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Abstract—This paper introduces a novel active learning
method for iteratively building a suitable training set within
the scope of Gaussian process models applied to the uncertainty
quantification of multi-output system responses. In particular, the
proposed strategy offers a significant advantage by extending the
already existing generic techniques that typically account for a
single scalar output only. This approach extends the training to
all outputs, thus improving the accuracy of the overall response
of the system in a more comprehensive manner.

Index Terms—Active learning, Bayesian estimation, Gaussian
processes, machine learning, surrogate modeling, training, un-
certainty quantification.

I. INTRODUCTION

Nowadays, the need for new, smarter strategies to perform
both design and optimization of electronic systems, along with
their uncertainty quantification (UQ), is rapidly increasing. To
this end, recent studies have focused on the use of machine
learning techniques [1], [2], [3], with particular attention to
kernel-based methods, whose structure is simple and flexible.
What makes them suitable in this kind of application is their
good scalability to high-dimensional analyses, which also
implies a reasonable cost for training the models.

Gaussian process (GP) models were proven to be partic-
ularly successful in the design exploration and optimization
of electronic devices due to their capability of associating
confidence bounds to model predictions [4]. One of the most
critical steps in the achievement of a good model is the
selection of the training data, which should be as small as
possible, while still allowing to approximate well the true
system behavior.

Several approaches were proposed in the past years con-
cerning active learning (AL) methods tailored to the effective
augmentation of the training dataset [2], [5], [6]. However,
most strategies addressed the optimization of a single scalar
output quantity, which was generally selected based on the
level of variability exhibited.

In this paper, an effective multi-output AL strategy for GP
surrogates applied to UQ tasks is proposed and investigated.
The algorithm, starting from the already obtained insights on
this topic, relies on the predictive variance of the output mean,
focusing this time on the overall time/frequency domain. The
methodology leverages the concepts of principal component
analysis (PCA) compression and Cholesky factorization to
make the computation efficient. The proposed AL method is

illustrated based on the full-wave simulation of a microstrip
line with a slot in the ground plane.

II. GP REGRESSION FOR MULTIPLE RESPONSES

Let us assume a generic system whose frequency-domain
behavior is described by

y = M(f ;x), (1)

where f denotes the frequency, x = (x1, ..., xd)> is a set of
(uncertain) design parameters, and M : R+ ⇥ X ✓ Rd ! R.
The system (1) is evaluated at discrete frequency points
{fp}Pp=1, e.g., by means of a full-wave solver, producing
a vectorial output response y = (y1, . . . , yP )T for a given
configuration of the design parameters x.

A. GP Regression Settings for Single Outputs

The output of (1) for the p-th frequency point can be
expressed as a particular realization of a GP (prior) with trend
µ(x) and kernel function k (x, x0). Without loss of generality,
we consider here µ(x) = 0 and an anisotropic Matérn 5/2
kernel function.

For the training step, a set of input-output observations
{(xtr

l , y
tr
l )}Ll=1 is collected from the actual system (1) and

used to condition the prior. By evaluating the (posterior) model
at a discrete set {x⇤}Ni=1 of input values, we obtain a set of
predictions y⇤ with mean vector

m = K⇤K
�1ytr (2)

and covariance matrix

C = K⇤⇤ �K>
⇤ K

�1K⇤, (3)

where ytr 2 RL collects the training responses, whereas
• K 2 RL⇥L has entries Ki,j = k

�
xtr
i ,x

tr
j

�
;

• K⇤ 2 RL⇥N has entries K⇤i,j = k
�
xtr
i ,x

⇤
j

�
;

• K⇤⇤ 2 RN⇥N has entries K⇤⇤i,j = k
�
x⇤
i ,x

⇤
j

�
.

Considering that each prediction y⇤i is a multivariate normal
variable withe mean and covariance given by equations (2)
and (3), one can compute the expectation and variance of the
output mean as [4]

E {µ̂y} =
1

N

NX

i=1

mi (4)



Var {µ̂y} =
1

N2

NX

i,j=1

Cij . (5)

The second equation will be particularly useful in the next
section, related to the proposed AL scheme.

B. PCA Compression for Multiple Outputs

An elementary approach would be to train P separate
models for each frequency component yp. Anyway, this soon
becomes intractable as the number of points P increases.
Moreover, it would unavoidably yield a different sequence
of training input samples, which is inconvenient as a single
simulation is usually run for an entire frequency sweep.

A viable option is to resort to PCA compression, which
allows obtaining, thanks to its linearity, a model for the
original outputs by training separate GP models for the
principal components only. Indeed, the training observations
now consist of vectors ytr

l = M(f,xl) and form a matrix
dataset Y tr 2 RP⇥L. This can be approximated by a truncated
singular value decomposition as

Y tr = ȳ +USV > ⇡ ȳ + Ũ S̃Ṽ
>
= ȳ + ŨZ̃, (6)

where ȳ 2 RP is the mean along the columns of Y tr. The
matrix Z̃ = Ũ

>
(Y tr�ȳ) 2 Rñ⇥L can be seen as a collection

of L training responses of the “principal components” zn of
the system, which relate to the original frequency components
yp as

yp = ȳp +
ñX

n=1

Upnzn. (7)

The number ñ of principal components is obtained based on
a predefined relative threshold on the singular values, which
in this application is chosen to be 1%, and is typically ⌧ P .

The principal components zn can be modeled with ñ indi-
vidual GP surrogates with corresponding mean and covariance
m̃n and C̃n as in (2) and (3), respectively. From these reduced
outputs, the original outputs are recovered via (7). Thanks
to the linearity of PCA, the mean and covariance of the
predictions for the p-th output are obtained as [4]

mp = ȳp +
ñX

n=1

Upnm̃n (8)

and

Cp =
ñX

n=1

U2
pnC̃n, (9)

respectively, for p = 1, ..., P .

III. PROPOSED MULTI-OUTPUT AL

The proposed strategy to iteratively increment the training
dataset builds upon the stochastic AL method presented in [7],
which adds new points with the aim of reducing the predictive
variance of the output mean given by (5). Here, we extend
the method to the multi-output case, considering the overall
response instead of a single frequency.

When using PCA compression, we are dealing with ñ
separate models. At each iteration we focus on the principal
component with the largest predictive variance of the corre-
sponding mean as the optimization criterion, i.e.,

n? = argmax
n

Var {µ̂zn} = argmax
n

1

N2

NX

i,j=1

C̃n,ij . (10)

In this way, we track the overall model variation, focusing at
each iteration on the least accurate component to improve.

Since the term K⇤⇤ in (3) is not affected by the expansion
of the training dataset with a new point xnew, we focus on
the update of the second term, which we express as

�C̃
(⌫+1)
n? =

h
K(⌫)

⇤
>

>
⇤

i 
K(⌫) >

 

��1 
K(⌫)

⇤
⇤

�
(11)

where ⌫ denotes the iteration index, matrices K(⌫) and K(⌫)
⇤

are available from the previous iteration, whereas ⇤,i =
k (xnew,x⇤

i ), i = k (xtr
i ,xnew), and  = k (xnew,xnew)

depend on the new candidate point.
In essence, (11) describes the decrease of the predictive

variance of the principal component mean when a new point
xnew is added to training dataset. Therefore, the best new point
is selected as the one solving the optimization problem

x?
new = argmax

xnew2X

NX

i,j=1

�C̃
(⌫+1)
n?,ij . (12)

Solving the optimization problem involves the evaluation of
the cost function (11) for a possibly large number of candidate
points xnew. This in turn requires the inversion of a matrix
in which only one row/column is changed. To speed-up this
calculation, the Cholesky factorization of the inner matrix is
computed directly as an update of the Cholesky factorization
of matrix K(⌫) = LL>.

IV. APPLICATION EXAMPLE AND NUMERICAL RESULTS

The proposed multi-output AL technique is applied to the
UQ of the insertion loss of a microstrip line with a discontinu-
ity in the ground plane. The stochastic input parameters are the
location and the length of the slot in the ground plane, while
the magnitude of S21, analyzed with CST Studio Suite® for a
frequency sweep spanning from dc to 10 GHz, is considered
as the output. The Reader is referred to [7] and references
therein for additional details on this test case, for which the
insertion loss was investigated at a single frequency.

The training and validation datasets are built based on an
overall set of 1000 input-output observations. Specifically,
N = 300 observations are assumed as a reference and reserved
for an independent validation, whereas the remaining 700
samples are used as candidates from which to pick the training
samples. The training starts with L = 10 observations only.
Then, 15 iterations are performed to expand the training
dataset by selecting the best candidate from the remaining
points according to the proposed AL scheme. The GP models
are trained in MATLAB® using the Statistics and Machine
Learning Toolbox™ toolbox.
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Fig. 1. RMSE (top) and ✏� (bottom) over 50 runs as the iterations increase.
Red curves: standard AL [5]; green curves: proposed AL.

The accuracy is assessed based on the mean of the relative
errors on the variance at each frequency point, i.e.,

✏� =
1

P

PX

p=1

����̂2
yp

� �2
yp

���
�2
yp

, (13)

where �2
yp

is the variance of the reference observations in the
validation set and �̂2

yp
the corresponding prediction of the GP

model, and the mean of the RMSE between observations and
predictions, i.e.,

RMSE =
1

P

PX

p=1

vuut 1

N

NX

j=1

�
ŷpj � ypj

�2
. (14)

The performance of the proposed AL strategy is compared
against a more traditional strategy that uses the maximum
predictive variance of the principal components (instead of
their mean) as optimization criterion [5], which corresponds
to the maximum diagonal entry in the covariance matrix C̃n

computed according to (3).
Figure 1 shows the behavior of the above error metrics

for the two AL strategies and for 50 independent runs.
For each run, the same initial set of 10 training samples,
randomly picked from the candidate set, is considered for
the two approaches. Then, 15 additional training samples
are iteratively selected based on the corresponding algorithm.
The line with markers represent the median error over the
50 runs, whereas the shaded area represent the dispersion
of the results (2� interval). The proposed AL method is
shown to outperform the standard deterministic strategy, as
it provides faster convergence and tighter confidence bounds
as the number of iterations (i.e., added samples) increases.

The moments of S21 predicted over frequency with the GP
models are shown in Fig. 2 for one execution of the two
AL schemes. The dashed red and green curves refer to the
GP predictions obtained by applying the conventional and the
proposed AL strategies, respectively, whereas the solid lines
are their respective 95% confidence intervals. The prediction
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Fig. 2. Mean (top) and variance (bottom) of S21 over frequency. Blue:
reference from Monte Carlo analysis; yellow: initial GP model (10 samples);
red and green: GP models after 15 iterations with standard and proposed AL,
respectively; gray lines: samples from the Monte Carlo analysis.

of the starting model obtained with only 10 samples (yellow
curves) are included for comparison. Once again, the proposed
method is found to substantially outperform the standard AL
method by yielding a far more accurate model.

V. CONCLUSIONS

This paper presented a new methodology to iteratively train
a multi-output GP model in the context of UQ. The pro-
posed AL scheme accounts for the overall frequency-domain
response of the system and was applied to UQ of the insertion
loss of a microstrip line with ground plane discontinuity, for
which it achieved better convergence and lower error compared
to a standard AL strategy for the same number of samples.
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