7.54 ± 0.42 −1.41 ± 0.14 6.92 ± 0.49 
 Nominal 7.20 −1.44 7.00  

comparison with methods applied to the same benchmark showcases 
competitive performance particularly under moderate data loss, high-
lighting the framework’s reliability in practical process modeling and 
its adaptability to real-world conditions.

5.2. Identification with averaged observations

In this section, we focus on validating the efficacy of the proposed 
framework in the case of aggregated observations. In particular, we aim 
to identify a generic Lotka–Volterra model, which has been largely used 
to describe the dynamics of a variety of real-world systems.

5.2.1. System description and motivations
The Lotka–Volterra model consists of a set of nonlinear equations 

commonly used to describe the dynamics of systems involving different 
interacting species. Specifically, this model describes how the popula-
tion of the different species varies over time. This model is well-known 
for describing the dynamics of biological systems, as the interaction be-
tween predator and prey populations (Wangersky, 1978). However, its 
application extends also beyond the ecological domain, as for instance 
in the economic context, where it is used to represent the wealth of 
individual investors or the market capitalization of companies (Malcai 
et al., 2002).

In both ecological and economical framework, the use of averaged 
measurements is a common practice. For example, significant biological 
species fluctuations may occur over the year, and sampling on a specific 
date or during a short period might yield a distorted view of the 
population’s typical behavior (Wangersky, 1978). On the other hand, 
high-frequency data might be unavailable in the economic context, and 
only averaged values over extended periods can be observed (Givoly & 
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Palmon, 1982). These averages reflect general trends while concealing 
short-term variations. Consequently, using aggregated or averaged data 
within the proposed framework enables the identification of models 
that fit the available data well, while still capturing detailed dynamics 
and adapting to the limited resolution of the observations.

5.2.2. Dynamical model
The discretized Lotka–Volterra model with 𝑛𝑥 = 2 states 𝑥𝑘 =

[𝑥1,𝑘, 𝑥2,𝑘]⊤ and parameters 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]⊤ is given by 
𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝜃1𝑥1,𝑘 − 𝜃2𝑥1,𝑘𝑥2,𝑘 + 𝛥1(𝑥𝑘),

𝑥2,𝑘+1 = 𝑥2,𝑘 − 𝜃3𝑥2,𝑘 + 𝜃4𝑥1,𝑘𝑥2,𝑘 + 𝛥2(𝑥𝑘),

𝑧𝑘 = 𝑥𝑘,

(21)

where 𝑥1 is the population density of prey, 𝑥2 is the population density 
of the predator, 𝜃1 and 𝜃2 are the prey’s parameters, describing the 
maximum per capita growth rate and the effect of predators on the 
prey growth rate, respectively, 𝜃3 and 𝜃4 are the predator’s parameters, 
describing the per capita death rate and the effect of prey on the 
predator’s growth rate, respectively. All parameters are positive and 
real. On the other hand, 𝛥1 and 𝛥2 represent unmodeled dynamics 
that capture external factors affecting the populations beyond the 
basic predator–prey interaction. In the considered case study we have 
𝜃 = [0.13, 0.02, 0.12, 0.02], while 𝛥1 and 𝛥2 are quadratic terms that 
may represent, e.g., the intraspecific competition within each popu-
lation, implying that the growth of each population is influenced not 
only by the interaction between predator and prey but also by the 
density-dependent effects within each population. In particular, we 
considered

𝛥1(𝑥𝑘) = 𝜇10−4𝑥21,𝑘, 𝛥2(𝑥𝑘) = −𝜇5 ⋅ 10−4𝑥22,𝑘,

where 𝜇 > 0 is a tuning parameter to control the size of the unmodeled 
terms. In this case study, 𝜇 = 10 is selected to introduce a meaningful 
but interpretable model mismatch, preserving the structure of the 
physical model while sufficiently challenging the black-box compen-
sator.4 Clearly, the unmodeled dynamics, being unknown, cannot be 
incorporated into the physical model. Instead, it must be compensated 
by the black-box approximator 𝛿. Notice that, although the unmodeled 
dynamics seem relatively small, the impact on the population dynamics 

4 Larger values of 𝜇 were found to excessively distort the system dynamics, 
compromising interpretability and realism at the base of the proposed case 
study.
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Fig. 8. Populations evolution for different values of 𝜇. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 9. Monthly prey (black lines) and predator (red lines) populations evolutions with 
yearly average measurements (green circles). Dashed lines represent the unmodeled 
dynamics. On the right, the phase plot of the system with uniform measurements (blue 
lines) and average measurements is shown. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

is relevant. This is highlighted in Fig.  8, where the evolution of predator 
and prey populations is represented over a period of 20 years for differ-
ent values of 𝜇. In this case, it is evident the importance of efficiently 
compensating for unmodeled dynamics in order to accurately capture 
the system’s behavior.

As in the previous case study, we conduct a numerical verification 
of Assumption  1 using the Gauss–Newton approximation and the finite-
difference methods. The resulting Hessians are positive definite, with 
condition numbers around 103, indicating good numerical conditioning.

5.2.3. Identification results
In the proposed example, we simulate the evolution of the predator 

and prey populations based on the Lotka–Volterra model (21) over 
75 years (900 months) with initial condition 𝑥0 = [2, 3]⊤. The data 
are generated for both populations at monthly intervals, capturing the 
interaction dynamics described by the model. The first 600 months are 
used as identification data, while the subsequent 300 months are used 
for validation. In the considered scenario, the measures averaged over 
time windows of 𝑇𝑟 = 12 months are exploited, leading to 𝑀 = 50
identification measurements for each population. Fig.  9 illustrates the 
monthly population evolution and the yearly average evolution of the 
prey and predator populations over the entire 50-year identification 
period. This figure highlights how data averaging captures the overall 
trend while masking finer details and short-term interactions, which 
can pose challenges for accurately identifying the system’s underlying 
dynamics.
10 
Fig. 10. Comparison between the true evolution of the populations (black lines) and 
the one predicted (purple lines) using the model identified from averaged measurements 
on the identification data. Green markers represent the averaged measurements, while 
purple markers represent the reconstructed averages. Purple dashed lines indicate the 
unmodeled dynamics predicted by the black-box term 𝛿(⋅), compared with the true one, 
𝛥(⋅) (black dashed line). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

First, we exploit the results of Theorem  2 to identify the system by 
employing an extended model of the form
𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝜃1𝑥1,𝑘 − 𝜃2𝑥1,𝑘𝑥2,𝑘 + 𝛿1(𝑥𝑘),

𝑥2,𝑘+1 = 𝑥2,𝑘 − 𝜃3𝑥2,𝑘 + 𝜃4𝑥1,𝑘𝑥2,𝑘 + 𝛿2(𝑥𝑘),

𝑐𝑘+1 = 𝑐𝑘 + 𝑥𝑘, 𝑧̄𝑘 = 1
𝑇𝑟

𝑐𝑘,

to estimate the underlying parameters of the predator–prey system from 
averaged observations. Then, the identification task is performed by 
minimizing a cost function of the form (17) considering 𝑀 multiple 
runs and 𝜿1 = {𝑇𝑟}.

The estimated parameters are initialized randomly as 𝜃0 = 𝜃 +
 (0.02, 𝜎𝜃), with 𝜎𝜃 = 0.05. Analogously, the initial conditions of the 
states are initialized at 𝑥0,0 = 𝑧0. Also in this case, the black-box 
term 𝛿 is defined as a linear combination of selected basis functions, 
i.e., sigmoid, softplus, hyperbolic tangent, and trigonometric functions. 
Additionally, the cost function 𝑇  incorporates physical penalties and 
regularization terms to enforce specific properties. Specifically, the 
positivity of 𝜃 is ensured using an exponential barrier function, while 
the sparsity of the black-box component 𝛿 is promoted through an 𝓁1-
norm approximation applied to the black-box weights 𝜔 (Donati et al., 
2025a).

Figs.  10 and 11 showcase the predictions from the identified model 
compared with the averaged observations and the population behavior 
for identification and validation data, respectively. The results highlight 
how the proposed approach is able to successfully reconstructs the 
predator and prey dynamics based on the available averaged data and 
demonstrate the accuracy of the identified model even when facing 
aggregated measurements.

The accuracy of the method is also reflected in to adherence of 
the identified parameters and the state initial condition, i.e., 𝜃 =
[0.1318, 0.0204, 0.1214, 0.0198]⊤ and 𝑥0 = [2.0842, 2.7412]⊤, with the 
ground truth values used in the simulation, i.e., 𝜃 = [0.13, 0.02, 0.12, 0.02]
and 𝑥0 = [2, 3]⊤.

Next, we extend the preliminary analysis by considering different 
sizes of averaging windows. Hence, in addition to the 𝑇𝑟 = 12-month 
window (yielding 𝑀 = 50 averaged data points), we fixed the total 
amount of data (𝑇 = 900) and the starting value of the estimated 
parameters and initial condition. Then, we analyze the identification 
outcomes using larger windows 𝑇 , which imply a lower number of 
𝑟
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Fig. 11. True population evolution (black lines) with the averaged measurements 
(green markers) and predicted population evolution (purple lines) with the re-
constructed averages (purple markers) using the model identified from averaged 
measurements on the validation data. Black and purple dashed lines represent 𝛥(⋅) and 
𝛿(⋅), respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Table 6
Effect of the averaging window size 𝑇𝑟 on identification performance.
 𝑇𝑟 𝑀tr∕𝑀val RMSEtr RMSEval ‖𝜃 − 𝜃‖2 ‖𝑥0 − 𝑥0‖2 
 12 50∕25 0.2737 0.3436 0.0023 0.2721  
 15 40∕20 0.2183 0.2846 0.0029 0.2047  
 20 30∕15 0.4742 0.5486 0.0123 0.5718  
 24 25∕13 0.8443 0.8502 0.0217 0.9885  
 40 15∕8 1.4328 1.4242 0.0442 1.1534  
 50 12∕6 1.3346 1.3539 0.0589 0.9157  

available average measurements. Table  6 summarizes the results for 
each simulated case, including the prediction accuracy measured in 
terms of the root mean square error,5 and parametric error for both 
𝜃 and 𝑥0, for each window size.

From the reported results, we can observe that, being 𝑇 = 𝑀𝑇𝑟
fixed, an increase in 𝑇𝑟 results in fewer available measurements (𝑀), 
which generally leads to less accurate estimates of the parameters and 
initial conditions, as indicated by increasing error values. Furthermore, 
a larger 𝑇𝑟 not only decreases the data available for identification 
but also enhances the smoothing effect on short-term dynamics, due 
to averaging over more values. Consequently, this implies a reduced 
accuracy, as reflected in the observed trends. Last, it is worth noting 
that the similar error values observed for 𝑇𝑟 = 12 and 𝑇𝑟 = 15 suggest 
a range where the performance remains relatively stable, indicating 
the presence of an ‘‘optimal’’ averaging window size, beyond which 
performance begins to degrade. This aspect will be explored in future 
analysis.

5 The RMSE has been computed considering the entire set of observations 
and predictions over the horizon.
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6. Conclusions

In this paper, we presented an identification framework able to han-
dle non-uniform observations. The proposed physics-based approach, 
defined by a proper combination of off-white models and black-box 
approximators, is designed to address real-world scenarios where mea-
surements may be missing, aggregated, or collected across multiple 
experimental runs. Specifically, for the case of missing measurements 
and multiple runs, we show how a minimal modification of the cost 
function allows to handle this class of non-uniform data. On the other 
hand, for aggregated — cumulative or averaged — measurements, we 
show how the identification problem can be handled by relying on an 
extended system model that reinterprets this problem as one combining 
missing measurements and multiple runs. In this way, we showcase the 
high flexibility of the approach to deal with non-uniform data.

Moreover, a theoretical analysis has been carried out to assess 
the effect of non-uniform observations on the estimation accuracy. 
We demonstrate that for missing measurement there exists an upper 
bound on the parametric error that depends on the percentage of 
missing data, the length of the observation horizon, and the resulting 
error. Analogously, we prove that a similar bound also exists for the 
case of aggregated observations, highlighting how the length of the 
aggregation window impacts the accuracy of parameter estimation.

The effectiveness of the proposed approach is demonstrated through 
two case studies, involving two different types of non-uniform ob-
servations. First, we assess the performance of the approach over a 
scenario with missing measurements involving the identification of a 
continuous stirred-tank reactor. Then, we test the proposed framework 
in the presence of aggregated data for a Lotka–Volterra system. In 
both case studies, we demonstrate the ability of the proposed ap-
proach to accurately reconstruct system dynamics under non-uniform 
observations.
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Appendix A. Proof to Theorem  1

Let us consider a cost function of the form 
(𝜃, 𝛾) = 𝛾⊤𝜁𝑇 , (22)

where 𝛾 ∈ R𝑇  is a generic vector of real coefficient and 𝜁𝑇 ∈ R𝑇  is 
a vector containing the squared 𝓁2-norm of the prediction error for 
each element, i.e., 𝜁𝑇 ,𝑘 = ‖𝑧𝑘 − 𝑧𝑘‖22. Now, since  depends on 𝛾, we 
notice that also a minimizer of this cost is a function of 𝛾. Hence, 
denoting with 𝜃⋆ = [𝜃⋆1 ,… , 𝜃⋆𝑛𝜃 ] the solution obtained by minimizing 
a cost function of the type (22), we have also that 𝜃⋆ ≡ 𝜃⋆(𝛾). Then, 
given 𝛾1 ≠ 𝛾2, we define the associated cost functions according to (22), 
i.e., 
1(𝜃, 𝛾) = 𝛾⊤1 𝜁𝑇 , (23a)

2(𝜃, 𝛾) = 𝛾⊤2 𝜁𝑇 , (23b)

Therefore, considering the solutions of (23a) and (23b), and applying 
the mean value theorem, for each parameter 𝜃⋆𝑖 (⋅) there exists a vector 
𝛾̆ (𝑖) = (1 − 𝑎)𝛾1 + 𝑎𝛾2, with 𝑎 ∈ [0, 1], such that 
𝜃⋆𝑖 (𝛾1) − 𝜃⋆𝑖 (𝛾2) = 𝜉(𝛾̆ (𝑖))⊤(𝛾1 − 𝛾2), (24)

with 𝜉(𝛾) ≐ 𝜕𝜃⋆𝑖 (𝛾)
𝜕𝛾 ∈ R𝑇 .

Then, to compute 𝜕𝜃⋆(⋅)𝜕𝛾 ∈ R𝑛𝜃 ,𝑇  we rely on the implicit differenti-
ation technique. First, we consider that the minimizer 𝜃⋆ is a solution 
of 𝜕𝑇 (𝜃,𝛾)𝜕𝜃 = 0. It follows that 

d
d𝛾

𝜕𝑇 (𝜃⋆, 𝛾)
𝜕𝜃

= 0, (25)

where d
d𝛾  denotes the Jacobian with respect to 𝛾, given by 

d
d𝛾

𝜕𝑇 (𝜃⋆, 𝛾)
𝜕𝜃

=
𝜕2𝑇 (𝜃⋆, 𝛾)

𝜕𝛾𝜕𝜃
+

𝜕2𝑇 (𝜃⋆, 𝛾)
𝜕2𝜃

𝜕𝜃⋆(𝛾)
𝜕𝛾

= 𝐺(𝛾) +𝐻(𝛾)
𝜕𝜃⋆(𝛾)
𝜕𝛾

,
(26)

where 𝐻 is the Hessian matrix of the cost function with respect to 𝜃, 
and 𝐺 reflects the influence of missing data on the system’s behavior. 
Therefore, considering (25), (26), and knowing that the Hessian 𝐻 is 
invertible according to Assumption  1, we obtain
𝜕𝜃⋆(𝛾)
𝜕𝛾

= −𝐻−1𝐺(𝛾).

This implies that, for the 𝑖th parameter 𝜃⋆𝑖 , the vector 𝜉(𝛾̆ (𝑖))
⊤ in (24) 

corresponds to the 𝑖th row of the matrix −𝐻−1𝐺(𝛾̆ (𝑖)) ∈ R𝑛𝜃 ,𝑇 . Thus, 
according to (24), we have
𝜃⋆(𝛾1) − 𝜃⋆(𝛾2) = 𝛯⊤(𝛾1 − 𝛾2),

with 𝛯 =
[

𝜉(𝛾̆ (1)),… , 𝜉(𝛾̆ (𝑛𝜃 ))
]

∈ R𝑇 ,𝑛𝜃 , that yields 
‖𝜃⋆(𝛾1) − 𝜃⋆(𝛾2)‖2 = ‖𝛯⊤(𝛾1 − 𝛾2)‖2

≤ ‖𝛯⊤
‖2‖(𝛾1 − 𝛾2)‖2.

(27)

Let us now consider the case of missing measurements and a set of 
available time-steps 𝜿𝑁 (6). Specifically, let us define the coefficient 
vectors in (23a) and (23b) as 

𝛾1 = 𝛾𝑇 ≐
[ 1
𝑇
,… , 1

𝑇

]⊤
(28a)

𝛾2 = 𝛾𝑁 =
[

𝛾𝑁,𝑖
]

, 𝛾𝑁,𝑖 ≐

{

0 if 𝑖 ∉ 𝜿𝑁 ,
1
𝑇 otherwise. (28b)

Then, for the coefficient vector 𝛾𝑇 , the associated cost function 𝐶(𝜃, 𝛾𝑇 )
of the form (22) is equivalent to the cost function in (5). Indeed, we 
have

(𝜃, 𝛾𝑇 ) = 𝛾⊤𝑇 𝜁𝑇 =
[ 1
𝑇
,… , 1

𝑇

]
⎡

⎢

⎢

‖𝑧0 − 𝑧0‖22
⋮

2

⎤

⎥

⎥

⎣ ‖𝑧𝑇−1 − 𝑧𝑇−1‖2 ⎦

12 
=
𝑇−1
∑

𝑘=0

1
𝑇
‖𝑧𝑘 − 𝑧𝑘‖

2
2 =

1
𝑇

𝑇−1
∑

𝑘=0
‖𝑧𝑘 − 𝑧𝑘‖

2
2. (29)

Analogously, for the coefficient vector 𝛾𝑁 ,6 defined in (28b) the associ-
ated cost function 𝐶(𝜃, 𝛾𝑁 ) of the form (22) is equivalent to one given 
by (8), i.e., 

(𝜃, 𝛾𝑁 ) = 𝛾⊤𝑁𝜁𝑇 = 1
𝑇

𝑁
∑

𝑗=0
‖𝑧𝑘𝑗 − 𝑧𝑘𝑗 ‖

2
2, (30)

where 𝑘𝑗 is the 𝑗th element of 𝜿𝑁 . Hence, according to (29) and (30), 
it follows that (27) holds for the solutions 𝜃⋆𝑇  and 𝜃⋆𝑁  of (5) and (8), 
respectively. Moreover, defining 𝜎𝜉 as the maximum singular value of 
the matrix 𝛯⊤, i.e., 𝜎𝜉 = ‖𝛯⊤

‖2 ≐ 𝜎𝑚𝑎𝑥(𝛯⊤), we obtain 

‖𝜃⋆(𝛾𝑇 ) − 𝜃⋆(𝛾𝑁 )‖2 = ‖𝜃⋆𝑇 − 𝜃⋆𝑁‖2 ≤ 𝜎𝜉‖𝛾𝑇 − 𝛾𝑁‖2. (31)

Then, observing that 

‖(𝛾𝑇 − 𝛾𝑁 )‖2 =
√

𝑇 −𝑁
𝑇 2

= 1
√

𝑇

√

𝑝miss, (32)

and combining (31) with (32), we yield (9), concluding the proof.

Appendix B. Proof to Theorem  2

First, we consider the extended system (14) for a generic run7 𝑖 of 
length 𝑇𝑟 + 1 with missing measurements defined by 𝜿1 = 𝑇𝑟. From (7) 
we have 
𝐳̄[𝜿1] = {𝑧̄𝑘1} = 𝑧̄𝑇𝑟 . (33)

Moreover, from (14b)–(14c), we obtain 
𝑧̄𝑇𝑟 = 𝛼𝑐𝑇𝑟 = 𝛼𝑐𝑇𝑟−1 + 𝛼ℎ(𝑥𝑇𝑟−1; 𝜃). (34)

Then, iterating (14b) backward, we obtain 
𝑐𝑇𝑟−1 = 𝑐𝑇𝑟−2 + ℎ(𝑥𝑇𝑟−2; 𝜃)

= 𝑐𝑇𝑟−3 + ℎ(𝑥𝑇𝑟−3; 𝜃) + ℎ(𝑥𝑇𝑟−2; 𝜃)

⋮

= 𝑐0 + ℎ(𝑥0; 𝜃) +⋯ + ℎ(𝑥𝑇𝑟−2; 𝜃).

(35)

Now, from (34) and (35) it follows that
𝑧̄𝑇𝑟 = 𝛼ℎ(𝑥0; 𝜃) +⋯ + 𝛼ℎ(𝑥𝑇𝑟−1; 𝜃),

having 𝑐0 = 0𝑛𝑧  by definition. Moreover, from (1) we have 𝑧𝑘 = ℎ(𝑥𝑘; 𝜃), 
which implies that 

𝑧̄𝑇𝑟 = 𝛼𝑧0 +⋯ + 𝛼𝑧𝑇𝑟−1 = 𝛼
𝑇𝑟−1
∑

𝑘=0
𝑧𝑘. (36)

Finally, considering (13) and (33), we have that (36) implies (15), 
which concludes the proof.

Appendix C. Proof to Theorem  3

For simplicity and without loss of generality, let us consider the case 
of 𝑛𝑧 = 1. The extension to the general case is straightforward. Given 
the prediction error 𝑒𝑘 = 𝑧𝑘 − 𝑧𝑘, let us consider the vector
𝜀 =

[

𝑒0,… , 𝑒𝑇−1
]⊤ ∈ R𝑇 .

Moreover, consider the following cost function
(𝛤 , 𝜃) = 𝑝‖𝛤𝜀‖22,

with 𝑝 ∈ R a generic constant, and 𝛤 ∈ R𝑇 ,𝑇  an aggregation matrix 
of coefficients. Given that  depends on 𝛤 , any minimizer of the cost 

6 Notice that when 𝑁 = 0, i.e., 𝑝miss = 1, the system becomes 
non-identifiable, as 𝑇 (𝜃, ⋅) = 0 for all 𝜃, thereby violating Assumption  1.

7 The superscript (𝑖) is omitted for clarity.
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function  will also be a function of 𝛤 . Therefore, 𝜃⋆, i.e., the solution 
obtained by minimizing , can be explicitly expressed as 
𝜃⋆ ≡ 𝜃⋆(𝛤 ). (37)

Thus, considering the cost function (𝛤 , 𝜃) in (5) when 𝑇  uniform 
measurements are available, we have 

𝑇 = 1
𝑇

𝑇−1
∑

𝑘=0
‖𝑒𝑘‖

2
2 =

1
𝑇
‖𝛤𝑇 𝜀‖

2
2 ≐ (𝛤𝑇 , 𝜃), (38)

with 𝛤𝑇 = I𝑇 . Similarly, considering 𝑀 aggregated measurements 
with windows length 𝑇𝑟, as defined in (13), and applying (36), we can 
rewrite (17) as 

𝑇 = 1
𝑀

𝑀
∑

𝑖=1

‖

‖

‖

‖

‖

‖

𝛼
𝑇𝑟−1
∑

𝑘=0
𝑧(𝑖)𝑘 − 𝛼

𝑇𝑟−1
∑

𝑘=0
𝑧(𝑖)𝑘

‖

‖

‖

‖

‖

‖

2

2

= 𝛼2

𝑀

𝑀
∑

𝑖=1

‖

‖

‖

‖

‖

‖

𝑇𝑟−1
∑

𝑘=0
(𝑧(𝑖)𝑘 − 𝑧(𝑖)𝑘 )

‖

‖

‖

‖

‖

‖

2

2

= 𝛼2

𝑀
‖

‖

‖

𝛤𝑇𝑟𝜀
‖

‖

‖

2

2
≐ (𝛤𝑇𝑟 , 𝜃),

(39)

with ̃𝑧(𝑖)𝑘 = 𝑧(𝑖)𝑘 +
𝜂𝑍𝑖
𝑇𝑟
, 𝛤𝑇𝑟 =

[

𝑔1,… , 𝑔𝑇
]⊤, and 

𝑔𝑗 =

{
[

0⊤(𝑗−1)𝑇𝑟 , 1
⊤
𝑇𝑟
, 0⊤𝑇−𝑗𝑇𝑟

]⊤
if 𝑗 ≤ 𝑀,

0𝑇 otherwise.
(40)

Thus, being (𝛤 , 𝜃) twice continuously differentiable and the sys-
tem identifiable according to Assumption  1, by applying the implicit 
function theorem (Krantz & Parks, 2002) to the gradient function 
∇𝜃(𝛤 , 𝜃(𝛤 )) = 𝜕(𝛤 ,𝜃(𝛤 ))

𝜕𝜃  it follows that 𝜃(𝛤 ) is continuously differ-
entiable, and consequently also Lipschitz continuous, with respect to 
𝛤 . Now, let us consider 𝜃⋆𝑇  and 𝜃⋆𝑇𝑟 , i.e., the minimizers of (5) and 
(17), respectively. According to (37)–(39), we have 𝜃⋆𝑇 = 𝜃⋆(𝛤𝑇 ) and 
𝜃⋆𝑇𝑟 = 𝜃⋆(𝛤𝑇𝑟 ). Therefore, from Lipschitz continuity it follows that 

‖𝜃⋆𝑇 − 𝜃⋆𝑇𝑟‖2 ≤ 𝐿𝜃‖𝛤𝑇 − 𝛤𝑇𝑟‖2, (41)

for some Lipschitz constant 𝐿𝜃 . Then, defining 𝛽𝑇𝑟  as the maximum 
singular value of the matrix 𝛤𝑇 − 𝛤𝑇𝑟 , we have
‖𝛤𝑇 − 𝛤𝑇𝑟‖2 = 𝜎𝑚𝑎𝑥(𝛤𝑇 − 𝛤𝑇𝑟 ) = 𝛽𝑇𝑟 ,

which, combined with (41), yields (18). Thus, applying triangle in-
equality, the following relation holds, i.e., 
𝛽𝑇𝑟 = ‖𝛤𝑇 − 𝛤𝑇𝑟‖2 ≤ ‖𝛤𝑇 ‖2 + ‖ − 𝛤𝑇𝑟‖2

= ‖𝛤𝑇 ‖2 + ‖𝛤𝑇𝑟‖2

= 𝜎𝑚𝑎𝑥(𝛤𝑇 ) + 𝜎𝑚𝑎𝑥(𝛤𝑇𝑟 ).

(42)

Similarly, applying the reverse triangle inequality 
𝛽𝑇𝑟 = ‖𝛤𝑇 − 𝛤𝑇𝑟‖2 ≥ |‖𝛤𝑇 ‖2 − ‖𝛤𝑇𝑟‖2|

= |𝜎𝑚𝑎𝑥(𝛤𝑇 ) − 𝜎𝑚𝑎𝑥(𝛤𝑇𝑟 )|.
(43)

Here, it is easy to verify that 𝜎𝑚𝑎𝑥(𝛤𝑇 ) = 𝜎𝑚𝑎𝑥(I𝑇 ) = 1. Moreover, the 
following relation holds for all 𝑇𝑟, i.e., 

𝜎𝑚𝑎𝑥(𝛤𝑇𝑟 ) =
√

𝑇𝑟. (44)

In particular, we have that 𝜎𝑚𝑎𝑥(𝛤𝑇𝑟 ) =
√

𝜆𝑚𝑎𝑥(𝛤𝑇𝑟𝛤
⊤
𝑇𝑟
), where

𝛤𝑇𝑟𝛤
⊤
𝑇𝑟
=
⎡

⎢

⎢

⎣

𝑔⊤1
⋮
𝑔⊤𝑇

⎤

⎥

⎥

⎦

[

𝑔1,… , 𝑔𝑇
]

=
⎡

⎢

⎢

⎣

𝑔⊤1 𝑔1 … 𝑔⊤1 𝑔𝑇
⋮ ⋱ ⋮

𝑔⊤𝑇 𝑔1 … 𝑔⊤𝑇 𝑔𝑇

⎤

⎥

⎥

⎦

.

Here, according to (40), it is easy to verify that 𝑔𝑖,𝑗 = 0, ∀𝑖 > 𝑀 , ∀𝑗, 
and

𝑔⊤𝑖 𝑔𝑗 =

{

1⊤𝑇𝑟1𝑇𝑟 = 𝑇𝑟 if 𝑖 = 𝑗

0 otherwise

13 
It follows that

𝛤𝑇𝑟𝛤
⊤
𝑇𝑟

=
[

𝑇𝑟I𝑀 0𝑀,𝑇−𝑀
0𝑇−𝑀,𝑀 0𝑇−𝑀,𝑇−𝑀

]

,

is a diagonal matrix, where 𝜆1 = ⋯ = 𝜆𝑀 = 𝑇𝑟, 𝜆𝑀+1 = ⋯ = 𝜆𝑇 = 0, 
and 𝜎𝑚𝑎𝑥(𝛤𝑇𝑟 ) =

√

𝑇𝑟, proving the statement (44). Thus, from (42)–(44), 
we have
|1 −

√

𝑇𝑟| ≤ 𝛽𝑇𝑟 ≤
√

𝑇𝑟 + 1,

which leads to (19) having 𝑇𝑟 ≥ 1, concluding the proof. Notice that 
𝛽𝑇𝑟 ≈

√

𝑇𝑟 for large 𝑇𝑟.
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