
20 July 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Small-coupling dynamic cavity: A Bayesian mean-field framework for epidemic inference / Braunstein, Alfredo; Catania,
Giovanni; Dall'Asta, Luca; Mariani, Matteo; Mazza, Fabio; Tarabolo, Mattia. - In: PHYSICAL REVIEW RESEARCH. -
ISSN 2643-1564. - ELETTRONICO. - 7:2(2025), pp. 1-25. [10.1103/physrevresearch.7.023089]

Original

Small-coupling dynamic cavity: A Bayesian mean-field framework for epidemic inference

Publisher:

Published
DOI:10.1103/physrevresearch.7.023089

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/3000313 since: 2025-05-20T12:34:14Z

APS



PHYSICAL REVIEW RESEARCH 7, 023089 (2025)

Small-coupling dynamic cavity: A Bayesian mean-field framework for epidemic inference

Alfredo Braunstein ,1,2,3 Giovanni Catania ,4 Luca Dall’Asta ,1,2,3 Matteo Mariani ,1,5

Fabio Mazza ,1,6 and Mattia Tarabolo 1,*

1Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology,
Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy

2Italian Institute for Genomic Medicine (IIGM) and Candiolo Cancer Institute IRCCS, str. prov. 142, km 3.95, I-10060 Candiolo (TO), Italy
3INFN, Turin Via Pietro Giuria 1, I-10125 Turin, Italy

4Departamento de Física Téorica, Universidad Complutense, 28040 Madrid, Spain
5Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA

6Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy

(Received 19 December 2023; accepted 26 March 2025; published 25 April 2025)

A novel generalized mean-field approximation, called the small-coupling dynamic cavity (SCDC) method, for
epidemic inference and risk assessment is presented. The method is developed within a fully Bayesian framework
and accounts for noncausal effects generated by the presence of observations. It is based on a graphical model
representation of the epidemic stochastic process and utilizes dynamic cavity equations to derive a set of self-
consistent equations for probability marginals defined on the edges of the contact graph. By performing a small-
coupling expansion, a pair of time-dependent cavity messages is obtained, which capture the probability of
individual infection and the conditioning power of observations. In its efficient formulation, the computational
cost per iteration of the SCDC algorithm is linear in the duration of the epidemic dynamics. While the method
is derived for the susceptible-infected (SI) model, it is straightforwardly applicable to many other Markovian
epidemic processes, including recurrent ones. This linear complexity is particularly advantageous for recurrent
epidemic processes, where inference methods are typically exponentially complex in the duration of the epidemic
dynamics. The method exhibits high accuracy in assessing individual risk, as demonstrated by tests on the SI
model applied to various classes of synthetic contact networks, where it performs on par with belief propagation
techniques and generally exceeds the performance of individual-based mean-field methods. Additionally, the
method was applied to recurrent epidemic models, where it showed interesting performance even for relatively
large values of the infection probability, highlighting its versatility and effectiveness in challenging scenarios.
Although convergence issues may arise due to long-range correlations in contact graphs, the estimated marginal
probabilities remain sufficiently accurate for reliable risk estimation. Future work includes extending the method
to non-Markovian recurrent epidemic models and investigating the role of second-order terms in the small-
coupling expansion of the observation-reweighted dynamic cavity equations.

DOI: 10.1103/PhysRevResearch.7.023089

I. INTRODUCTION

In the past decade, the increasing availability of detailed
epidemiological data and high-accuracy contact-network
datasets triggered the study of individual-based epidemic
inference problems, which aim to predict the marginal prob-
abilities of infection for individual nodes in a network, given
partial observations of the epidemic, such as the states of spe-
cific individuals at certain times. The interest has been further
stimulated during the COVID-19 pandemic, by the possibility
of performing massive epidemic surveillance and digital con-
tact tracing via smartphone applications [1,2]. A variety of
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computational methods were proposed for tackling this class
of inference problems, such as heuristic algorithms based
on network centrality measures [3,4], generalized mean-field
approximations [5], Monte Carlo methods [6], and machine
learning techniques exploiting tailored architectures of au-
toregressive and graph neural networks [7–11]. The leading
techniques for epidemic inference adopts a Bayesian frame-
work, with a simple individual-based epidemic model as prior
distribution and the sparse observation of positive/negative
test results as evidence [12]. Unfortunately, the associated in-
ference task includes the formidable computational difficulty
of computing averages on a complicated high dimensional
discrete distribution for which no tractable analytic solution is
known. Arguably, generalized mean-field methods and their
associated algorithms, are best able to balance the computa-
tional demand of accurately estimating these observables with
affordable calculation times. In particular, belief propagation
(BP) [13–16] has proven to be extremely effective in estimat-
ing local marginal probabilities of the posterior distribution,
reconstructing the infection state of unobserved individuals,
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and identifying patient zero and contagion channels. Further-
more, when integrated into the framework of digital contact
tracing for COVID-19, the BP-based algorithms have been
shown to provide a better assessment of individual risk and
improve the mitigation impact of nonpharmaceutical interven-
tion strategies, outperforming competing methods for various
epidemic inference problems defined on contact networks
[2,17]. BP-based algorithms have also been used to optimally
deploy resources for constraining the epidemic spreading to
hit a subset of target nodes at specific times [18], similarly
to the constraints imposed by observations in inference. The
belief propagation approach to spatiotemporal epidemic tra-
jectories can be classified as a generalized mean-field method
because the epidemic trajectories of the neighbors of a given
individual are assumed to be conditionally independent. This
hypothesis is correct when the dynamical process takes place
on a contact network without cycles, but the method proved
to be very effective also on contact networks with cycles.
It should be noted that the dynamic cavity (DC) approach
[19,20] turns out to be equivalent to BP in the case of pure
time-forward epidemic dynamics without observations. More-
over, for dynamic models with nonrecurrent individual states,
in the case of pure time-forward epidemic dynamics without
observations, the BP/DC approach simplifies into a dynamic
message passing technique that has been extensively used to
study spreading processes on networks [21,22].

Despite the apparent success of the BP approach, simpler
and faster methods may be preferable, in particular in views of
the potential need of real-time calculation for large communi-
ties (with thousands to millions of individuals). Moreover, BP
is not easily generalizable to recurrent dynamics (such as SIS
and SIRS), in which even the trajectory of a single individual
can potentially take an exponential number of states. In this
regime, further assumptions are required. One possibility is a
tensorial approximation of distributions of such trajectories,
which can however result in relatively heavy computational
requirements [23]. In this context, simpler individual-based
mean-field (IBMF) methods may turn out to be of interest.
Also known as quenched mean-field and N-intertwined mod-
els, these methods simply assume that the simultaneous states
of neighboring nodes are statistically independent, and have
been shown to provide reasonably accurate approximations
to time-forward epidemic dynamics [24–27]. Recently, the
individual-based mean-field method has been applied to pro-
pose a straightforward inference approach that heuristically
incorporates observations of individual states [2]. While this
method does not explicitly rely on a Bayesian framework, its
simplicity and computational efficiency make it a practical
tool for epidemic risk assessment, yielding promising results
in relevant scenarios.

In this paper we propose small-coupling dynamic cav-
ity (SCDC), a generalized mean-field approximation for
Bayesian epidemic inference and risk assessment. The method
is introduced to address the limitations of BP in handling
recurrent epidemic processes and to ensure uniform computa-
tional complexity for both recurrent and nonrecurrent models.
Moreover, SCDC offers a simple and interpretable approx-
imation of BP, where the messages have a clear physical
interpretation, making it particularly appealing for a better un-
derstanding of the inference algorithm. The method exploits

the improved uncorrelation assumption of BP/DC compared
to simpler mean-field approaches, while largely preserving
the analytic simplicity and computational efficiency of IBMF.
The starting point of the method is a graphical model repre-
sentation of the epidemic stochastic process that allows for a
convenient derivation of a set of dynamic cavity equations for
functional probability marginals defined on the edges of the
contact graph. In this representation, the cavity probability
marginal on a directed edge from individual i to individual j
is a function of two quantities: the trajectory of the individual
state of i in the absence of interactions with j and a conjugate
external field acting on i (which replaces the effect of the
missing interaction terms in the cavity graph). By perform-
ing an expansion of the dynamic cavity equations for weak
infection probabilities and truncating the expansion at the first
order, a set of self-consistent equations for the average of these
two quantities can be obtained. Unlike other individual-based
mean-field approximations, the proposed method is conceived
as an approximation of a fully Bayesian framework. While
both SCDC and IBMF account for noncausal effects gener-
ated by the presence of observations, the Bayesian foundation
of SCDC makes it a promising basis for future developments,
such as improved approximations or theoretical studies of
epidemiological inference. These noncausal effects arise be-
cause incorporating observations constrains the dynamics to
trajectories compatible with the observed data, necessitating
the propagation of information backward in time, which in
our formulation is encoded through the conjugate fields. In the
absence of observations, the conjugate fields responsible for
noncausal dynamics vanish, and the individual-based mean-
field method for time-forward dynamics can be recovered. For
simplicity, we initially present the SCDC in the case of the
susceptible-infected (SI) model. Using an efficient formula-
tion based on a transfer-matrix technique, the SCDC method
is then extended to general Markovian epidemic processes,
including individual recovery, latency, and recurrent infection
(e.g., SIR, SEIR, SIS, and SIRS models). Although SCDC is
expected to be less accurate than BP (on nonrecurrent models
on which it can be applied), for which it represents a sort
of weak-infectivity approximation for the distribution of in-
dividual trajectories, we show through extensive simulations
on realistic examples how this gap is often negligible.

The manuscript is organized as follows: Section II presents
the SCDC method and its derivation on the SI model; Sec. III
discusses a general efficient formulation of the algorithm
that is easy to generalize to other epidemic models (further
discussed in Sec. IV); results are presented in Sec. V, concern-
ing both estimates of epidemic outbreaks in the absence of
observations and individual risk assessment from partial ob-
servations, on both irreversible and recurrent compartmental
models; finally, Sec. VI draws the conclusions and highlights
future directions to be investigated.

II. METHODOLOGY

A. Definition of the stochastic epidemic model and observations

For simplicity, we will present the proposed method on
one of the simplest epidemic models, namely the discrete-
time stochastic SI model. The generalization to more general
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epidemic models is discussed in Sec. IV. It is thus considered
the dynamics of the SI model on a population of N individuals
over a temporal window of T time steps (which, for the sake
of concreteness, will be called “days”). The daily contacts
are directly encoded in the set of parameters specifying the
infection transmission, with λt

i j being the infection probability
along the directed edge from individual i to individual j at
time t ; conversely, we set λt

i j = λt
ji = 0 if i and j are not in

contact at time t . The epidemic state of the population at time
t is represented by a binary vector xt = (xt

1, . . . , xt
N ), with

xt
i = S (respectively, xt

i = I) meaning that i is a susceptible
(respectively, infected) individual at time t . We include in
the model a small self-infection probability εt

i . In general,
self-infections can model scenarios where the contact network
is only partially known, in such a way to avoid incompati-
bility between the inference model and observations arising
from unknown transmission channels; however, a small self-
infection can also be useful to heal pathological cases that
can arise in the presence of noise-less observations (more
details in Appendix F). The epidemic model is assumed to
be Markovian, i.e., the time evolution of the probability pt (xt )
that the population is in state xt at time t is given in terms of
the following master equation:

pt+1(xt+1) =
∑

xt ∈{S,I}N

W (xt+1|xt )pt (xt ), (1)

with transition rates factorized over nodes W (xt+1|xt ) =∏
i Wi(xt+1

i |xt ), where

Wi
(
xt+1

i = S|xt
) = δxt

i ,S
αt

i e
ht

i , (2)

Wi
(
xt+1

i = I|xt
) = δxt

i ,I
+ δxt

i ,S

[
1 − αt

i e
ht

i
]

= 1 − δxt
i ,S

αt
i e

ht
i , (3)

where δx,y denotes the Kronecker symbol. For notational
simplicity, we introduced the probability of not being self-
infected αt

i = 1 − εt
i and the local field ht

i = ∑N
j=1 νt

jiδxt
j ,I

,

where νt
ji = log(1 − λt

ji ), such that eht
i = ∏N

j=1(1 − λt
jiδxt

j ,I
)

is the probability of not being infected by the neigh-
bors. Then the probability of the epidemic spreading x =
{x0, x1, . . . , xT } can be written, under the Markov assump-
tion, in the following form:

p(X ) =
T∏

t=0

pt (xt ) =
∏

i

p0
(
x0

i

) T −1∏
t=0

Wi
(
xt+1

i

∣∣xt
)
, (4)

where, at the initial time t = 0, the individuals are assumed
to be independent and identically distributed according to
p0(x0). The likelihood of the model can be defined by a
set O = {Oi}i=1,...,N of site-independent observations. We as-
sume that each node i can be observed multiple times across
different time steps. Observations are factorized over time as
Oi = (O0

i , . . . , OT
i ), where Ot

i = ∅ denotes the absence of
observation at time t . A more general scenario admits uncer-
tainty on the outcome of the tests, the latter being eventually
quantified by false positive rate η+ and/or false negative rates
η−. The likelihood of an observation Ot

i on node i at time t

can be written as

p
(
Ot

i

∣∣xt
i

) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − η+)δxt
i ,S

+ η−δxt
i ,I

if Ot
i = S,

η+ δxt
i ,S

+ (1 − η−)δxt
i ,I

if Ot
i = I,

1 if Ot
i = ∅.

(5)

The likelihood over the full set of observations O can be
written as p(O|X ) = ∏N

i=1

∏T
t=0 p(Ot

i |xT
i ). In the case of per-

fectly accurate tests, in which η+ = η− = 0, the effect of the
observations is to enforce the dynamical trajectories to be
compatible with the observed states.

The posterior probability of the trajectory X can be ex-
pressed using Bayes’ theorem as follows:

p(X |O) = 1

p(O)
p(X )p(O|X ) (6a)

∝
N∏

i=1

p0
(
x0

i

)
p
(
OT

i

∣∣xT
i

)

×
T −1∏
t=0

Wi
(
xt+1

i

∣∣xt
)
p
(
Ot

i

∣∣xt
i

)
. (6b)

The Bayesian inference problem consists in evaluating
marginals of the posterior distribution p(X |O), such as the
quantity p(xt

i = x|O) representing the posterior probability
that individual i is in state x ∈ {S, I} at time t given the set of
the available observations O. The posterior distribution is, in
general, intractable but it is the starting point for the derivation
of approximate inference methods.

B. Dynamic cavity equations for the SI model with observations

The posterior probability in Eq. (6b) can be interpreted as
a graphical model for dynamical trajectories defined on the
contact network. In this context, a BP approach was proposed
in Refs. [13,14], and has since been employed for epidemic
inference. This approach involves defining messages between
neighboring nodes that depend on their pairwise dynamical
trajectories, allowing short loops induced by the dynamical
constraints in the factor graph to be disentangled.

In this work, we propose an alternative formulation based
on a cavity argument, which yields a set of equations for the
marginal probability of a pair of variable-field trajectories on
each node in the cavity graph. This formulation, referred to as
the observation-reweighted DC equations, provides a rigorous
approach to describing the posterior distribution on sparse
graphs. Starting from the posterior probability in Eq. (6b),
the derivation (see Appendix A and Refs. [2,13,14]) leads
to the following set of equations for the cavity messages
ĉi\ j (xi, si|O):

ĉi\ j (xi, si|O) ∝ p0
(
x0

i

)
p(Oi|xi )

∑
x∂i\ j

eŜi\ j

×
∏

k∈∂i\ j

ĉk\i(xk, νikxi|O), (7)

where ∂i \ j is the set of neighboring indices of i except for j,∑
x∂i\ j

= ∏
k∈∂i\ j

∏T
t=0

∑
xt

k∈{S,I}, and Ŝi\ j is the cavity dynam-
ical action of the spreading dynamics under study, which for
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the SI model can be written as

Ŝi\ j =
T −1∑
t=0

log
[
αt

i e
st

i +
∑

k∈∂i\ j νt
kiδxt

k ,I
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δxt+1
i ,I

]
.

(8)

For the sake of brevity, we introduced the compact
representations νikxi = (ν0

ikδx0
i ,I , . . . , ν

T
ikδxT

i ,I ) and p(Oi|xi ) =∏T
t=0 p(Ot

i |xt
i ). The terms ĉi\ j (xi, si|O) are the cavity mes-

sages, depending on the trajectory xi of individual i and the
local field trajectory si, which acts as a proxy for the tra-
jectory of the missing neighboring node j (more precisely,
si ∝ ν jix j).

The observation-reweighted dynamic cavity equations can
be interpreted as a message-passing procedure, analogous to
BP, where messages are iteratively exchanged between nodes
until convergence. Importantly, as in BP, the normalization of
the messages at each step is not critical and can be adjusted
after convergence. Additionally, these equations recover the
BP messages through a change of variables, with si effec-
tively replacing the explicit dependence on the neighboring
node’s trajectory. A detailed discussion of this equivalence is
provided in Appendices A and B.

While the dynamic cavity equations with variable-field
trajectories were originally proposed only for time-forward
binary spin dynamics [19,20], those in Eq. (7) also account
for probabilistic reweighting due to the observations.

Finally, completing the cavity and computing the total
marginal over i gives the posterior marginal probability of
one-site trajectories

ci(xi|O) = p0
(
x0

i

)
Zi(O)

p(Oi|xi )
∑
x∂i

eSi
∏
k∈∂i

ĉk\i(xk, νikxi|O), (9)

where the summation runs over the trajectories of all neigh-
bors of i, i.e., x∂i = {xk}k∈∂i. The term Si represents the local
dynamical action, which for the SI model is given by

Si =
T −1∑
t=0

log
[
αt

i e
∑

k∈∂i ν
t
kiδxt

k ,I
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δxt+1
i ,I

]
. (10)

The normalization factor is defined as

Zi(O) =
∑

xi

p0
(
x0

i

)
p(Oi|xi )

∑
x∂i

eSi

×
∏
k∈∂i

ĉk\i(xk, νikxi|O). (11)

C. Small-coupling expansion

To simplify the cavity equations in Eq. (7), we express the
cavity messages in terms of the conjugate field trajectories
ĥi = (ĥ0

i , . . . , ĥT
i ) by introducing their Fourier transform with

respect to si (see Appendix B). This yields the following
expression for the dynamic cavity equations:

ci\ j (xi, ĥi|O) = p0
(
x0

i

)
Zi\ j (O)

p(Oi|xi )e
S0

i

×
∏

k∈∂i\ j

∑
xk

∫
Dĥk ck\i(xk, ĥk|O)eSint

ik , (12)

where
∑

xi
= ∏T

t=0

∑
xt

i ∈{S,I} and
∫

Dĥi = ∏T
t=0

∫∞
−∞ dĥt

i . We
used the following definition of the Fourier transform and its
inverse:

c(x, ĥ|O) =
∫

Ds

(
T∏

t=0

eist ĥt

2π

)
ĉ(x, s|O), (13)

ĉ(x, s|O) =
∫

Dĥ

(
T∏

t=0

e−ist ĥt

)
c(x, ĥ|O). (14)

The local noninteracting and interacting actions are defined
by the epidemic model under study. For the SI model they can
be written respectively as

S0
i =

T −1∑
t=0

log
[
δ
(
ĥt

i − i
)
αt

i

(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]
,

(15)

Sint
ik = Sint

ki = −i
T −1∑
t=0

(
δxt

i ,I
νt

ik ĥt
k + δxt

k ,I
νt

kiĥ
t
i

)
. (16)

Here δ(x) denotes the Dirac δ function. To ensure proper
normalization of the cavity messages ci\ j (xi, ĥi|O), we define
the normalization factor Zi\ j (O) such that∑

xi

∫
Dĥi ci\ j (xi, ĥi|O) = 1. (17)

This condition ensures that ci\ j (xi, ĥi|O) represents a prop-
erly normalized quasi-probability distribution. Consequently,
the expectation of any generic function f (xi, ĥi ) over the
cavity distribution can be computed as

〈 f (xi, ĥi )〉Oi\ j =
∑

xi

∫
Dĥi ci\ j (xi, ĥi|O) f (xi, ĥi ). (18)

By applying the inverse Fourier transform to Eq. (17), we
find that the normalization condition is equivalent to assuming
that the neighboring node j remains in the susceptible state
throughout the process in the cavity graph. This corresponds
to setting the local field to zero, si = 0∑

xi

∫
Dĥi ci\ j (xi, ĥi|O) =

∑
xi

ĉi\ j (xi, si = 0|O) = 1.

(19)

Under the small-coupling approximation, the dynamic cav-
ity method assumes that the absence of node j in the cavity
graph implies no influence on the dynamics of node i, as j is
treated as always susceptible. In contrast, the original dynamic
cavity method [20] explicitly incorporates the fixed trajecto-
ries of the missing neighbor j and updates cavity messages
through a self-consistent dynamic message-passing algorithm.
However, this approach has a computational complexity that
can potentially grow exponentially with the number of time
steps T . On the one hand, for nonrecurrent dynamics this
complexity can be mitigated by reformulating the cavity mes-
sages in terms of flipping times [21], offering a more efficient
representation. On the other hand, this flipping-time represen-
tation is not applicable to recurrent dynamics. Choosing the
normalization to be independent of the trajectory of individual
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j is highly advantageous for developing an approximation that
does not explicitly rely on the epidemic trajectories of both i
and j. However, the main drawback of this choice is that some
particular epidemic trajectories of individual i, imposed by the
observations, can only be explained by the statistical model
if a nonzero self-infection probability is introduced. In Ap-
pendix F, we provide an example of this potential issue that is
simple enough to be discussed analytically and show how the
presence of a self-infection probability effectively resolves it.

In the spirit of Plefka’s approach [28,29] and high-
temperature expansions [30,31], one can perform a formal
expansion of the interactive exponential term. Since the ar-
gument of the exponential is linear in the parameters νt

ik and
νt

ki, truncating the expansion at some finite order can be un-
derstood as a small-coupling approximation of the dynamic
cavity equations, which in the case of epidemic processes
corresponds to a small infectivity approximation (i.e., λt

i j � 1
for all i, j and t). Truncating the Taylor series at the first order,
after re-exponentiation of the interacting part we obtain an
approximate expression for the cavity messages

ci\ j (xi, ĥi|O) ≈ p0
(
x0

i

)
Z̃i\ j (O)

p(Oi|xi )e
S0

i +∑k∈∂i\ j 〈Sint
ik 〉Ok\i

:= c̃i\ j (xi, ĥi|O), (20)

where also the normalization constant is consistently ap-
proximated to Z̃i\ j (O). The averaged interacting action is
a function of both the variable-conjugate field trajectories
(xi, ĥi ) and of a set of local one-time cavity averages com-
ing from the neighbors, namely mt

k\i(O) = 〈δxt
k ,I

〉Ok\i and

μt
k\i(O) = 〈−iĥt

k〉Ok\i. For the SI model, this yields

〈
Sint

ik

〉O
k\i

=
T −1∑
t=0

(
δxt

i ,I
νt

ikμ
t
k\i(O) − imt

k\i(O)νt
kiĥ

t
i

)
. (21)

The dynamic cavity equations in Eq. (20), derived un-
der the small-coupling approximation, can be closed self-
consistently by evaluating the cavity averages using the
approximated distribution functions

mt
k\i(O) ≈

∑
xk

∫
Dĥk c̃k\i(xk, ĥk|O)δxt

k ,I

≈
∑

xk

ˆ̃ck\i(xk, sk = 0|O)δxt
k ,I

, (22)

μt
k\i(O) ≈

∑
xk

∫
Dĥk c̃k\i(xk, ĥk|O)

(−iĥt
k

)

≈
∑

xk

∂

∂st
k

ˆ̃ck\i(xk, sk|O)|sk=0, (23)

where ˆ̃ck\i(xk, sk|O) is the approximated cavity message
Eq. (7), obtained by the inverse Fourier transform of Eq. (20).

The quantity mt
k\i measures the average probability that

node k is infected at time t in the absence of the interac-
tion with i, while μt

k\i is of less intuitive interpretation, as
it measures the mean of fluctuations around the unperturbed
single-site statistics in the cavity graph. A direct calculation of
the quantity

∑
xk

∫
Dĥk (−iĥt

k )c̃k\i(xk, ĥk|O = ∅) shows that,
in the absence of observations, μt

k\i(O = ∅) = 0. This result,

due to the causality of the dynamical process, does not hold
anymore when some observations are included.

For notational convenience, we will omit the explicit de-
pendence of all marginals, normalization constants, and cavity
averages on the observation set O in the next sections. Simi-
larly, approximated quantities will no longer be distinguished
by the ·̃ notation, as all references will pertain to their approx-
imated forms unless explicitly stated otherwise.

D. Small-coupling dynamic cavity (SCDC) approximation

By implementing the closure assumption, where the
cavity averages mt

i\ j and μt
i\ j are replaced by their expec-

tations over the approximated cavity messages Eq. (20), the
small-coupling expansion yields a closed set of dynamic equa-
tions for the cavity averages. This becomes evident when the
approximated cavity messages Eq. (20) are substituted into the
expressions for the cavity averages Eqs. (22) and (23). After
integrating out the conjugate fields hi,

mt
i\ j (O) =

∑
xi

δxt
i ,I

p0
(
x0

i

)
Zi\ j (O)

p(Oi|xi )e
Sm

i\ j , (24)

μt
i\ j (O) =

∑
xi

p0
(
x0

i

)
Zi\ j (O)

p(Oi|xi )e
Sμ

i\ j , (25)

where we introduced the two terms

Sm
i\ j =

T −1∑
t=0

log
[
αt

i e
∑

k∈∂i\ j νt
kim

t
k\i
(
δxt+1

i ,xt
i
− δxt

i ,I

)+ δxt+1
i ,I

]

+
T −1∑
t=0

∑
k∈∂i\ j

δxt
i ,I

νt
ikμ

t
k\i, (26)

Sμ

i\ j =
T −1∑
t=0

log
[
αt

i

(
δxt+1

i ,xt
i
− δxt

i ,I

)]

+
T −1∑
t=0

∑
k∈∂i\ j

(
νt

kim
t
k\i + δxt

i ,I
νt

ikμ
t
k\i

)
. (27)

The normalization constant is chosen to ensure that the time-
dependent quantity mt

i\ j represents the probability of finding
individual i infected at time t in the cavity graph, that is

Zi\ j (O) =
∑

xi

p0
(
x0

i

)
p(Oi|xi )e

Sm
i\ j . (28)

In addition, the total time-dependent marginal mt
i of the pos-

terior distribution on the full graph is given by

mt
i (O) =

∑
xi

δxt
i ,I

p0
(
x0

i

)
Zi(O)

p(Oi|xi )e
Sm

i , (29)

with the quantity Sm
i and the normalization factor Zi defined

respectively as

Sm
i =

T −1∑
t=0

log
[
αt

i e
∑

k∈∂i ν
t
kim

t
k\i
(
δxt+1

i ,xt
i
− δxt

i ,I

)+ δxt+1
i ,I

]

+
T −1∑
t=0

∑
k∈∂i

δxt
i ,I

νt
ikμ

t
k\i, (30)

Zi(O) =
∑

xi

p0
(
x0

i

)
p(Oi|xi )e

Sm
i . (31)
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Equations (24) and (25) represent a set of self-consistent
equations defining a noncausal dynamic mean-field approxi-
mation that, in what follows, we will refer to as the SCDC
method. The dynamical equations are of mean-field type since
correlations are neglected, but in the presence of observations,
they describe a noncausal dynamical process. Because of the
cavity construction, the fundamental unknown of the equa-
tions, the one-time cavity marginals mt

i\ j and the one-time
cavity fields μt

i\ j , are defined by means of local self-consistent
conditions, the solution of which can be sought through an
iterative message-passing scheme. A computational bottle-
neck of Eqs. (24) and (25) is represented by the partial trace
over single-site trajectories xi, that requires O(2T ) operations,
meaning that a complete update of all cavity quantities re-
quires O(2|E |T 2T ), where |E | is the total number of nonzero
weighted directed edges on the interaction graph. An effi-
cient algorithmic implementation of the SCDC equations is

proposed in the next section. It exploits a transfer-matrix
approach to perform the trace over the trajectory xi keeping
fixed all quantities {mt

k\i} and {μt
k\i} for all t = 0, . . . , T and

k ∈ ∂i \ j, which play the role of the parameters in a “tempo-
ral” one-dimensional discrete probabilistic model defined on
node i.

III. EFFICIENT FORMULATION
OF THE SCDC EQUATIONS

The starting point of the derivation is the cavity normaliza-
tion constant in Eqs. (24) and (25), that can be written starting
from Eq. (28) as

Zi\ j =
∑

xi

p0
(
x0

i

) T −1∏
t=0

Mi\ j
xt

i x
t+1
i

p
(
OT

i |xT
i

)
, (32)

where the “transfer matrix” Mi\ j
xt xt+1 is defined as follows:

Mi\ j
xt

i x
t+1
i

=
(

Mi\ j
t,SS Mi\ j

t,SI

Mi\ j
t,IS Mi\ j

t,II

)
=
(

αt
i e
∑

k∈∂i\ j mt
k\iν

t
ki p
(
Ot

i

∣∣S) (
1 − αt

i e
∑

k∈∂i\ j mt
k\iν

t
ki
)
p
(
Ot

i

∣∣S)
0 e

∑
k∈∂i\ j νt

ikμ
t
k\i p
(
Ot

i

∣∣I)
)

. (33)

The approximate probability that an individual i is infected
at time t in the cavity graph is

mt
i\ j = ρ

i\ j
→t (I )ρ i\ j

t←(I )∑
xt

i ∈{S,I} ρ
i\ j
→t

(
xt

i

)
ρ

i\ j
t←
(
xt

i

) . (34)

The term ρ
i\ j
→t (x

t
i ) is a cavity forward “temporal” message,

obtained recursively for t = 1, . . . , T as

ρ
i\ j
→t

(
xt

i

) =
∑

xt−1
i ∈{S,I}

ρ
i\ j
→t−1

(
xt−1

i

)
Mi\ j

xt−1
i xt

i
, (35)

with initial condition ρ
i\ j
→0(x0

i ) = p(x0
i ), and ρ

i\ j
t←(xt

i ) is a
cavity backward “temporal” message, that satisfy for t =
0, . . . , T − 1 the recursive equation

ρ
i\ j
t←
(
xt

i

) =
∑

xt+1
i ∈{S,I}

ρ
i\ j
t+1←

(
xt+1

i

)
Mi\ j

xt
i x

t+1
i

, (36)

with terminal condition ρ
i\ j
T ←(xT

i ) = p(OT
i |xT

i ). The approxi-
mate one-time cavity field μt

i\ j can be computed as follows:

μt
i\ j = ρ

i\ j
→t (S)Mi\ j

t,SS

(
ρ

i\ j
t+1←(S) − ρ

i\ j
t+1←(I )

)
∑

xt
i ,

ρ
i\ j
→t

(
xt

i

)
ρ

i\ j
t←
(
xt

i

) . (37)

The number of operations necessary for the update of a
single-time cavity message is now of O(1) when the single-
site “temporal” messages ρ

i\ j
→s(xs

i ) and ρ
i\ j
s←(xs

i ) for s = t, t + 1
are available. The latter quantities are computed by means
of time-forward and time-backward update rules from the

current set of cavity “temporal” messages and require O(4T )
operations. In summary, a complete update of the cavity
marginals mt

i\ j and cavity fields μt
i\ j , for every directed edge

and time step, requires O(4|E |T ).
A Julia-based reference implementation of the above al-

gorithm is available at [32]. Notice that from Eq. (37), μt
i\ j

is zero if the time-backward cavity messages at time t + 1
are uniform. It is shown in Sec. V A and in Appendix C that
this condition is satisfied when no observations are present at
later times and it leads to a pure time-forward reduction of the
SCDC equations. Furthermore, because of the nonrecurrent
property of the SI model, it is possible to derive an alternative
efficient formulation of the SCDC equations exploiting the
infection-time representation: This is explained in detail in
Appendix D.

IV. GENERALIZATION TO OTHER
EPIDEMIC MODELS

The method generalizes directly to models with a higher
number of individual states and transitions. In particular,
for the susceptible-infected-susceptible (SIS) and susceptible-
infected-removed (SIR) models, there is only one additional
transition where an infected individual i can recover at time
t with probability rt

i , with the result that the individual
i is either susceptible again (for the SIS model) or in a
state of acquired immunity, i.e., xt

i = R (for the SIR model).
A further generalization can be made for the susceptible-
infected-removed-susceptible (SIRS), where each recovered
individual i can return to the susceptible state at time t due to
loss of immunity with probability σ t

i .
The only difference with the method described in the pre-

vious sections is in the expression of the transfer matrix.
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For the SIS model it is now given by

Mi\ j
xt

i x
t+1
i

=
(

αt
i e
∑

k∈∂i\ j mt
k\iν

t
ki p
(
Ot

i

∣∣S) [
1 − αt

i e
∑

k∈∂i\ j mt
k\iν

t
ki
]
p
(
Ot

i

∣∣S)
rt

i e
∑

k∈∂i\ j μt
k\iν

t
ik p
(
Ot

i

∣∣I) (
1 − rt

i

)
e
∑

k∈∂i\ j νt
ikμ

t
k\i p
(
Ot

i

∣∣I)
)

. (38)

In the case of the SIR model, each individual i can be in three possible states xt
i ∈ {S, I, R}, but the derivation done for two-state

models can be repeated almost straightforwardly (see Appendix E for details). The cavity averages are defined analogously to
the SI model through Eqs. (34) and (37) where the quantities ρ

i\ j
→t (x

t
i ) and ρ

i\ j
t←(xt

i ) satisfy the set of equations Eqs. (35) and (36),
with a 3 × 3 transfer matrix matrix Mi\ j

xt
i x

t+1
i

given by

Mi\ j
xt

i x
t+1
i

=

⎛
⎜⎜⎝

αt
i e
∑

k∈∂i\ j mt
k\iν

t
ki p
(
Ot

i

∣∣S) [
1 − αt

i e
∑

k∈∂i\ j mt
k\iν

t
ki
]
p
(
Ot

i

∣∣S) 0

0
(
1 − rt

i

)
e
∑

k∈∂i\ j νt
ikμ

t
k\i p
(
Ot

i

∣∣I) rt
i e
∑

k∈∂i\ j νt
ikμ

t
k\i p
(
Ot

i

∣∣I)
0 0 p

(
Ot

i

∣∣R)
⎞
⎟⎟⎠. (39)

The SIRS model differs from the SIR model only for the 3 × 3 transfer matrix, which is given by

Mi\ j
xt

i x
t+1
i

=

⎛
⎜⎜⎝

αt
i e
∑

k∈∂i\ j mt
k\iν

t
ki p
(
Ot

i

∣∣S) [
1 − αt

i e
∑

k∈∂i\ j mt
k\iν

t
ki
]
p
(
Ot

i

∣∣S) 0

0
(
1 − rt

i

)
e
∑

k∈∂i\ j νt
ikμ

t
k\i p
(
Ot

i

∣∣I) rt
i e
∑

k∈∂i\ j νt
ikμ

t
k\i p
(
Ot

i

∣∣I)
σ t

i p
(
Ot

i

∣∣R) 0
(
1 − σ t

i

)
p
(
Ot

i

∣∣R)
⎞
⎟⎟⎠. (40)

As long as further compartments are included with transitions
being parametrized by individual-based rates, generalization
of the above construction follows straightforwardly (e.g.,
SEIR and SEIRS models).

V. RESULTS

In this section, we provide numerical results to highlight
the operation and capabilities of this method. We first analyze
the quality of the approximation for time-forward dynamics
obtained in the absence of observations; then we effectively
demonstrate the role of the cavity fields μt

i\ j in the presence
of observations. The performances of the SCDC method in
various instances of epidemic inference for the SI model are
presented, both on synthetic and real-world contact networks.
Finally, we evaluate the inference performance of the SCDC
algorithm on recurrent epidemic models, such as the SIRS, on
synthetic contact networks.

A. Time-forward dynamics

The emerging causality-breaking of the SCDC equations is
a consequence of the existence of observations at later times,
that have to be taken into account in the mathematical model
by a flux of information flowing backward in time and condi-
tioning the whole history of the process. This property reflects
in the existence of nontrivial values for the one-time cavity
fields μt

i\ j . However, when no observation is present it is
possible to show that all the cavity fields μt

i\ j vanish and,
consequently, one can recover the usual causal time-forward
mean-field dynamics. To prove this, it is convenient to start
from a particular form of the update equations for the cavity
marginals mt

i\ j (see Appendix C for a derivation),

mt
i\ j = mt−1

i\ j + (
1 − mt−1

i\ j

) (
1 − gt−1

i\ j

)
ρ

i\ j
t←(I )

gt−1
i\ j ρ

i\ j
t←(S) + (

1 − gt−1
i\ j

)
ρ

i\ j
t←(I )

,

(41)

where, for brevity of notation, we have defined the term gt
i\ j =

αt
i exp (

∑
k∈∂i\ j mt

k\iν
t
ki ). The messages ρ

i\ j
t←(xt

i ) represent the
(nonnormalized) backward probability that node i has state
xt

i ∈ {S, I} at time t , given the dynamic constraints and the ob-
servations in the future. In the absence of observations (on all
nodes at all times t ′ � t) the backward probability is uniform,
i.e., ρ

i\ j
t←(S) = ρ

i\ j
t←(I ), and Eq. (41) reduces to time-forward

mean-field equations,

mt
i\ j = mt−1

i\ j + (
1 − mt−1

i\ j

)[
1 − αt−1

i e
∑

k∈∂i\ j mt−1
k\i νt−1

ki
]
, (42)

and for the total marginals mt
i

mt
i = mt−1

i + (
1 − mt−1

i

)[
1 − αt−1

i e
∑

j∈∂i mt−1
j\i νt−1

ji
]
. (43)

It is possible to verify numerically that, in the absence of
observations, the SCDC algorithm in Eqs. (24) and (25) al-
ways converges to the same result obtained by running the
time-forward Eqs. (42).

An intuitive form for the discrete-time IBMF dynamics,
obtained by assuming independence of individual marginal
probabilities of being infected, is given by the equa-
tion [26,27]

mt
i = mt−1

i + (
1 − mt−1

i

)⎡⎣1 − αt
i

∏
j∈∂i

(
1 − λt−1

ji mt−1
j

)⎤⎦.

(44)

A natural extension of Eq. (44) to account for cavity dynamics
can be expressed as

mt
i = mt−1

i + (
1 − mt−1

i

)⎡⎣1 − αt
i

∏
j∈∂i

(
1 − λt−1

ji mt−1
j\i

)⎤⎦,

(45)

where mt
j\i represents the cavity marginal probability of

node j being infected, excluding the influence of node i.
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FIG. 1. Forward dynamics with SCDC and other mean-field
methods. In each panel, the fraction of infected individuals is shown
against the running time of the epidemic, with four different static
contact graphs. Comparison is shown between SCDC, IBMF, BP,
and Monte Carlo simulations (with 104 samples). All the links have
the same infection probability λ, whose value is reported inside each
panel. From left to right and top to bottom: regular tree with degree
K = 4 and N = 485, RRG with N = 500 and degree K = 4, RRG
with N = 500 and K = 15, proximity graph with N = 500. In all
cases, the probability of each individual being infected at time t = 0
is set to γ 0 = 5/N , and the self-infection εt

i is set to 0.

This cavity probability evolves over time according to the
following equation:

mt
i\ j = mt−1

i\ j + (
1 − mt−1

i\ j

)⎡⎣1 − αt
i

∏
k∈∂i\ j

(
1 − λt−1

ki mt−1
k\i

)⎤⎦.

(46)

This cavity formulation provides a more refined perspec-
tive by iteratively excluding the feedback loops caused by
direct interactions between neighboring nodes, improving
the approximation of marginal probabilities in systems with
significant correlations. For a densely connected graph (for
which mt

j\i ≈ mt
j), Eqs. (45) and (44) reduce to the same

expression.
Figure 1 illustrates the quality of the approximation

obtained using Eqs. (42) and (43) for studying purely time-
forward SI dynamics, in the absence of observations. The
simulations were performed on well-known classes of static
graphs, including regular trees (i.e., trees with degree K), ran-
dom regular graphs (RRGs, i.e., graphs in which every node
has exactly degree K), and proximity random graphs (details
provided in Sec. V C). Comparisons are shown between the
SCDC, the BP algorithm, and individual-based mean-field
equations [IBMF, corresponding to Eqs. (44)]. As a reference,
the results obtained with numerical sampling from 104 re-

alizations of the exact time-forward Monte Carlo dynamics
of the SI model are also reported. All methods based on
mean-field approximations tend to overestimate the number of
infected individuals in cases where the assumed factorization
of probabilities is not exact. The BP algorithm is exact on trees
(Bethe Lattice) and very accurate on sparse random graphs,
where both SCDC and IBMF instead considerably overesti-
mate the number of infected individuals. The performances of
all methods are good on dense random graphs and much worse
on graphs with spatial structure, such as proximity random
graphs. In all cases under study, the SCDC approximation
consistently gives better results than those obtained using
IBMF.

We show in Appendix C how the value of λ influences the
performance of these methods. The same types of plots as in
Fig. 1 are repeated for six different values of λ, ranging from
0.05 to 0.5. In this analysis, we also included the improved
cavity version of IBMF, given by Eq. (45), which we refer to
as SCDCa. The results show that for small values of λ, SCDC
performs better than IBMF in estimating the average fraction
of infected individuals on all kind of graphs. Conversely, for
large values of λ, IBMF performs slightly better than SCDC
on random regular graphs (RRGs) and proximity graphs.
However, the approximated version of SCDC, i.e., SCDCa,
consistently outperforms both SCDC and IBMF across all
cases. Despite its improved accuracy, we chose not to use
this approximation for inference tasks, as it lacks sufficient
theoretical justification.

B. Effects of backward messages

When at least one observation is included as evidence, the
μ cavity fields are nonzero and cause a time-backward propa-
gation of information which changes the probabilistic weight
of the epidemic trajectories. To better understand how the
method behaves in the presence of observations, we checked
on which edges the absolute value of the μ cavity messages
is nonvanishing when one or more observations are consid-
ered. In particular, we sampled a single epidemic outbreak
from a uniform SI model with λ = 0.19, on a contact graph
built by randomly adding some edges between nodes of a
tree. Figure 2(b) shows how the fields μt

i\ j propagate into
the contact graph up to three times before the observation.
For each edge (i, j) a thick line is plotted if one of the
two messages μt

i\ j or μt
j\i is nonvanishing. A thicker line

is plotted if both of them are nonvanishing. The plots are
shown both for a single observation (top) and two observa-
tions (bottom). The plot on the right of Fig. 2(a) shows the
inference accuracy of the method for the two cases. We can
see that adding an observation greatly increases the inference
performance. In particular, the prediction is improved mostly
on the branches of the contact tree where the new observa-
tion produces the propagation of the cavity fields μ. It is
clear that observations lead to the activation of the μ fields,
which then propagate back in time away from the observed
nodes.

A more intuitive probabilistic interpretation of the role of
μ cavity fields in propagating the information obtained from
observations can be obtained by monitoring the temporal be-
havior of the (normalized) time-forward and time-backward
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22 t23 24

(a)

(b)

FIG. 2. Behavior of cavity fields μt
i\ j in the presence of observations. Panel [(a), left]: contact graph obtained randomly adding links to a

tree; the epidemic source is shown as a yellow node. Panel [(a), right]: inference performance of SCDC with one observation (top) and two
observations (bottom). The two plots show the posterior probability of being infected as a function of time (varying on the y axis) for all nodes
of the contact graph [(a), left] in a single epidemic outbreak generated according to a uniform SI model with λ = 0.19. The same parameter was
used to perform the inference. Specifically, the top plot corresponds to one observation on node 12 at time 25, while the bottom one corresponds
to two observations on nodes 12 and 8 at time 25. The corresponding state of the observations is represented by colored dots (white = S,
red = I). Black vertical lines mark the true infection periods. (b) Backpropagation through time of the μ cavity fields due to observations.
The observed individuals are marked by a red circle. Infected individuals are marked by a blue dot, while susceptible individuals are green.
The first line of plots corresponds to one observation, while the second line corresponds to two observations. Time flows from left to right, as
shown in the time arrow on the top. Thin edges correspond to vanishing μ fields, thick edges corresponds to one of the two cavity fields μt

i\ j

or μt
i\ j being nonvanishing, and the thickest edges correspond to both of them being nonvanishing. Observations lead to the activation of μ

fields, which propagate back in time away from the observed nodes. The portions of the graph where the μ messages are nonvanishing have
better predictions, meaning that the μ fields are fundamental for Bayesian inference.

messages ρ̃
i\ j
→t (x

t
i ) = ρ

i\ j
→t (x

t
i )/Zi\ j

→t and ρ̃
i\ j
t← = ρ

i\ j
t←(xt

i )/Zi\ j
t←,

where the normalization factor are respectively defined as

Zi\ j
→t =

∑
xt−1

i ,xt
i ∈{S,I}

ρ
i\ j
→t−1

(
xt−1

i

)
Mi\ j

xt−1
i xt

i
, (47)

Zi\ j
t← =

∑
xt

i ,x
t+1
i ∈{S,I}

ρ
i\ j
t+1←

(
xt+1

i

)
Mi\ j

xt
i x

t+1
i

. (48)

Consider a realization of the SI model taking place on a
small tree, as displayed in Fig. 3 (left), in which the root node
gets infected at time t = 10. An observation of the state of the
root node at a time to introduces a source of information that
affects the temporal behavior of the messages ρ

i\ j
→t and ρ

i\ j
t←

for all directed edges (i, j) at all times. In particular, Fig. 3
(top row) shows the normalized time-backward messages ρ̃

i\ j
t←

as function of time on a set of edges for to = 8 (center) and
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FIG. 3. Time propagation of information generated by observations. Normalized backward (top column) and forward (bottom column)
cavity messages ρ̃

i\ j
t←(xt

i = I ) and ρ̃ i\ j
→ (xt

i = I ) plotted over time for different edges of a small tree. The epidemic outbreak is sampled using a
uniform SI model with λ = 0.1. The plot on the left shows the graph. The observed individual is marked red, while the unobserved are blue.
The observed node becomes infected at time t = 10. The plots on the left column show the messages when observing the central node being
susceptible at time to = 8. The plots on the right column show the messages when observing the central node being infected at time to = 12.

to = 12 (right). The observation of a susceptible node (center)
implies that at all times before the observation, the message
emerging from that node is exactly zero. Moving away from
the observed node the time-backward probability is nonzero
(and monotonically increasing with the spatial distance) but
monotonically decreasing with time distance from the obser-
vation. If instead the root node is observed in the infected
state, then the time-backward message shows an instantaneous
jump to 1 at the time of observation and gradually decreases
at earlier times, as the time-backward probability of being
infected for the root node decreases. Moving away from the
root, the messages increase as time proceeds backward indi-
cating that surrounding nodes might have caused the infection
of the observed one. Clearly, the (normalized) time-backward
messages are exactly equal to 0.5 when no information is
available, i.e., at later time steps compared to the observation.
The normalized time-forward messages ρ

i\ j
→t , which are shown

in Fig. 3 (bottom row) exhibit a similar, though more intuitive,
phenomenology. They increase from 0 to 1 with increasing
time, to explain the epidemic cascade generated by the in-
fectious individuals at time t = 0. The message exiting from
the central node collapses to a lower probability as soon as
the individual is observed susceptible, after which it keeps
increasing due to the forward spread of the dynamics. When
the central node is observed infected though, the forward
message exiting from it jumps to 1 only after some time-steps.

C. Inference performance for SI model

We consider a typical risk assessment scenario of epidemic
inference in which, given the network of contacts and some
observations made on an epidemic realization with one ini-
tially infected individual, one has to find the probability of
each individual being infected at the final time. The simula-
tions of the epidemic realizations according to the SI model
are performed using the EpiGen python package [33] on both

synthetic and real-world contact networks. The observations
are performed on a random subset of the population at the final
time. Once the individual probability of being infected at the
final time is estimated with an epidemic inference method, the
knowledge of the ground truth provided by the corresponding
epidemic realization allows to compute a ROC curve of true
infected individuals vs. false infected individuals. The area
under the ROC curve (AUC) represents an estimate of the
probability of correct classification of the individual infection
states. The inference through SCDC is carried out using the
efficient formulation through transfer matrices, and its perfor-
mance is evaluated in comparison with two well-established
methods for distributed epidemic inference, the simple mean-
field (SMF) method [2] and the BP algorithm [2,14]. For both
BP and SCDC methods, the individual probability of being
infected at the final time is computed from the correspond-
ing total marginals once the message passing algorithm has
reached convergence, i.e., the error on the cavity marginals
decreases under a predefined tolerance threshold. In some
cases, BP and SCDC do not reach convergence in a reason-
able number of iterations (a few thousand in the case of the
epidemic instances under study). The lack of convergence can
be due to a relevant role played by loop structures and long-
range correlations. In such cases, the probability marginals are
computed taking an average over a sufficiently large number
(up to hundreds) of iterations of the message passing update.
We analyzed in greater detail how often the two algorithms
converge and how convergence affects inference performance,
as will be shown later in this paper. The simple mean-field
(SMF) inference method introduced in Ref. [2] is instead an
inference method based on the IBMF approximation for the SI
dynamics in which the information provided by observations
of susceptible and infected individuals is taken into account
by introducing some specific constraints on the time-forward
dynamics (see Ref. [2] for a description in the more general
SIR model).
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FIG. 4. Epidemic risk assessment of inference methods on SI epidemics. Epidemic risk assessment on different classes of random contact
networks. Random contact networks are shown in the top row; from left to right: soft random geometric graphs (Proximity), Watts-Strogatz
random networks (Watts-Strogatz), OpenABM contact network (OpenABM), and Covasim contact network (Covasim). Real-world contact
networks are shown in the bottom row. Different sizes tw of time windows were used to aggregate contact data. From left to right: office
network from the InVS15 dataset with T = 12, tw = 24h (Office12), and with T = 24, tw = 12h (Office24), school network from the Thiers13
dataset with T = 18, tw = 6h (School18) and with T = 36, tw = 3h (School36). The performances of SMF, BP, and SCDC are compared in
the problem of classifying the infection state of N − nobs unobserved individuals at the last time T of SI epidemic processes when a small
number nobs of random observations are provided at the same time T of the epidemic process. The performance is quantified by computing
the area under the curve (AUC) for the Receiver operating characteristic (ROC) curves for 100 epidemic realizations for each class of contact
network. The violin plots illustrate the distribution of performances. Each plot is overlaid with a black marker indicating the mean value
and the associated error of the AUC across epidemic realizations. The width of the violins represents the relative frequency of data points at
each value. Other parameters: soft random geometric graphs (N = 600, lmax = √

2.8/N , nobs = 20, T = 28, λ = 0.08), Watts-Strogatz graphs
(N = 600, average degree z = 4, prw = 0.12, nobs = 20, T = 25, λ = 0.16), OpenABM (N = 2000, nobs = 60, T = 21, γ = 0.026), Covasim
(N = 1000, nobs = 40, T = 24, γ = 0.038), office networks (N = 219, nobs = 15, γ = 6 × 10−4), school networks (N = 328, nobs = 20, γ =
7 × 10−5).

Figure 4 presents the results for various types of graphs.
The top row highlights outcomes for synthetic random graphs.
The first two panels (from left to right) correspond to two
categories of static random networks: Watts-Strogatz graphs
[34] and soft random geometric graphs [35]. In the Watts-
Strogatz model, the edges of a pristine network with a regular
locally connected structure are rewired randomly with a prob-
ability prw, leading to the emergence of nontrivial small-world
and clustering properties. In soft random geometric graphs,
also known as proximity random graphs, individuals are dis-
tributed uniformly at random in the unit square, then only
pairs at Euclidean distance l < lmax are connected with a
probability which decays exponentially with l . Both classes
of random networks are locally highly structured, with short
loops and clusters. The final two panels in the first row refer
to synthetic contact networks generated with more realistic
agent-based models, the OpenABM-Covid19 [36] and Co-
vasim [37] models. These agent-based models are able to
generate realistic contact networks on large populations, by
modeling the interactions in households, schools, workplaces
and other locations. Some contacts in these networks also
change daily to reflect the dynamic nature of real-life interac-

tions. Only the contact network structures generated by these
agent-based models over a time horizon of a few weeks is
used in the present work, and the epidemic propagations are
generated using the standard SI model. In these networks, the
link between two individuals i and j is assigned a weight wt

i j ,
representing the aggregate duration of the contact between i
and j in day t . Given an infection rate γ per contact per time
unit, the infection probability associated to the contact is then
computed as λt

i j = 1 − e−γwt
i j . In both cases, when a relatively

small number of observations is provided at the last time,
the SCDC method is able to outperform SMF and achieves
accuracy on par with the BP method.

The same testing framework is also employed to evaluate
epidemic inference on two real contact networks, originally
presented in Ref. [38], that have been collected with RFID
tags in a school (Thiers13 dataset) and in an office environ-
ment (InVS15 datasets). The contact data are collected over
a period of several days, with a temporal resolution of 20 s,
which allows for data aggregation over coarse-grained time
windows of a preferred size τw. In our study, time windows
with size τw ranging from 3 h to a day are considered, for
a total of T time steps ranging from a minimum of 12 to a
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× ×

FIG. 5. Effect of λ. AUC comparison of SCDC, BP, and SMF
on soft random geometric graphs as a function of the homogeneous
infection probability λ. Results are averaged over 100 instances
of random networks and epidemic outbreaks with N = 300 nodes,
lmax = 1.8, T = 15 days, and 30% of nodes observed at the final
time. The ribbon width represents the standard error, showing the
variability of the results. The figure also shows the fraction of nonob-
served nodes that remain susceptible at the last time, namely f no

S .

maximum of 36 steps. When performing the coarse-graining
procedure, the number ct

i j of contacts between i and j occur-
ring in a time window t of size τw is computed and used to
estimate the infection probability λt

i j between the two indi-

viduals at time step t as λt
i j = 1 − (1 − γ )ct

i j , where γ is a
common parameter describing the infectiousness of a single
contact. The results of epidemic risk assessment on these
real-world contact networks are shown in the second row of
Fig. 4, adopting the same metric used in the case of random
graphs. Also in this case, for all contact networks under study,
the SCDC method has a performance very close to the BP
algorithm, and in general superior to the SMF heuristic.

1. Effect of the infection probability and number of observations

In addition to the networks discussed above, we further
assess the performance of SCDC, BP, and IBMF on soft ran-
dom geometric graphs as a function of two critical parameters:
the homogeneous infection probability λ and the fraction of
observed nodes at the final time.

Figure 5 illustrates the AUC achieved by the three methods
as a function of λ, averaged over 100 instances of random
contact networks and epidemic outbreaks. The soft random
geometric graphs used in this analysis consist of N = 300
nodes, with a cutoff distance of lmax = √

1.8/N . Epidemic
outbreaks are simulated over T = 15 days, with two randomly
selected individuals initially infected at time t = 0. At the
final time step, a randomly selected fraction of 30% of the
nodes is observed. The infection probability λ is varied from
0.02 to 0.5. Surprisingly, the SCDC method shows inference
performance comparable to that of BP, even for larger values
of λ, despite being a small-coupling approximation to BP.
In all cases, BP outperforms the IBMF method in assessing
epidemic risk.

Figure 6 evaluates the effect of varying the fraction of
observed nodes on the AUC. The setup is identical to that
described for Fig. 5, with the infection probability fixed at
λ = 0.15. The fraction of nodes observed at the final time is
varied from 5% to 95%. As the fraction of observed nodes in-
creases, the performance of the three methods becomes more
comparable. For a smaller fraction of observed nodes, SCDC

FIG. 6. Effect of the number of observations. AUC comparison
of SCDC, BP, and SMF on soft random geometric graphs as a
function of the fraction of observed nodes at the last time. Results are
averaged over 100 instances of random networks and epidemic out-
breaks with N = 300 nodes, lmax = 1.8, T = 15 days, and λ = 0.07.
The ribbon width represents the standard error, showing the variabil-
ity of the results. The figure also shows the fraction of nonobserved
nodes that remain susceptible at the last time, namely f no

S .

maintains performance similar to BP, while IBMF performs
slightly worse. However, as the observation fraction grows,
the differences between the methods diminish, and their per-
formance becomes comparable for sufficiently large fractions
of observed nodes.

In some cases, BP and SCDC do not reach convergence
within a reasonable number of iterations (a few thousand in
the case of the epidemic instances under study). The lack of
convergence can be attributed to the relevant role played by
loop structures and long-range correlations. In such cases, the
probability marginals are computed by taking an average over
a sufficiently large number (up to hundreds) of iterations of
the message-passing updates. Notably, the instances on which
the convergence of BP and SCDC is evaluated are the same as
those used in Figs. 5 and 6. Tables I and II present the fraction
of converged instances for both BP and SCDC under varying
λ and fractions of observed nodes, respectively. While BP
consistently shows better convergence rates than SCDC, the
convergence rate decreases for both methods as λ increases.
Despite this, the inference accuracy of both methods remains
comparable, even when the convergence rate of SCDC is
significantly lower than that of BP.

D. Inference in recurrent epidemic models

While previous results focus on the quantitative analy-
sis of inference performances on irreversible dynamics, the
present subsection aims at illustrating the potential of the
SCDC method for epidemic inference on recurrent epidemic
models. To do that, we perform a simple analysis inspired by
the one already presented in recent work on matrix product
belief propagation (MPBP) [23], a novel powerful approxima-
tion method for observation-reweighted recurrent dynamics

TABLE I. Convergence rates of BP and SCDC for varying values
of λ. The inference setting is the same of Fig. 5.

λ 0.02 0.03 0.05 0.07 0.1 0.15 0.23 0.34 0.5

BP 1.0 0.98 1.0 0.68 0.48 0.2 0.12 0.06 0.0
SCDC 0.7 0.5 0.48 0.2 0.16 0.16 0.16 0.08 0.06
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TABLE II. Convergence rates of BP and SCDC for varying frac-
tions of observed nodes. The inference setting is the same of Fig. 6.

F. obs. 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

BP 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
SCDC 0.8 0.4 0.22 0.28 0.26 0.22 0.38 0.44 0.4 0.5

on graphs. We conducted simulations of a single epidemic
outbreak using a SIRS model on an Erdős–Rényi random
graph [39] with N = 100 nodes and average degree z = 3.
Figure 7 shows the value of the posterior marginal probability
of being infected p(xt

i = 0|O) inferred by the SCDC method.
The color scale indicating these probability values is super-
imposed on the black bars marking the time intervals of true
infections, which enables visual inspection of the inference
performance of the method. Notably, the SCDC method rather
accurately assigns posterior marginal probabilities that closely
align with the observed data, demonstrating its effectiveness
even for unobserved nodes or time points that are distant from
the observations. Several reinfection events are also correctly
captured.

Finally, we performed a quantitative comparison of the
inference performance between the SCDC method and MPBP
on recurrent epidemic processes, specifically focusing on the
SIRS model. To evaluate the reconstruction accuracy of the
inference algorithms, we used the fraction of correct MAP
predictions. Let P (xt

i ) denote the inferred probability of node
i being in state xt

i ∈ {S, I, R} at time t , and let X t
i represent the

ground truth, i.e., the true state of node i at time t . The fraction
of correct MAP predictions is defined as

f MAP
correct = 1

NT

N∑
i=1

T∑
t=1

δ

(
arg max
xt

i ∈{S,I,R}
P
(
xt

i

)
, X t

i

)
, (49)

FIG. 7. Inference in recurrent epidemic models. Posterior prob-
ability of being infected as a function of time for all nodes of an
Erdős–Rényi random graph (N = 100 nodes and average degree
z = 3) in a single epidemic outbreak generated according to a uni-
form SIRS model. The parameters of the SIRS model are λ = 0.4,
r = σ = 0.15, for all nodes at all times. The same parameters were
used to perform the inference. The 75% of the nodes were randomly
observed at the same time 10, and their corresponding state is rep-
resented by colored dots (white=S, red=I, black=R). Black vertical
lines mark to true infection periods. Node order from left to right
reproduces the order of true infection events.

FIG. 8. Epidemic risk assessment on recurrent models. Com-
parison of the inference performance of the SCDC algorithm and
the MPBP algorithm for different bond dimensions M = 1, 2, 3, 4
on Erdős–Rényi random graphs with N = 100 nodes and average
degree z = 2.5. The epidemic spread follows an SIRS model with
uniform infection probability λ, recovery probability rt

i = 0.15, and
immunity-loss probability σ t

i = 0.15, for all nodes and times. The
duration of the epidemic is T = 20 steps, with an initial condition
of 2 randomly chosen infected individuals at t = 0. At t = 10, 75%
of the nodes were randomly selected for observation. The averaged
fraction of correct maximum-a-posteriori (MAP) predictions, com-
puted over 50 instances of random graphs and epidemic outbreaks, is
plotted as a function of λ. The ribbon width represents the standard
error, showing the variability of the results.

where δ(x, y) denotes the Kronecker symbol. Figure 8 com-
pares the inference performance of the SCDC algorithm with
the MPBP algorithm, evaluated at different bond dimension
parameters, M = 1, 2, 3, 4. The bond dimension is a param-
eter of the MPBP method that determines the size of the
matrices used in the matrix product approximation of the
cavity messages. The comparison is based on SIRS epidemic
models simulated on Erdős–Rényi random graphs with N =
100 nodes and an average degree z = 2.5. The recovery and
immunity-loss probabilities are uniform, with rt

i = σ t
i = 0.15

for all nodes and time steps, while the infection probability
λt

i = λ is constant across all nodes and time steps within
each simulation. For each fixed value of λ, the fraction of
correct MAP predictions was averaged over 50 independent
realizations of random graphs and epidemic outbreaks. At
time step t = 10, a randomly chosen fraction of 75% of the
nodes was observed, providing partial data for the inference
algorithms. The plot shows the average fraction of correct
MAP predictions for different values of λ.

The results show that, for small infection probabilities λ, all
algorithms perform equivalently achieving high accuracy. In
this regime, the slower spread of the epidemic allows for eas-
ier inference. However, as λ increases, the epidemic cascades
become faster and more challenging to reconstruct, leading
to a decline in inference performance. Notably, the SCDC
algorithm performance is comparable with that of the MPBP
algorithm with bond dimensions M = 2, even in this chal-
lenging inference regime. Additionally, the MPBP algorithm
does not show any improvement in inference performance for
M > 3, as the results for M = 4 are identical to those for
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FIG. 9. Effect of λ and σ on epidemic reconstruction. Fraction
of correct MAP predictions as a function of the homogeneous in-
fection probability λ and the homogeneous recovery probability σ

for a SIS epidemic model on soft random geometric graphs with
N = 300 nodes. The cutoff distance is set to lmax = √

1.8/N . The SIS
epidemic is simulated over T = 15 days, with two randomly chosen
nodes infected at time t = 0. At time t = 7, a randomly selected
fraction of 60% of the nodes is observed. The fraction of correct
MAP predictions is averaged over 30 independent instances of ran-
dom graphs and epidemic outbreaks. The color scale represents the
fraction of correct MAP predictions, with higher values indicating
better reconstruction accuracy.

M = 3. This suggests that M = 3 represents the maximum
inference performance achievable by the MPBP algorithm in
this setting.

An important advantage of the SCDC algorithm lies in
its computational efficiency: while the computational com-
plexity of MPBP scales as O(S6|E |T M6), the complexity of
SCDC is only O(S2|E |T ), where S is the number of states in
the compartmental epidemic model under study (e.g., S = 3
for the SIRS model). Moreover, although MPBP, especially
with sufficiently high bond dimensions M, achieves greater
accuracy in reconstructing the epidemic spread, the SCDC
algorithm provides a simple and interpretable approximation.
The terms involved in the SCDC approach, such as m and μ,
have a clear and interpretable physical meaning, making the
method more accessible for further theoretical development.

As a different analysis, we now consider a SIS epidemic
model instead of the previously used SIRS model. In Fig. 9,
we evaluate the fraction of correct MAP predictions as a
function of both the homogeneous infection probability λ and
the homogeneous recovery probability σ . The inference is
performed on soft random geometric graphs with N = 300
nodes, where the cutoff distance is set to lmax = √

1.8/N .
The SIS epidemics are simulated over T = 15 days, with two
randomly infected nodes at t = 0. At time t = 7, a fraction of
60% of the nodes is observed. The fraction of correct MAP
predictions was averaged over 30 independent instances of
random graphs and epidemic outbreaks. The infection proba-
bility is varied from 0.1 to 0.9, while the recovery probability
is varied from 0.01 to 0.9. This analysis provides a comparison
of the SCDC method’s performance under different epidemic
dynamics, focusing on how the inference accuracy depends on
the infection and recovery probabilities. The results show that
the epidemic reconstruction using the SCDC method is gen-
erally accurate, except for a small region in the phase space
with large values of both λ and σ . This region corresponds

to epidemic outbreaks with frequent reinfections, where infer-
ence is more challenging due to the complex dynamics of the
epidemic spread.

VI. DISCUSSION

The dynamic cavity method is a distributed technique to
study discrete-state stochastic processes on graphs, which
is exact on trees and often provides very good approxi-
mations on sparse graphs. While its original formulation
is computationally demanding [19,20], approximations have
been introduced [40–45] and, whenever possible, more
efficient parametrizations of single dynamical trajectories
have been designed [13,14,22]. In the present work, an
observation-reweighted version of the dynamic cavity formu-
lation, including individual observations, is devised to model
the posterior probability of epidemic processes on contact
networks. The formulation exploits a Bayesian approach and
is fully equivalent to the belief propagation approach to
epidemic trajectories [13,14]. Starting from the reweighted
dynamic cavity formulation and exploiting a small-coupling
expansion, a novel set of fixed-point equations for a pair of
time-dependent cavity messages mt

i\ j and μt
i\ j is obtained.

Here, mt
i\ j is the approximate probability that individual i is

infected at time t in the cavity graph when the interaction
with individual j is removed, while μt

i\ j is a cavity field
whose role depends on the presence of observations. In the
absence of observations, all cavity fields {μt

i\ j} identically
vanish, and the dynamics, expressed solely in terms of cav-
ity probabilities {mt

i\ j}, becomes causal, reducing to a set of
generalized mean-field equations. These time-forward equa-
tions, tested on random graphs for the SI model, yield higher
accuracy compared to the commonly used individual-based
mean-field equations (which they reduce to in the regime of
low infectiousness and high connectivity) for all the tested
settings. They are albeit less accurate than BP, which in the
simplified case of nonrecurrent forward dynamics coincides
with the dynamic message passing method [21,22]. Simple
analyses conducted on the SI model with limited observations
demonstrate that the role of the cavity fields {μt

i\ j} is to prop-
agate information about observations to neighboring nodes
and subsequently distribute this information throughout the
contact network, appropriately tilting the probabilistic weight
of the associated dynamic trajectories in view of the pres-
ence of observations. The presence of observations renders
the epidemic dynamics noncausal, with backward-in-time in-
formation flow, as evident from the nonuniform distribution
of the normalized backward cavity messages ρ̃

i\ j
t←(xt

i ). The
main additional approximation assumed in deriving the SCDC
method from the DC equations is the independence of cav-
ity messages from the epidemic trajectory of the removed
node. This approximation can introduce inconsistencies with
specific trajectories imposed by observations, particularly
in regimes with numerous observations, including repeated
observations on the same individuals. However, this issue
is effectively resolved by introducing a small self-infection
probability, which practically eliminated the problem in all
applications considered. The SCDC algorithm shows promis-
ing effectiveness in assessing the epidemic risk of individuals,
with performance comparable to that of BP, of which it is
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essentially an approximation, and offering improvements over
other heuristic methods based on mean-field approximations.
As a fixed-point message passing method, a potential draw-
back of SCDC lies in its convergence properties. In numerical
tests, SCDC experiences convergence problems similar to BP,
mainly resulting from long-range correlations generated by
loops in the contact graphs. Nevertheless, even in the absence
of convergence, the estimated marginal probabilities often
remain sufficiently accurate, enabling a reliable estimation of
the epidemic risk.

The main advantage of the SCDC method over dynamic
cavity and belief propagation for epidemic trajectories lies
in its straightforward generalization to epidemic models with
multiple states (e.g., SIR, SEIR) and recurrent processes
(e.g., SIS, SIRS). Indeed, the fundamental components of the
method and the efficient algorithm based on the temporal
transfer matrix remain largely unchanged, with only modifica-
tions in the matrix dimensions and elements to accommodate
the model’s increased complexity. Consequently, the SCDC
algorithm maintains a linear complexity with respect to the
duration of the epidemic process and the number of contacts in
the network. We compared SCDC with matrix product belief
propagation (MPBP) [23], a novel approximation method for
observation-reweighted recurrent dynamics on graphs, based
on a matrix product approximation of the cavity messages.
Both methods showed comparable inference performance on
SIRS models at low infection probabilities. However, as the
infection probability increases, the performance gap widens
in favor of MPBP. Despite this, SCDC retains a key advan-
tage in terms of computational efficiency and offers a simpler
approximation with a more intuitive physical interpretation of
the involved parameters. Perhaps surprisingly, this excellent
predicting power persists in regimes in which the infectious-
ness parameter is relatively large, outside the range that was
expected due to the assumptions in the derivation, as demon-
strated for the inference on SIS models.

The primary limitation of the SCDC method is that its
efficient formulation based on the transfer matrix is currently
applicable only to Markovian models. Further study is re-
quired to develop an efficient algorithm for non-Markovian
recurrent epidemic models. Concerning the method itself,
another interesting direction for its development involves
gaining a better understanding of the role of second-order
terms in the small-coupling expansion and developing an im-
proved algorithm that takes them into account. Finally, future
directions include the possibility to generalize the approach
presented here to other type of dynamical processes on net-
works, e.g., rumor spreading processes [20,46,47].
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APPENDIX A: BELIEF PROPAGATION EQUATIONS
FOR THE SI MODEL

The posterior probability in Eq. (6b) can be rewritten in the
following factorized form:

p(X |O) ∝
T −1∏
t=0

N∏
i=1

f t+1
i

(
xt+1

i , xt
∂i, xt

i

∣∣O), (A1)

where the factors f t+1
i encode both the local transition dynam-

ics and the influence of observations, and are defined as

f t+1
i

(
xt+1

i , xt
∂i, xt

i

∣∣O)
= (

p0
(
x0

i

)
p
(
O0

i

∣∣x0
i

))δt,0Wi
(
xt+1

i

∣∣xt
)
p
(
Ot

i

∣∣xt
i

)
. (A2)

Here, Wi(xt+1
i |xt ) represents the transition rate from xt

i to xt+1
i ,

which depends solely on the state of the neighbors at time
t , denoted as xt

∂i. Although the factor graph associated with
this posterior distribution exhibits a substantial number of
short loops, the structure can be disentangled by leveraging
the interactions between trajectories of neighboring nodes.
Specifically, pairs of trajectories (xi, x j ) that are connected by
an edge in the original contact graph can be grouped together.
This procedure leads to a reformulation in terms of a new
graphical representation, known as the dual factor graph.

In the dual factor graph, the variable nodes correspond
to pairs of trajectories (xi, x j ), which are associated with
the edges of the original contact graph. The factor nodes,
however, correspond to the vertices i of the contact graph. A
visual depiction of this transformation is shown in Fig. 10,
where panel (b) illustrates the original loopy factor graph,
and panel (c) demonstrates the disentangled dual factor graph.
The factors in the dual representation are obtained by group-
ing the contributions over all time steps for each vertex,
i.e., f i(xi, {xk}k∈∂i|O) = ∏T −1

t=0 f t+1
i (xt+1

i , x∂i, xt
i |O). A more

comprehensive discussion of this step, including its theo-
retical implications and practical benefits, can be found in
Refs. [2,13,14,22,49].
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The BP equations on the dual factor graph are [23]

ĉi\ j (xi, x j |O) ∝
∑
x∂i\ j

T −1∏
t=0

f t+1
i

(
xt+1

i , xt
∂i, xt

i

∣∣O) ∏
k∈∂i\ j

ĉk\i(xk, xi|O) (A3a)

∝ p0
(
x0

i

)
p(Oi|xi )

∑
x∂i\ j

T −1∏
t=0

Wi
(
xt+1

i

∣∣xt
) ∏

k∈∂i\ j

ĉk\i(xk, xi|O). (A3b)

The explicit form of the transition rate is

Wi
(
xt+1

i

∣∣xt
) = δxt+1

i ,Sδxt
i ,S

αt
i e
∑

k∈∂i ν
t
kiδxt

k ,I + δxt+1
i ,I

(
1 − δxt

i ,S
αt

i e
∑

k∈∂i ν
t
kiδxt

k ,I
)

(A4a)

= αt
i e
∑

k∈∂i ν
t
kiδxt

k ,I
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δxt+1
i ,I . (A4b)

The dynamic cavity equations Eq. (7) are therefore obtained from the BP equations with the simple change of variables
st

i = νt
jiδxt

j ,I
. The local fields st

i act as proxies for the missing variables xt
j of the dual factor graph.

APPENDIX B: PATH INTEGRAL DERIVATION OF THE DYNAMIC CAVITY EQUATIONS FOR THE SI MODEL

In this Appendix, we present a detailed derivation of the dynamic cavity equations, Eqs. (7) and (12), which is equivalent to
the one proposed in Appendix A. This derivation leverages a path-integral representation of the stochastic epidemic dynamics
of the SI model. The approach is based on interpreting the (Markovian) update rules governing the discrete-time stochastic
process as a set of dynamical constraints imposed on the degrees of freedom of the system, specifically the binary variables
{xt

i }. These variables describe the state of each node i at time t , with xt
i ∈ {S, I} indicating whether the node is susceptible or

infected, respectively. The derivation is further grounded in the definition of a dynamic partition function, which encapsulates
the stochastic dynamics of the system and incorporates the interplay between the microscopic states of the nodes and their
interactions over time.

The dynamic partition function is defined as follows:

Z (O) =
∑

X

p(X |O) ∝
∑

X

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

Wi
(
xt+1

i |xt
)
. (B1)

To proceed, we explicitly express Wi(xt+1
i |xt ) in terms of the possible transitions:

Wi
(
xt+1

i |xt
) ∝ δxt+1

i ,SWi(S|xt ) + δxt+1
i ,IWi(I|xt ), (B2)

where δxt+1
i ,S and δxt+1

i ,I are Kronecker δ functions ensuring that only the appropriate transition probabilities contribute to the
dynamics. Substituting this into the partition function, we have

Z (O) ∝
∑

X

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

[
δxt+1

i ,SWi(S|xt ) + δxt+1
i ,IWi(I|xt )

]
. (B3)

The transition probabilities Wi(xt+1
i |xt ) depend on the interactions of node i with its neighbors, which are captured through a

local external field, ht
i . Specifically, the field is defined as

ht
i =

∑
j

νt
jiδxt

j ,I
, (B4)

where νt
ji represents the interaction strength between nodes j and i at time t . The dependence of ht

i on the states of neighboring
nodes is enforced by introducing a Dirac δ function δ(ht

i −∑
j ν

t
jiδxt

j ,I
). By substituting this definition of the local field into the

dynamic partition function, we obtain

Z (O) ∝
∑

X

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

∫ ∞

−∞
dht

i

[
δxt+1

i ,Sδxt
i ,S

αt
i e

ht
i + δxt+1

i ,I

(
1 − δxt

i ,S
αt

i e
ht

i
)]

δ

⎛
⎝ht

i −
∑

j

νt
jiδxt

j ,I

⎞
⎠, (B5)

where αt
i encodes the self-infection probability, as defined in Sec. II A.

To facilitate computation, we use the integral representation of the Dirac δ function:

δ(h) =
∫ ∞

−∞

dĥ

2π
eiĥh, (B6)
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allowing us to introduce an auxiliary integration variable ĥt
i for each ht

i . Substituting this representation into the partition function
and integrating out the ht

i variables introduces new interaction terms in the exponential form. These terms reflect the contributions
of the external fields from neighbors and form the basis for deriving the dynamic cavity equations.

Z (O) ∝
∑

X

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

∫ ∞

−∞
dht

i

[
αt

i e
ht

i δxt
i ,S

(
δxt+1

i ,S − δxt+1
i ,I

)+ δxt+1
i ,I

] ∫ ∞

−∞

dĥt
i

2π
e

iĥt
i (h

t
i −
∑

j νt
jiδxt

j ,I
)

(B7a)

∝
∑

X

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

∫ ∞

−∞
dĥt

i

[
δ
(
ĥt

i − i
)
αt

i e
ht

i δxt
i ,S

(
δxt+1

i ,S − δxt+1
i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]
e
−iĥt

i

∑
j νt

jiδxt
j ,I (B7b)

∝
∑

X

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

∫ ∞

−∞
dĥt

i

[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]
e
−iĥt

i

∑
j νt

jiδxt
j ,I (B7c)

∝
∑

X

∫
DĤ

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]
e
−iĥt

i

∑
j νt

jiδxt
j ,I (B7d)

∝
∑

X

∫
DĤ

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )

T −1∏
t=0

[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]∏
j>i

e
−i(ĥt

i ν
t
jiδxt

j ,I
+ĥt

jν
t
i jδxt

i ,I )
, (B7e)

where
∫

DĤ = ∏N
i=1

∏T −1
t=0 (

∫ +∞
−∞ dĥt

i ) for shortness of notation. We can simplify the notation by introducing the local noninter-
acting and interacting actions Eqs. (15) and (16). The dynamical partition function simplifies to

Z (O) ∝
∑

X

∫
DĤ

N∏
i=1

p0
(
x0

i

)
p(Oi|xi )e

S0
i

∏
j>i

eSint
i j , (B8)

where S0
i depends on the local variable-conjugate field trajectory (xi, ĥi ) and Sint

i j depends on the two local variable-conjugate

field trajectories (xi, ĥi ), (x j, ĥ j ). The probabilistic weight associated with the dynamic partition function Z (O) is now in a
form that can be represented as a graphical model, in which the variable nodes correspond to the spatiotemporal variables xi and
ĥi and there are two types of factor nodes (see Fig. 10): single-node factors,

φi((xi, ĥi )) = p0
(
x0

i

)
p(Oi|xi )e

S0
i , (B9)

and factors involving pairs of variables on neighboring nodes at the same time,

ψi j ((xi, ĥi ), (x j, ĥ j )) = eSint
i j . (B10)

By grouping together single-node variables at all times, i.e., trajectories (xi, ĥi ) = ((x0
i , . . . , xT

i ), (ĥ0
i , . . . , ĥT

i )), the resulting
factor graph reproduces the topology of the underlying interaction graph. It should be noted that the choice of variable grouping
in this approach disentangles the locally loopy structure of the factor graph associated with the space-time problem. This
disentanglement is achieved due to the linear coupling between variables on neighboring nodes, which is obtained by introducing
auxiliary local fields ĥi.

According to this graphical model construction, we obtain the dynamic cavity equations Eq. (12) as an ansatz for describing
the stochastic dynamics associated with the dynamic partition function Z (O) on a treelike interaction graph,

ci\ j (xi, ĥi|O) = p0
(
x0

i

)
Zi\ j (O)

p(Oi|xi )e
S0

i

∏
k∈∂i\ j

∑
xk

∫
Dĥkck\i(xk, ĥk|O)eSint

ik . (B11)

Then, using the Fourier transforms defined as Eqs. (13) the dynamic cavity equations can be written as

ĉi\ j (xi, si|O)

p0
(
x0

i

)
p(Oi|xi )

∝
∫

Dĥi

(∏
t

e−ist
i ĥ

t
i

)
eS0

i

∏
k∈∂i\ j

∑
xk

∫
Dĥk

∫
Dsk

(∏
t

eist
k ĥt

k

2π

)
ĉk\i(xk, ĥk|O)eSint

ik (B12a)

∝
∏

t

∫
dĥt

i e−ist
i ĥ

t
i
[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]

×
∏

k∈∂i\ j

⎛
⎝∏

t

∑
xt

k

∫
dĥt

kdst
k

eist
k ĥt

k

2π
e
−i(ĥt

kν
t
ikδxt

i ,I +ĥt
i ν

t
kiδxt

k ,I )

⎞
⎠ĉk\i(xk, sk|O). (B12b)
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The expression can be simplified by performing the integrals over the conjugate fields coming from the neighbors ĥt
k first,

then over the neighboring fields st
k ,

ĉi\ j (xi, si|O)

p0
(
x0

i

)
p(Oi|xi )

∝
∏

t

∫
dĥt

i e−ist
i ĥ

t
i
[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]

×
∏

k∈∂i\ j

⎛
⎝∏

t

∑
xt

k

∫
dst

k δ
(
st

k − νt
ikδxt

i ,I

)
e
−iĥt

i ν
t
kiδxt

k ,I

⎞
⎠ĉk\i(xk, sk|O) (B13a)

∝
∏

t

∫
dĥt

i e−ist
i ĥ

t
i
[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

] ∏
k∈∂i\ j

⎛
⎝∏

t

∑
xt

k

e
−iĥt

i ν
t
kiδxt

k ,I

⎞
⎠ĉk\i(xk, νikxi|O)

(B13b)

∝
∑
x∂i\ j

⎛
⎝ ∏

k∈∂i\ j

ĉk\i(xk, νikxi|O)

⎞
⎠∏

t

∫
dĥt

i e
−iĥt

i (s
t
i +
∑

k∈∂i\ j νt
kiδxt

k ,I )[
δ
(
ĥt

i − i
)
αt

i e
ht

i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δ
(
ĥt

i

)
δxt+1

i ,I

]
,

(B13c)

and finally over the local conjugate fields ĥt
i

ĉi\ j (xi, si|O)

p0
(
x0

i

)
p(Oi|xi )

∝
∑
x∂i\ j

ĉk\i(xk, νikxi|O)
∏

t

[
δxt+1

i ,I + e
st

i +
∑

k∈∂i\ j νt
kiδxt

k ,I αt
i e

ht
i
(
δxt+1

i ,xt
i
− δxt+1

i ,I

)]
. (B14)

By introducing the dynamic cavity action Eq. (8) we obtain the dynamic cavity equations Eq. (7), where cavity messages are
now a function of the variable-field trajectories xi, si,

ĉi\ j (xi, si|O) ∝ p0
(
x0

i

)
p(Oi|xi )

∑
x∂i\ j

eŜi\ j
∏

k∈∂i\ j

ĉk\i(xk, νikxi|O). (B15)

APPENDIX C: REDUCTION TO THE TIME-FORWARD EQUATIONS IN THE ABSENCE OF OBSERVATIONS

A major consequence of the introduction of time-forward messages ρ
i\ j
→t and time-backward messages ρ

i\ j
t← is that, in the

absence of observations, it is possible to prove that the quantities μt
i\ j have to vanish for all edges (i, j) and times t and then

recover a purely time-forward dynamics.
Using the definition of mt

i\ j by means of the quantities ρ
i\ j
→t (x

t
i ) and ρ

i\ j
t←(xt

i ), i.e., Eq (34), but performing the slicing one time
step later, we obtain

mt
i\ j = 1

Zt
i\ j

∑
xt

i ,x
t+1
i

ρ
i\ j
→t

(
xt

i

)
δxt

i ,I
Mi\ j

xt
i x

t+1
i

ρ
i\ j
t+1←

(
xt+1

i

)
(C1a)

= 1

Zt
i\ j

ρ
i\ j
→t (I )Mi\ j

t,IIρ
i\ j
t+1←(I ) (C1b)

or slicing one time step earlier,

mt
i\ j = 1

Zt
i\ j

∑
xt−1

i ,xt
i

ρ
i\ j
→t−1

(
xt−1

i

)
xt

i M
i\ j
xt−1

i xt
i
ρ

i\ j
t←
(
xt

i

)
(C2a)

= 1

Zt
i\ j

[
ρ

i\ j
→t−1(I )Mi\ j

t−1,IIρ
i\ j
t←(I ) + ρ

i\ j
→t−1(S)Mi\ j

t−1,SIρ
i\ j
t←(I )

]
, (C2b)

where we have introduced the normalization constant Zt
i\ j = ∑

xt
i
ρ

i\ j
→t (x

t
i )ρ i\ j

t←(xt
i ). It is straightforward to show that it corre-

sponds to the normalization constant Zi\ j , defined in Eqs. (28) and (32). It follows that the normalization is independent of time.
Using Eq. (C1b) it is possible to express mt

i\ j as function of mt−1
i\ j ,

mt
i\ j = mt−1

i\ j + ρ
i\ j
→t−1(S)Mi\ j

t−1,SIρ
i\ j
t←(1)

Zi\ j
(C3a)

= mt−1
i\ j + (

1 − mt−1
i\ j

) (
1 − gt−1

i\ j

)
ρ

i\ j
t←(I )(

1 − gt−1
i\ j

)
ρ

i\ j
t←(I ) + gt−1

i\ j ρ
i\ j
t←(S)

. (C3b)
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As already stressed in the main text, the last expression does not represent a time-forward equation because the quantities
ρ

i\ j
t←(xt

i ) are computed backward in time from T to step t . Time-forward dynamics is recovered if the two time-backward
messages are uniform, which is expected to occur in the absence of observations at later times. To prove this, one can first
notice that from Eq. (37), μt

i\ j = 0 if the time-backward messages are uniform, i.e., if ρ
i\ j
t+1←(S) = ρ

i\ j
t+1←(I ). In the absence of

observations also the inverse implication is true: when the set of messages μt
i\ j at time t are zero and there is no observation also

at time t , then the corresponding time-backward messages ρ
i\ j
t←(xt

i ) are also uniform. Let us start from the time T − 1, because
by construction μT

i\ j = 0, then using Eq. (37) with the final time condition ρ
i\ j
T ←(xT

i ) = p(OT
i |xT

i ) we obtain

μt
i\ j = 1

Zi\ j
ρ

i\ j
→t (S)Mi\ j

T −1,SS

(
p
(
OT

i

∣∣S)− p
(
OT

i

∣∣I)). (C4)

If no observation is provided on the final time, then p(OT
i |xT

i ) = 1 for xT
i = S, I and the numerator vanishes, that is μT −1

i\ j = 0.
Moreover,

ρ
i\ j
T −1←

(
xT −1

i

) =
∑
xT

i

Mi\ j
xT −1

i xT
i

p
(
OT

i

∣∣xT
i

)
(C5a)

= Mi\ j
xT −1

i S
+ Mi\ j

xT −1
i I

, (C5b)

that is

ρ
i\ j
T −1←(S) = gT −1

i\ j p
(
OT −1

i

∣∣S)+ (
1 − gT −1

i\ j

)
p
(
OT −1

i

∣∣S) = p
(
OT −1

i

∣∣S), (C6)

ρ
i\ j
T −1←(I ) = e

∑
k∈∂i\ j νT −1

ik μT −1
k\i p

(
OT −1

i

∣∣I) = p
(
OT −1

i

∣∣I), (C7)

meaning that ρ
i\ j
T −1←(S) = ρ

i\ j
T −1←(I ) if no observation is included at time T − 1. In this way, the equality is guaranteed at time

T − 1 and one can proceed by induction. By assuming that, in the absence of observations at times larger than t , the equality
is valid for time t + 1, i.e., ρ

i\ j
t+1←(S) = ρ

i\ j
t+1←(I ) = ρ

i\ j
t+1← for all edges (i, j), then one obtains that μt

i\ j = 0. Computing the
time-backward messages at time t ,

ρ
i\ j
t←
(
xt

i

) =
∑

xt
i ,x

t+1
i

Mi\ j
xt

i x
t+1
i

ρ
i\ j
t+1←

(
xt+1

i

)
(C8a)

= (
Mi\ j

xt
i S

+ Mi\ j
xt

i I

)
ρ

i\ j
t+1←, (C8b)

and using that all μt
k\i vanish,

ρ
i\ j
t←
(
xt

i

) ∝
{

p
(
Ot

i

∣∣S) if xt
i = S,

p
(
Ot

i

∣∣I) if xt
i = I.

(C9)

By induction, this is true for every time, as long as no observation is included. Hence, it is possible to conclude that, in the
absence of observations, the equations (C3b) for the cavity marginals mt

i\ j reduce to the more standard time-forward mean-field
equations in Eqs. (42). Figure 11 shows how the value of λ influences the performance of these methods.

APPENDIX D: EFFICIENT IMPLEMENTATION IN THE INFECTION TIME REPRESENTATION

As an alternative to the generic efficient formulation presented in Sec. III in terms of transfer-matrix formalism, the
computational complexity of Eqs. (24) and (25) can be reduced from exponential (in the temporal length T ) to polynomial
exploiting the nonrecurrence of the SI dynamic process—in which only configurations of the type xi = (0, . . . , 0, 1, . . . 1)
are allowed—by using a simpler representation in terms of infection times. An epidemic trajectory of the SI process can be
parameterized by a unique set of integer variables ti (one for each node) representing the first time at which individual i is
infected, and taking values in ti ∈ {0, . . . , T + 1}. The case ti = 0 corresponds to individual i being originally infected at the
initial time, i.e., being a patient-zero of the epidemics. The other special case ti = T + 1 models the scenario where individual i
never gets infected during the dynamics (which formally corresponds to ti = +∞). The trajectory xi can be simply expressed as
xt

i = S�(ti − 1 − t ) + I�(t − ti ), where �(x) is a Heaviside-step function, with the convention �(0) = 1. After some algebra,
we can rewrite Eqs. (24), (25), and (28) as follows:

mt
i\ j = 1

Zi\ j

t∑
ti=0

p(Oi|ti )γ0(ti )

(
ti−2∏
r=0

αr
i e
∑

k∈∂i\ j mr
k\iν

r
ki

)(
1 − I1�ti�T α

ti−1
i e

∑
k∈∂i\ j m

ti−1
k\i ν

ti−1
ki
) T −1∏

s=ti

e
∑

k∈∂i\ j νs
ikμ

s
k\i , (D1a)
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μt
i\ j = 1

Zi\ j

T +1∑
ti=t+2

p(Oi|ti )γ0(ti)

(
ti−2∏
r=0

αr
i e
∑

k∈∂i\ j mr
k\iν

r
ki

)(
1 − I1�ti�T α

ti−1
i e

∑
k∈∂i\ j m

ti−1
k\i ν

ti−1
ki
) T −1∏

s=ti

e
∑

k∈∂i\ j νs
ikμ

s
k\i

− I0�t�T −1

Zi\ j
p(Oi|t + 1)γ0(t + 1)

(
t∏

r=0

αr
i e
∑

k∈∂i\ j mr
k\iν

r
ki

)
T −1∏

s=t+1

e
∑

k∈∂i\ j νs
ikμ

s
k\i , (D1b)

Zi\ j =
T +1∑
ti=0

p(Oi|ti )γ0(ti )

(
ti−2∏
r=0

αr
i e
∑

k∈∂i\ j mr
k\iν

r
ki

)(
1 − I1�ti�T α

ti−1
i e

∑
k∈∂i\ j m

ti−1
k\i ν

ti−1
ki
) T −1∏

s=ti

e
∑

k∈∂i\ j νs
ikμ

s
k\i , (D1c)

where the function γ0(ti ) is related to the probability of node i
being a patient zero, namely

γ0(ti ) =
{

p0
(
x0

i = I
)
, ti = 0,

1 − p0
(
x0

i = I
)
, ti > 0.

(D2)

We have introduced the indicator function Ix which is equal
to one when its argument x is true, and zero otherwise. Notice
how all the summations and products w.r.t. the infection times
are now linear in T . Analogously, the likelihood term for each
observations on node i [Eq. (5)] can be rewritten under this
representation as

p
(
Ot

i = S
∣∣ti) = (1 − η+)�(ti − t − 1) + η−�(t − ti ), (D3)

p
(
Ot

i = I
∣∣ti) = η+�(ti − t − 1) + (1 − η−)�(t − ti ), (D4)

where p(Oi|ti ) = ∏T
t=0 p(Ot

i |ti ). Analogous expressions w.r.t.
Eqs. (D1a) and (D1c) can be derived for the single-node
marginal mt

i and its normalization Zi. An efficient compu-

FIG. 10. Factor graph representation for epidemic inference.
(a) Original contact graph. (b) Loopy, naive factor graph associated to
the graphical model Eq. (A1). (c) Disentangled dual factor graph for
the graphical model Eq. (A1). The factor graph maintain the structure
of the original contact graph. (c) Disentangled factor graph for the
graphical model interpretation of the dynamical partition function in
Eq. (B8) with factors as given in Eqs. (B9) and (B10).

tational scheme can be attained by updating all the cavity
quantities of a fixed node at once, and then performing a
random shuffling on the order in which nodes are updated.
Intuitively, the speed-up induced by this protocol is that the
forward and backward contribution to each cavity message
- say, on link (i, j) can be computed by removing the cor-
responding link contribution from the site term i. To clarify
this point, let us define the following four quantities, for each
node i:

R→t
i = log αt

i +
∑
k∈∂i

mt
k\iν

t
ki, (D5)

Rt←
i =

∑
k∈∂i

νt
ikμ

t
k\i, (D6)

K→t
i =

t−2∑
r=0

R→r
i , (D7)

Kt←
i =

T −1∑
s=t

Rs←
i . (D8)

Analogous definitions for the cavity quantities hold for each
edge (i, j), just by letting the above summations run over
all the neighbors of node i but j. Equations (D5) and (D6)
have also a physical interpretation. For instance, R→t

i is a
mean-field approximation for the log-probability of node i
not being infected at time t by none of its neighbors. The
above definitions Eqs. (D5)–(D8) allow one to write the cavity
equations Eqs. (D1a)–(D1c) in a more compact form:

mt
i\ j = 1

Zi\ j

t∑
ti=0

p(Oi|ti )γ0(ti )e
K

→ti
i\ j θ

→ti−1
i\ j eK

ti←
i\ j , (D9)

μt
i\ j = 1

Zi\ j

(
T +1∑

ti=t+2

p(Oi|ti )γ0(ti )e
K

→ti
i\ j θ

→ti−1
i\ j eK

ti←
i\ j

− p(Oi|t + 1)γ0(t + 1)I0�t�T −1eK→t+2
i\ j +Kt+1←

i\ j

)
,

(D10)

Zi\ j =
T +1∑
ti=0

p(Oi|ti )γ0(ti )e
K

→ti
i\ j θ

→ti−1
i\ j eK

ti←
i\ j , (D11)

where we have introduced θ→t
i\ j = 1 − I1�t+1�T eR

→t
i\ j .
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FIG. 11. Forward dynamics with varying λ. Fraction of infected individuals against epidemic time, with four different static contact graphs.
From top to bottom: regular tree with degree K = 4 and N = 485, RRG with N = 500 and degree K = 4, RRG with N = 500 and K = 15,
proximity graph with N = 500. Comparison is shown between SCDC, IBMF, BP, and Monte Carlo simulations (with 104 samples). All the
links have the same infection probability λ, whose value is reported inside each panel. Six different values of λ are used. In all cases, the
probability of each individual being infected at time t = 0 is set to p0(x0

i ) = 5/N , and the self-infection εt
i is set to 0 for every node i.
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At fixed i, the quantities R→t
i\ j , Rt←

i\ j , K→t
i\ j , Kt←

i\ j can be
computed for each cavity by removing just one link contri-
bution (i.e., the one corresponding to the link removed in that
specific cavity graph), without further O(|∂i|) computations,
namely

R→t
i\ j = R→t

i − mt
j\iν

t
ji, (D12)

Rt←
i\ j = Rt←

i − νt
i jμ

t
j\i, (D13)

K→t
i\ j = K→t

i −
t−2∑
r=0

mr
j\iν

r
ji, (D14)

Kt←
i\ j = Kt←

i −
T −1∑
s=t

νs
i jμ

s
j\i, (D15)

for any j ∈ ∂i. Furthermore, the computation of K→t
i and

Kt←
i can be done recursively, in a forward (respectively,

backward) direction w.r.t. time, i.e., by exploiting K→t
i =

K→t−1
i + R→t−2

i and Kt←
i = Kt+1←

i + Rt←
i . Clearly, equiv-

alent relations hold for the cavity quantities K→t
i\ j and Kt←

i\ j .
Using all the above schemes, the overall computational cost
to perform a single update of all the cavity quantities for
a node i scales as O(|∂i|T ). A further advantage of such a
computational scheme is that the update of all the cavities for
one node can be performed in parallel, a particularly conve-
nient choice especially when dealing with dense graphs. The
convergence criterion can be defined either w.r.t. the cavity
messages {mt

i\ j} and/or their conjugates {μt
i\ j}, or eventu-

ally w.r.t. the single-site marginals {mt
i }: the latters can be

computed as

mt
i =

∑t
ti=0 p(Oi|ti )γ0(ti )eK→

i (ti )θ
ti−1
i eK←

i (ti )∑T +1
ti=0 p(Oi|ti )γ0(ti )eK→

i (ti )θ
ti−1
i eK←

i (ti )
, (D16)

where the normalization is explicitly shown at the denomina-
tor, and θ t

i is the straightforward extension of θ t
i\ j to the single

node case. This expression is equivalent to Eq. (29) of the
main text but rewritten using the infection-time representation
just discussed.

APPENDIX E: DERIVATION OF SCDC
ON THE SIR MODEL

In a SIR model, the possible individual states are xt
i ∈

{S, I, R} and the transition probabilities between states are
given by

Wi
(
xt+1

i = S
∣∣xt
) = δxt

i ,S
αt

i e
ht

i , (E1)

Wi
(
xt+1

i = I
∣∣xt
) = δxt

i ,I

(
1 − rt

i

)+ δxt
i ,S

[
1 − αt

i e
ht

i
]
, (E2)

Wi
(
xt+1

i = R
∣∣xt
) = δxt

i ,R
+ δxt

i ,I
rt

i , (E3)

where rt
i is the recovery probability of individual i at time t

and ht
i is the usual local field, defined as ht

i = ∑N
j=1 νt

jiδxt
j ,I

,

where νt
ji = log(1 − λt

ji ), such that eht
i = ∏N

j=1(1 − λt
jiδxt

j ,I
)

is the probability of not being infected by the neighbors. The
dynamical partition function of the system can be computed
following the same steps of the derivation for the SI model,
i.e., introducing the local fields ht

i through the integral rep-
resentation of a Dirac δ function, and integrating over them
at all them. After some calculations, we end up with the
following expression for the dynamical partition function of
the observation reweighted SIR dynamics:

Z (O) =
∑

X

∫
DĤ

∏
i

p
(
x0

i

)
p0(Oi|xi )

∏
t

{
δ
(
ĥt

i

)[
δxt+1

i ,I

(
δxt

i ,I

(
1 − rt

i

)+ δxt
i ,S

)+ δxt+1
i ,R

(
δxt

i ,R
+ δxt

i ,I
rt

i

)]

+ δ
(
ĥt

i − i
)
αt

i

[
δxt+1

i ,Sδxt
i ,S

− δxt+1
i ,Iδxt

i ,S

]}∏
j>i

e
δxt

j ,I
νt

ji (−iĥt
i )+δxt

i ,I ν
t
i j (−iĥt

j )
, (E4)

which can in turn be interpreted as a graphical model in a similar way to what was done for the SI model. The dynamic cavity
equations for the SIR model with observations have the same form of the SI model [Eq. (12)], where the only difference is in the
definition of the sum over the trajectories, which now runs over {S, I, R}, and in the definition of the local noninteracting action

S0
i =

∑
t

log
{
δ
(
ĥt

i

)[
δxt+1

i ,I

(
δxt

i ,I

(
1 − rt

i

)+ δxt
i ,S

)+ δxt+1
i ,R

(
δxt

i ,R
+ δxt

i ,I
rt

i

)]+ δ
(
ĥt

i − i
)
αt

i

[
δxt+1

i ,Sδxt
i ,S

− δxt+1
i ,Iδxt

i ,S

]}
. (E5)

The expansion for small infection rates can be carried out similarly to the SI model, leading to the same expression for the cavity
averages Eqs. (24) and (25), where the two term Sm

i\ j and Sμ

i\ j are now defined as

Sm
i\ j =

∑
t

log
{
δxt+1

i ,I

(
δxt

i ,I

(
1 − rt

i

)+ δxt
i ,S

)+ δxt+1
i ,R

(
δxt

i ,R
+ δxt

i ,I
rt

i

)
+ αt

i

(
δxt+1

i ,Sδxt
i ,S

− δxt+1
i ,Iδxt

i ,S

)
e
∑

k∈∂i\ j mt
k\iν

t
ki
}+

∑
t

∑
k∈∂i\ j

δxt
i ,I

νt
ikμ

t
k\i, (E6)

Sμ

i\ j =
∑

t

log
[
αt

i

(
δxt+1

i ,Sδxt
i ,S

− δxt+1
i ,Iδxt

i ,S

)]+
∑

t

∑
k∈∂i\ j

(
mt

k\iν
t
ki + δxt

i ,I
νt

ikμ
t
k\i

)
. (E7)
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The normalization function is defined as usual by Eq. (28),
and ensures normalization of the cavity averages mt

i\ j , which
are therefore interpreted as the probability of node i of being
infected at time t when node j is removed from the contact
graph. Even with the new definitions of Sm

i\ j and Sμ

i\ j , we can
use the efficient formulation Eq. (32) in terms of transfer
matrices Mxt

i ,x
t+1
i

, with the only difference in their expres-
sion. The transition matrices are now 3 × 3, and defined by
Eq. (39).

APPENDIX F: EXAMPLE OF NORMALIZATION ISSUE
FOR LEAVES OF THE CONTACT GRAPH

The small-coupling expansion requires to assume the nor-
malization Zi\ j in Eq. (28), which sums over all the possible
trajectories of node i assuming si = 0 at every time. The
method thus considers all the trajectories in which the cavity
node j is always susceptible, and therefore cannot infect node
i. In particular, there are situations, such as the one considered
in the example below, in which the normalization vanishes,
meaning that it is not possible to explain an observed tra-
jectory within the standard SI model. While this could seem
pathological, it is worth stressing that the assumption done
is necessary to obtain a message-passing algorithm that is
independent of the trajectory of node j, a crucial condition
to perform the expansion on which the present method is
based. It is however possible to ensure that every trajec-
tory of a node i remains feasible, the normalization constant
being finite, by slightly modifying the epidemic model in-
troducing a small self-infection probability. In addition to
fix the normalization issue, a small value of self-infection
probability does not deteriorate the predictive power of the
method.

To better illustrate this problem, we consider a leaf node i
and its unique neighbor j. In the cavity graph corresponding
to the message ci\ j (xi, si ), node i will appear as an isolated
node. As a consequence, it is expected that the approximation
behind the SCDC equations cannot explain, within the cavity
graph, an infection actually transmitted from node j to node
i. Indeed, because of the absence of further neighbors, the
normalization term reads, after integration of the conjugate
field hi,

Zi\ j =
∑

xi

p0
(
x0

i

)
p(Oi|xi )

∏
t

[
αt

i

(
δxt+1

i ,xt
i
− δxt+1

i ,I

)+ δxt+1
i ,I

]
,

(F1)

showing that an infection can only be explained by a self-
infection event. When εt

i = 0 (i.e., αt
i = 1, no self-infections

possible), the cavity message admits trajectories for which
node i is always susceptible or infected. When a perfect ob-
servation (i.e., η+ = η− = 0) imply an infection event at some
t = 0, the normalization vanishes, indicating an inconsistency
in the model. This is prevented by the existence of a finite
self-infection probability. Since it is recommended to operate
in the limit of a vanishing self-infection, in the present case it
is possible to analytically verify the limiting behavior for the
cavity messages mt

i\ j and μt
i\ j .

As an example, we suppose that the leaf i is observed to
be susceptible at time tS and then is observed to be infected at

time tI > tS . We consider a uniform self-infection probability
εt

i = ε (αt
i = α = 1 − ε) for any time t and any node i, and a

uniform prior probability p0(x0
i = S) = 1 − γ , p0(x0

i = I ) =
γ . The forward messages are

ρ
i\ j
→t (S) =

{
(1 − γ )αt if t � tI ,

0 if t > tI ,
(F2)

ρ
i\ j
→t (I ) =

⎧⎪⎪⎨
⎪⎪⎩

γ + (1 − α)(1 − γ )
∑t−1

l=0 αl if t � tS,

(1 − α)(1 − γ )
∑t−1

l=tS
αl if tS < t � tI ,

(1 − α)(1 − γ )
∑tI −1

l=tS
αl if t > tI ,

(F3)

and the backward messages

ρ
i\ j
t←(S) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − α)αtS−t
∑tI −1−tS

l=0 αl if t � tS,

(1 − α)
∑tI −1−t

l=0 αl if tS < t � tI ,

1 if t > tI ,

(F4)

ρ
i\ j
t←(I ) =

{
0 if t � tS,

1 if t > tS.
(F5)

The normalization factor, taking into account the observa-
tions, is given by

Zi\ j = (1 − α)(1 − γ )
tI −1∑
l=tS

αl , (F6)

so that the cavity marginal is given by

mt
i\ j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t � tS,

(1−α)(1−γ )
∑t−1

l=tS
αl

(1−α)(1−γ )
∑tI −1

l=tS
αl

if tS < t � tI ,

1 if t > tI .

(F7)

In the limit of vanishing self-infection ε → 0 (α → 1), the
cavity marginal takes the simple expression

mt
i\ j =

⎧⎪⎪⎨
⎪⎪⎩

0 if t � tS,
t−tS
tI −tS

if tS < t � tI ,

1 if t > tI ,

(F8)

which gives a reasonable probability profile for the node i to
be infected in the absence of node i. It is worth stressing that
this is not the full marginal mt

i , which also depends on the
messages coming from j to i. The cavity field instead diverges
for times t between the two observation times

μt
i\ j =

⎧⎪⎪⎨
⎪⎪⎩

1 if t � tS,

−∞ if tS < t � tI ,

0 if t > tI ,

(F9)

which is a clear consequence of having a vanishing normaliza-
tion factor in the limit of zero self-infection. The divergence of
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the cavity field is thus the very nonphysical effect of the incon-
sistency already discussed. In practice, to avoid divergences
triggered by some peculiar combinations of observations, we
then implement the algorithm using a cutoff μc < 0 on the
values of μi\ j , such that the update rule (37) is implemented

as follows:

μt
i\ j = max

{
μc,

ρ
i\ j
→t (S)Mi\ j

SS

(
ρ

i\ j
t+1←(S) − ρ

i\ j
t+1←(I )

)
ρ

i\ j
→t (S)ρ i\ j

t←(S) + ρ
i\ j
→t (I )ρ i\ j

t←(I )

}
.

(F10)
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M. Šikić, Identification of patient zero in static and temporal
networks: Robustness and limitations, Phys. Rev. Lett. 114,
248701 (2015).

[7] I. Biazzo, A. Braunstein, L. Dall’Asta, and F. Mazza, A
Bayesian generative neural network framework for epidemic
inference problems, Sci. Rep. 12, 19673 (2022).

[8] A. Braunstein, G. Catania, L. Dall’Asta, M. Mariani, and A. P.
Muntoni, Inference in conditioned dynamics through causality
restoration, Sci. Rep. 13, 7350 (2023).

[9] C. Shah, N. Dehmamy, N. Perra, M. Chinazzi, A.-L. Barabási,
A. Vespignani, and R. Yu, Finding patient zero: Learning con-
tagion source with graph neural networks, arXiv:2006.11913.

[10] C. W. Tan, P.-D. Yu, S. Chen, and H. V. Poor, DeepTrace: Learn-
ing to optimize contact tracing in epidemic networks with graph
neural networks, IEEE Trans. Signal Inf. Process. Networks 11,
97 (2025).

[11] G. Cutura, B. Li, A. Swami, and S. Segarra, Deep
demixing: Reconstructing the evolution of epidemics using
graph neural networks, in 29th European Signal Processing
Conference (EUSIPCO), Dublin, Ireland (IEEE, Piscataway,
NJ, 2021), pp. 2204–2208.

[12] D. Ghio, A. L. M. Aragon, I. Biazzo, and L. Zdeborová, Bayes-
optimal inference for spreading processes on random networks,
Phys. Rev. E 108, 044308 (2023).

[13] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos,
and R. Zecchina, Bayesian inference of epidemics on net-
works via belief propagation, Phys. Rev. Lett. 112, 118701
(2014).

[14] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Ingrosso, and R.
Zecchina, The patient-zero problem with noisy observations,
J. Stat. Mech. (2014) P10016.

[15] A. Braunstein and A. Ingrosso, Inference of causality in epi-
demics on temporal contact networks, Sci. Rep. 6, 27538
(2016).

[16] J. Bindi, A. Braunstein, and L. Dall’Asta, Predicting epidemic
evolution on contact networks from partial observations, PLoS
ONE 12, e0176376 (2017).

[17] A. P. Muntoni, F. Mazza, A. Braunstein, G. Catania, and
L. Dall’Asta, Effectiveness of probabilistic contact tracing
in epidemic containment: The role of superspreaders and
transmission path reconstruction, PNAS Nexus 3, pgae377
(2024).

[18] A. Y. Lokhov and D. Saad, Optimal deployment of resources for
maximizing impact in spreading processes, Proc. Natl. Acad.
Sci. USA 114, E8138 (2017).

[19] I. Neri and D. Bollé, The cavity approach to parallel dynamics
of Ising spins on a graph, J. Stat. Mech. (2009) P08009.

[20] Y. Kanoria and A. Montanari, Majority dynamics on trees
and the dynamic cavity method, Ann. Appl. Probab. 21, 1694
(2011).

[21] A. Y. Lokhov, M. Mézard, and L. Zdeborová, Dynamic
message-passing equations for models with unidirectional dy-
namics, Phys. Rev. E 91, 012811 (2015).

[22] F. Altarelli, A. Braunstein, L. Dall’Asta, and R. Zecchina, Large
deviations of cascade processes on graphs, Phys. Rev. E 87,
062115 (2013).

[23] S. Crotti and A. Braunstein, Matrix product belief propagation
for reweighted stochastic dynamics over graphs, Proc. Natl.
Acad. Sci. USA 120, e2307935120 (2023).

[24] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y.
Moreno, Discrete-time Markov chain approach to contact-based
disease spreading in complex networks, Europhys. Lett. 89,
38009 (2010).

[25] P. Van Mieghem, J. Omic, and R. Kooij, Virus spread in net-
works, IEEE/ACM Trans. Networking 17, 1 (2008).

[26] I. Z. Kiss, J. C. Miller, and P. L. Simon, Mathematics of
Epidemics on Networks: From Exact to Approximate Models,
Interdisciplinary Applied Mathematics (Springer International
Publishing, Cham, 2017), Vol. 46.

[27] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Epidemic processes in complex networks, Rev.
Mod. Phys. 87, 925 (2015).

[28] T. Plefka, Convergence condition of the TAP equation for the
infinite-ranged Ising spin glass model, J. Phys. A: Math. Gen.
15, 1971 (1982).

[29] B. Bravi, P. Sollich, and M. Opper, Extended Plefka expansion
for stochastic dynamics, J. Phys. A: Math. Theor. 49, 194003
(2016).

[30] A. Georges and J. S. Yedidia, How to expand around mean-field
theory using high-temperature expansions, J. Phys. A: Math.
Gen. 24, 2173 (1991).

023089-24

https://doi.org/10.1126/science.abb6936
https://doi.org/10.1073/pnas.2106548118
https://doi.org/10.1145/1811099.1811063
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1103/PhysRevE.90.012801
https://doi.org/10.1103/PhysRevLett.114.248701
https://doi.org/10.1038/s41598-022-20898-x
https://doi.org/10.1038/s41598-023-33770-3
https://arxiv.org/abs/2006.11913
https://doi.org/10.1109/TSIPN.2025.3530346
http://doi.org/10.23919/EUSIPCO54536.2021.9616110
https://doi.org/10.1103/PhysRevE.108.044308
https://doi.org/10.1103/PhysRevLett.112.118701
https://doi.org/10.1088/1742-5468/2014/10/P10016
https://doi.org/10.1038/srep27538
https://doi.org/10.1371/journal.pone.0176376
https://doi.org/10.1093/pnasnexus/pgae377
https://doi.org/10.1073/pnas.1614694114
https://doi.org/10.1088/1742-5468/2009/08/P08009
https://doi.org/10.1214/10-AAP729
https://doi.org/10.1103/PhysRevE.91.012811
https://doi.org/10.1103/PhysRevE.87.062115
https://doi.org/10.1073/pnas.2307935120
https://doi.org/10.1209/0295-5075/89/38009
https://doi.org/10.1109/TNET.2008.925623
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1088/0305-4470/15/6/035
https://doi.org/10.1088/1751-8113/49/19/194003
https://doi.org/10.1088/0305-4470/24/9/024


SMALL-COUPLING DYNAMIC CAVITY: A BAYESIAN … PHYSICAL REVIEW RESEARCH 7, 023089 (2025)

[31] A. Maillard, L. Foini, A. L. Castellanos, F. Krzakala, M.
Mézard, and L. Zdeborová, High-temperature expansions and
message passing algorithms, J. Stat. Mech. (2019) 113301.

[32] M. Tarabolo, SmallCouplingDynamicCavity.jl (2023), https://
github.com/Mattiatarabolo/SmallCouplingDynamicCavity.jl.

[33] M. Fabio and indaco biazzo, sibyl-team/epigen: Release epi-
gen (v0.2), Zenodo (2023), https://doi.org/10.5281/zenodo.
7852232.

[34] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature (London) 393, 440 (1998).

[35] M. D. Penrose, Connectivity of soft random geometric graphs,
Ann. Appl. Probab. 26, 986 (2016).

[36] R. Hinch, W. J. M. Probert, A. Nurtay, M. Kendall, C.
Wymant, M. Hall, K. Lythgoe, A. B. Cruz, L. Zhao, A.
Stewart, L. Ferretti, D. Montero, J. Warren, N. Mather, M.
Abueg, N. Wu, O. Legat, K. Bentley, T. Mead, K. Van-
Vuuren et al., OpenABM-Covid19—An agent-based model
for non-pharmaceutical interventions against COVID-19 in-
cluding contact tracing, PLoS Comput. Biol. 17, e1009146
(2021).

[37] C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K.
Rosenfeld, G. R. Hart, R. C. Núñez, J. A. Cohen, P. Selvaraj, B.
Hagedorn, L. George, M. Jastrzębski, A. S. Izzo, G. Fowler, A.
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