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Abstract— The L-test is a performance-based measure
to assess balance and mobility. Currently, the primary
outcome from this test is the time required to finish it.
In this study we present the instrumented L-test (iL-test),
an L-test wherein mobility is evaluated by means of
a wearable inertial sensor worn at the lower back.
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We analyzed data from 113 people across seven cohorts:
healthy adults, chronic obstructive pulmonary disease,
multiple sclerosis, congestive heart failure, Parkinson’s
disease, proximal femoral fracture, and transfemoral ampu-
tation. The iL-test automatic segmentation was validated
using stereophotogrammetry. Univariate and multivariate
analyses were performed on 164 kinematic features derived
from inertial signals to identify distinct patterns across
different cohorts. The iL-test accurately recognized and
segmented activities during the L-test for all cohorts
(technical validity). A random forest classifier revealed
that proximal femoral fracture and transfemoral amputation
induced significantly different mobility patterns compared
to healthy people with AUC values of 0.89 and 0.99,
respectively. Strong correlations were found between
kinematic features and clinical scores in multiple scle-
rosis, congestive heart failure, proximal femoral fracture,
and transfemoral amputation, with consistent patterns
of decreased movement ranges and smoothness with
increasing disease severity. Furthermore, features derived
from 90◦ and 180◦ turns were found to be important con-
tributors to differentiation amongst cohorts, underscoring
the need to evaluate different turn degrees and directions.
This study emphasizes the iL-test potential to deliver
automated mobility assessment across a wide range
of clinical conditions, indicating a prospective avenue
for improved mobility assessment and, eventually, more
informed healthcare interventions.

Index Terms— Mobility, wearable sensors, objective
measurements.

I. INTRODUCTION

MOBILITY, the capacity to move, transition, and
navigate one’s environment, is fundamental to human

independence and well-being [1]. It reflects our ability to
engage with the world, interact with our surroundings, and
maintain a good quality of life. Yet, it is a facet of health
that often goes unnoticed until compromised by injury, chronic
conditions, or age-related syndromes [2], [3].

To assess mobility comprehensively in clinical populations,
healthcare professionals have traditionally relied on clinical
questionnaires and tools to measure functional mobility, such
as the Timed Up and Go (TUG) test [4]. The TUG test,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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a concise yet informative assessment, requires individuals to
rise from a seated position, walk a short distance, perform
a 180◦ turn, and return to a seated position. The score is
represented by the time taken to perform the test, usually
measured with a stopwatch. It is a valuable tool for clinicians,
offering quick insights into an individual’s mobility and fall
risk [5]. The use of wearable technology such as inertial
sensors allowed the development of the instrumented TUG
(iTUG), which has been used in various studies in the
past years [6] to enable analyses of the quality of the
movements performed during the TUG assessment. Research
using the iTUG has demonstrated the clinical relevance of
sensor-derived variables in predicting fall risk and diagnosing
mobility impairments [6], [7]. These findings highlight the
importance of incorporating inertial sensor-based analyses
into mobility assessments, providing a strong rationale for
extending their application to the L-test.

In 2005, Deathe and Miller [8] introduced the L-test as a
variation of the TUG test, designed to overcome the ceiling
effect of the TUG found in higher-functioning individuals. The
first proposers of the L-test indicated that when assessing a
patient’s gait during clinical examinations, clinicians usually
asked the patient to get up and walk out of the room, turn
90◦ and go down the hall, then return to the room and sit
down. This walking path, representing an “L” configuration,
required turns to both the right and the left. In fact, in real-
world conditions, one should be prepared to perform several
turns in different directions and angles. Comprised of turns in
both directions and at 90◦ and 180◦, the L-test might provide a
more comprehensive and detailed evaluation of an individual’s
mobility status, making it a promising platform for in-lab
advanced mobility assessment.

Over the past 10 years, several studies have confirmed
the L-test as a reliable, objective tool for assessing walking
ability in different populations [9], [10], [11], [12] and a
recent study [13] validated an algorithm to segment activities
during an L-test in 20 healthy adults. However, no studies
have been found to incorporate inertial sensors to analyze
kinematics features during the L-test in different clinical
populations. This study introduces the instrumented L-test
(iL-test) as a novel mobility assessment tool and evaluates its
feasibility for extracting digital mobility outcomes (DMOs)
that are both technically valid and clinically informative
across diverse clinical cohorts. We achieve this through: (1)
technical validation of the automatic segmentation of the
iL-test through comparison with stereophotogrammetry as
the gold standard; (2) discriminant validation, assessing the
feasibility of sensor-derived kinematic features to potentially
differentiate between cohorts; and (3) construct validity,
evaluating the clinical relevance of these kinematic parameters
by correlating them with established clinical scales.

II. MATERIALS AND METHODS

A. Study Design and Participants
The study included two distinct datasets: the Technical

Validation Study dataset (TVS) of Mobilise-D and the MOTU
dataset. In the Mobilise-D dataset, a convenience sample of
100 adults from six different cohorts was analyzed: healthy

adults (HA), chronic obstructive pulmonary disease (COPD),
multiple sclerosis (MS), congestive heart failure (CHF),
Parkinson’s disease (PD), and proximal femoral fracture
(PFF). Participants were recruited at five sites: the Newcastle
upon Tyne Hospitals NHS Foundation Trust and the Sheffield
Teaching Hospitals NHS Foundation Trust, UK (ethics
approval granted by the London-Bloomsbury Research Ethics
Committee, 19/LO/1507); Tel Aviv Sourasky Medical Center,
Israel (ethics approval granted by the Helsinki Committee,
Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, 0551-
19TLV); Robert Bosch Foundation for Medical Research
(ethics approval granted by the ethical committee of the
medical faculty of The University of Tübingen, 647/2019BO2)
and University of Kiel, Germany (ethics approval granted by
the ethical committee of the medical faculty of Kiel University,
D438/18). All participants gave written informed consent to
take part in the study. Additional information about the TVS
protocol can be found in [14], [15], and [16].

The MOTU dataset consisted of 13 transfemoral amputees
(TFA) recruited by the MOTU project in two clinical sites:
the INAIL Prosthesis Centre, Budrio, Italy (ethics approval
granted by CE AVEC, 537/2019/OSS/AUSLBO) and the
Palazzolo Institute of the Don Gnocchi Foundation, Milan,
Italy (ethics approval granted by the IRCCS Fondazione
Don Carlo Gnocchi Ethics Review Board, 08_16/10/2019).
The study was conducted following the ethical principles for
medical research expressed in the Declaration of Helsinki.
Written informed consent was obtained from all participants.

B. Experimental Protocol
In the test, the participant was asked to sit in a chair, stand

up, walk straight, turn 90◦ around a mark, walk straight to
the second mark, make a 180◦ turn, walk straight to the first
mark, make a final 90◦ turn, and return to the chair to sit down
(supplementary video).

The participants performed the L-test while wearing an
inertial sensor on the lower back. In Mobilise-D, the L-test
was made of two arms 4m × 2m, and the inertial sensor was
a Dynaport MM+ (McRoberts, the Netherlands) (sampling
frequency 100 Hz, triaxial acceleration range: ±8g, resolution:
1 mg; triaxial gyroscope range: ±2000◦/s, resolution: 0.07 ◦/s).
In MOTU, the L-test was made of two arms 7m × 3m, and
the inertial sensor was from the mTest3 functional assessment
suite (mHealth Technologies, Bologna, Italy) (sampling
frequency 100 Hz, triaxial acceleration range: ±2g, resolution:
0.06 mg; triaxial gyroscope range: ±250◦/s, resolution: 0.0076
◦/s). The Mobilise-D used a reduced distance version of the
test due to constraints of the stereophotogrammetry systems
at some of the clinical sites. To ensure consistency in the
analysis, metrics directly sensitive to path length, such as
total walking duration, were excluded from comparisons (see
Table III).

C. L-Test Segmentation Algorithms
The L-test was segmented into six subphases: Sit-to-Walk

(StW), Walking (W), three turns comprised of a first 90◦ turn
(T1), followed by a 180◦ turn (T2) and a second 90◦ turn
(T3), and Turn-To-Sit (TtS). Figure 1 presents an example of
the inertial signals recorded during an instrumented L-test.
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TABLE I
PARTICIPANTS’ CHARACTERISTICS (MEAN ± SD)

State-of-the-art algorithms were applied to identify each of
the segmented phases of the L-test. An adapted version of the
Adamowicz algorithm was used to identify standing and sitting
transfers. The algorithm identifies postural transfers based
on the convolutional wavelet transform of the acceleration
norm [17]. An adapted version of the El-Gohary algorithm
was used to identify turn segments using a peak identification
procedure on the angular velocity around the vertical axis [18].
We used two gait sequence detection algorithms (GSD A
and GSD B) to identify the walking phase based on the
acceleration signal [19]. GSD A was applied to cohorts
with faster walking speeds (HA, CHF, COPD), and GSD B
was applied to those with slower walking speeds (MS, PD,
PFF, TFA). A last block, named ‘state-machine logic’, was
applied after identifying all events. This block corrected any
overlap between two consecutive identified events based on
the logical succession of the L-test sub-phases. Figure 2 details
the steps followed in the L-test segmentation. Supplementary
Table 1 details the signal preprocessing required for each of
the described algorithms.

We validated the segmentation according to the logical
criteria shown in Table II. A segmentation (true or false)
was considered successful if all sub-phases were correctly
identified. For the three turns during walking (C3), additional
conditions were tested to verify that each of the turns was
congruent with the path of the L-test. Validation = C1 & C2
& C3 & C4, where C3 = C3.1 & C3.2 & C3.3 & C3.4 &
C3.5.

Moreover, a second validation procedure was applied to
the cohorts of the Mobilise-D dataset. Stereophotogrammetry
was used as a reference system [20] to establish the accuracy
of walking and postural transfer algorithms. In Figure 3, the
dashed vertical lines mark the postural transfer and gait events
identified by the iL-test segmentation algorithm. A Sit-to-Walk

Fig. 1. Recorded sensor signals (V: vertical, ML: mediolateral, AP:
anteroposterior) during the iL-test: triaxial acceleration [m/s2] (upper)
and angular velocity [◦/s] (lower). The black dashed vertical lines
segment the task.

Fig. 2. L-test segmentation algorithm. Left: L-test path, purple highlights
the three turns to be identified while walking; red highlights the Turn-To-
Sit (TtS) segment. Middle: Instrumented L-test segmentation flow. Right:
Algorithms used in the identification of each of the phases. GSD A was
applied to P1: HA, COPD, and CHF, and GSD B to P2: MS, PD, PFF,
and TFA.

TABLE II
L-TEST LOGICAL VALIDATION FOR CORRECT SEGMENTATION

was obtained by merging a Sit-to-Stand with the start of a gait
segment. Processed information from stereophotogrammetry
was used to get the initial and end walking segments. For the
validation of postural transfers, the start and end of standing
and sitting were derived from the vertical axis of the raw stereo
signal from the lower back. An automatic algorithm identified
the vertical displacement by finding peaks on the derivative of
this signal (Figure 3, bottom).
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Fig. 3. Validation of the L-test segmentation against stereophotogram-
metry. Accelerometer signals (upper) and raw vertical stereo signal
from a marker at the lower back (bottom). Black dashed vertical lines
indicate the start and end of the algorithm-identified events. Red marks
indicate the start and end of the gold standard segments derived from
the stereophotogrammetric system.

The mean absolute error (MAE) between the gold standard
and the iL-test algorithms at the start and end of each postural
transfer and gait segment was computed to assess the accuracy
of our proposed method in identifying and segmenting the
phases within the L-test. In addition to MAE, the Jaccard
index [21] was calculated to evaluate the similarity between
the algorithm’s segmentation and the gold standard. The
Jaccard index measures the intersection over the union of
two sets, providing a metric that quantifies the percentage of
overlap between the identified and true segments.

D. Kinematic Parameters
A set of 164 kinematic features was extracted for each

participant during the L-test. These features included dura-
tions, ranges, and smoothness, offering a comprehensive view
of mobility (Table III). These features were extracted from
triaxial accelerometer and gyroscope signals independently
depending on the property analyzed. Stride length and speed
calculations integrated both accelerometer and gyroscope data.
Accelerometer and gyroscope signals were low-pass filtered
with a 5 Hz, 4th order Butterworth filter. These features were
selected conveniently to match with features used in previous
instrumented tests, such as the iTUG [6], [22], [23], [24].
The duration of the walk sub-phase was not considered as
it is sensitive to the path length of the L-test, which differed
between cohorts.

In this article, a specific kinematic parameter is identified
by its corresponding sub-phase abbreviation, followed by the
type of feature, sensor, and the axis to which it applies. For
example, the normalized jerk score of the gyroscope in the
vertical axis during the second turn, is named T2-NJS GyroV.

E. Statistical Analyses
We explored the differential distribution of the kinematic

features among the cohorts with univariate and multivariate

TABLE III
FEATURES EXTRACTED FROM EACH SENSOR,
SUB-PHASE OF THE INSTRUMENTED L-TEST

analyses. The normality of the kinematic parameters was tested
using Shapiro-Wilk tests. Univariate analyses included the
Kruskal-Wallis test and pairwise post-hoc analyses through the
Dunn’s test. The multivariate analysis evaluated a classifier’s
ability to use the kinematic features to discriminate between
each cohort and healthy adults. We trained random forest
classifiers based on recursive feature elimination, selecting
the top 10 features, and validated them using a k-fold
(k = 5) stratified cross-validation with 5 repetitions.
Features were z-scored before classification to ensure consis-
tency. Hyperparameters, including the number of estimators,
were optimized using a grid search. Accuracy, F1-score,
and the area under the receiver operating characteristic
(ROC) curve (AUC) were used to evaluate the classifiers’
performance.

Clinical concurrent validity was assessed by a linear
correlation analysis between the kinematic features obtained
from the L-test and relevant clinical scales specific to
each cohort (Table IV). The iL-test kinematic features were
also correlated with the Late Life Function and Disability
Instrument (LLFDI - functional component) in the Mobilise-
D cohorts. The correlations were quantified with Spearman’s
correlation coefficient.

Statistical significance was set at p < 0.05. All p-values
were adjusted to control for multiple comparisons [25].
The statistical analyses were carried out using Python
3.8 with “scipy”, “statsmodels”, and “scikit_posthocs”
libraries.
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TABLE IV
CLINICAL SCALES DESCRIPTION

Fig. 4. Mean absolute error at the start and end of the segments.

III. RESULTS

A. iL-test Validation
The applied algorithms segmented all sub-phases within the

L-test in all cohorts automatically. The four logical conditions,
including the five sub-conditions for turns (Table II), were met
for all participants of all cohorts. Two representative subjects
of each cohort are shown in Supplementary Table 2 to illustrate
the intermediate steps in the validation of sub-conditions for
turns (C3).

When compared against stereophotogrammetry (the gold
standard), the iL-test algorithm demonstrated very good
segmentation performance. On average, mean absolute error
for all cohorts were 0.2 seconds for postural transfers and
0.5 seconds for walking identification (Figure 4). The average
Jaccard Index for all cohorts was 80% for postural transfers
and 90% for the walking sub-phases.

B. Univariate Analysis
A total of 164 features were extracted, Shapiro-Wilk

revealed a non-normal distribution of the features. The average
L-test walking speed for HA was 1.0 m/s (sd = 0.2 m/s) with
a stride length of 1.1 m (sd = 0.2 m). In contrast, transfemoral
amputees (TFA) exhibited a reduced walking speed (0.6 m/s,
sd = 0.2 m/s) and stride length (0.8 m, SD = 0.2 m). A table
with reference values for all features and for each cohort can
be found in Supplementary Table 3.

TABLE V
SIGNIFICANTLY DIFFERENT FEATURES

BETWEEN EACH COHORT AND HA

The Kruskal-Wallis test indicated that 100 features were
differentially distributed in at least one cohort. Afterwards,
Dunn’s test revealed that 88 characteristics differed signif-
icantly between clinical cohorts. Of the 88 characteristics,
eleven were significant across at least ten cohort pairs
(Supplementary Table 4).

TFA showed significantly reduced StW angular velocity
ranges around the mediolateral (ML) axis when compared to
the other cohorts. Walking speed and turn angles were greatly
reduced in cohorts with more impaired mobility (PFF, TFA)
(Figure 5).

Only one feature, the angle during the third turn (T3), was
found to significantly differentiate between COPD and HA.
Features derived from both 90◦ (T1, T3) and 180◦ (T2) turns
were found to significantly differentiate participants with CHF,
MS, and PD versus HA. Participants with PFF and TFA had
the largest number of features (35 and 68 respectively) that
significantly differentiated them versus HA and these features
comprised all the sub-phases of the L-test (Table V).

C. Multivariate Analysis
Random forest classifiers were built to differentiate between

each cohort and HA. Models for PFF and TFA exhibited an
AUC over 90%, indicating substantial differences in mobility
when compared to healthy adults. In contrast, models for CHF
and COPD showed a performance near chance (Table VI,
Supplementary Figure 1).

Models for MS and PD revealed moderate differences in
mobility compared to healthy adults. Also, consistent with
findings in univariate analysis, the model-selected features
included a combination of features derived from the 90◦ and
180◦ turns. In addition to turn-derived features, walking-based
features were found to be discriminative for PFF and TFA
cohorts (Table VI).

D. Clinical Construct Validity
The clinical construct validity of the iL-test kinematic

features was assessed by correlating them with clinical scales
specific to each clinical cohort. The MS cohort revealed
18 features significantly correlated with the EDSS scale (T1:
1, T2: 6, TtS:11), with 12 having high correlations (ρ > 0.7)
and 6 having moderate correlations (ρ > 0.6). A reduced
movement range, longer duration, and higher jerk during turns
were correlated with a higher EDSS score (deterioration of the
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Fig. 5. Box plot with representative features for each segment. Significant differences are highlighted on top of the box plots (*: 1.00e-02 < p <=

5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 < p <= 1.00e-03, ****: p <= 1.00e-04).

TABLE VI
MODEL PERFORMANCE METRICS

condition). Also, a worse condition was associated with longer
and jerkier movements during the turn to sit (TtS).

For the PFF cohort, 59 features were significantly correlated
with the SPPB score (StW:11, W:2, T1:5, T2:15, T3:13,
TtS:13), with 28 having high correlations (ρ > 0.7) and
31 having moderate correlations (ρ > 0.58). Longer duration
and jerkier transitions during a StW and TtS were associated
with a lower SPPB score (deterioration of the condition). Also,
a lower score was correlated with reduced movement ranges,
longer duration, lower vertical angular velocity, higher jerk
during turns, reduced walking speed, and shorter steps.

For the TFA cohort, 33 features were significantly correlated
with the AMP score (W:1, T1:4, T2:8, T3:3, TtS:17), with

30 having high correlations (ρ > 0.7) and 3 having moderate
correlations (ρ > 0.67). Longer duration, jerkier transitions,
and reduced movement ranges during turns and turn-to-sit
were associated with a lower AMP score (deterioration of
the condition). Also, reduced walking speed was correlated
with a lower score. No significant features were found to be
correlated in the other cohorts. Supplementary figure 2 shows
selected features for the cohorts that revealed significant
correlations.

We further expanded the analysis by examining the LLFDI
in the Mobilise-D cohorts. For the CHF cohort, 7 features
were significantly correlated with the LLFDI score (StW:2,
T2:5). Reduced medio-lateral angular velocity and higher jerk
were associated with a lower LLFDI score (adverse outcome).
Lower vertical angular velocity and jerkier movements during
turns were also associated with a lower score. MS participants
revealed two significant features in the TtS segment: the range
and maximum value of the anteroposterior axis were positively
correlated with LLFDI.

In PFF participants, 8 features showed significant cor-
relations with the LLFDI score (StW:7, T2:1). Increased
angular velocity range during T2 and longer duration and
jerkier transitions in all the axes during StW were associated
with a lower LLFDI score (lower functional level). After
p-value adjustment for multiple comparisons, no significant
correlations were found for HA, COPD, and PD cohorts,
yet moderate correlations (ρ ≈ 0.6) revealed similar trends,
with lower walking speeds and shorter steps associated with
a lower LLFDI. Reduced movement ranges, longer duration,
and jerkier movements during turning and TtS were also
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associated with a lower LLFDI score. Supplementary figure
3 shows selected features for the cohorts that revealed
significant correlations. Two sub-components of the LLFDI
score were also independently explored (basic lower extremity
and advanced lower extremity) with similar results.

IV. DISCUSSION

This study introduces the instrumented L-test approach
for comprehensive mobility assessment. The segmentation
algorithm properly identified all the sub-phases comprised
in the L-test in all cohorts. Subsequent technical validation
against stereophotogrammetry revealed small errors and simi-
lar performance for postural transfers and gait identification as
in previous instrumented mobility studies [6]. Here, we would
like to remind readers of the nature of the multicohort study
and highlight the power of this approach in the successful
application of the instrumented L-test in severely compromised
cohorts such as people with proximal femoral fractures and
transfemoral amputees. This automated approach offers a
promising solution to the limitations of manual assessments
and the subjectivity inherent in such evaluations. The ability
of the iL-test algorithm to accurately identify and segment
activities within the L-test provides a strong foundation for
future mobility assessments. With a low error, it offers objec-
tive results, essential in clinical practice. To confirm further
the reliability of the segmentation algorithm, we randomly
selected participants and visually inspected the correspondence
of the acceleration signals and the stereophotogrammetry
data with the automatic segmentation (Fig. 3). This visual
verification served solely as an additional confirmation step
and does not imply that human intervention is required for the
proposed tool.

A total of 164 sensor-based features were extracted from
all the L-test segmented events, with the selection of features
guided by previously validated instrumented mobility tests
(e.g., iTUG). The decision was made to keep most features
used in the literature to ensure a comprehensive analysis
of mobility in each cohort. In the univariate analysis,
our findings emphasize the nuanced nature of kinematic
differences observed during the L-test across various clinical
cohorts. While only one feature, the angle during the third
turn (T3), significantly differentiated COPD from HA, the
picture was different for other cohorts. Participants with CHF
(6 features), MS (17 features), and PD (16 features) displayed
significant differences in features derived from both 90◦ (T1,
T3) and 180◦ (T2) turns compared to healthy adults. The
most distinctive patterns were observed in PFF (35 features)
and TFA (68 features), highlighting the multifaceted kinematic
distinctions characterizing these cohorts throughout the entire
L-test sub-phases. The multivariate analysis confirmed these
findings. The robust performance of the models for PFF and
TFA, as indicated by AUC values exceeding 90%, underscores
the effectiveness of these features in capturing substantial
differences in mobility patterns when compared to healthy
adults.

In contrast, the models built for CHF and COPD
cohorts demonstrated performances near chance, suggesting no
substantial mobility limitation (related to the L-Test functional

aspects) in these cohorts. The models for MS and PD cohorts
revealed moderate differences in mobility compared to healthy
adults, aligning with the patterns observed in the univariate
analysis. A recursive feature elimination approach was applied
to mitigate feature collinearity and enhance the interpretability
of the selected models. Specific information on relevant
features was found in sit-to-walk, walking, turning, and turn-
to-sit segments in each cohort, as discussed in detail in the
following sections.

A. Sit-to-Walk
In the PFF cohort, longer durations and jerkier transitions

during Sit-to-Walk (StW) were associated with lower Short
Physical Performance Battery (SPPB) scores and a lower
Late Life Function and Disability Instrument (LLFDI) score.
These findings suggest that individuals with proximal femoral
fractures who exhibit prolonged and less fluid movements
during postural transfers may experience compromised
physical performance and functional abilities [26]. This
observation aligns with common clinical experiences reported
by individuals recovering from femoral fractures, where
challenges in postural transitions and the associated dynamic
aspects of movement are prevalent. Importantly, a low
SPPB score has been shown to be a predictor of adverse
clinical outcomes such as cognitive decline, falls, and
death [27].

Parkinson’s disease participants exhibited reduced StW
angular velocity and higher jerk compared to healthy older
adults, indicating the challenges these individuals face in ini-
tiating movement and maintaining smooth, controlled motion.
Previous studies have hypothesized that the diminished ability
to transition from sitting to standing observed in individuals
with Parkinson’s disease may originate from decreased hip
flexion joint torque and an elongated duration for torque
generation [28], [29].

Transfemoral amputees, on the other hand, showed
significantly reduced StW angular velocity ranges around the
mediolateral axis compared with all other cohorts. This result
aligns with research indicating that transfemoral amputees
often exhibit unique inter-joint coordination patterns, particu-
larly at the hip joint, to compensate for the support-capability
impairment due to limb amputation and to ensure foot
placement accuracy [30], [31].

B. Walking
In the walking segment, distinct mobility patterns emerged

for the proximal femoral fracture (PFF) and transfemoral
amputee (TFA) cohorts. Reduced walking speed and stride
length were evident in the PFF group compared to
healthy adults (HA) and were associated with lower SPPB
and LLFDI scores. This result suggests that individuals
with proximal-femoral fractures who exhibit diminished
walking speed and stride length may experience chal-
lenges in overall physical performance and functional
abilities [32], [33].

Similarly, in the TFA cohort, walking speed and stride
length were observed to be reduced compared to HA. Lower
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walking speeds in the TFA group were also associated with
a lower Amputee Mobility Predictor (AMP) score. These
findings highlight the impact of reduced walking speed on the
functional mobility of individuals with transfemoral amputa-
tion, emphasizing the importance of assessing and addressing
gait parameters in this population. Studies have shown similar
compensatory strategies, with amputees demonstrating altered
gait parameters compared to non-disabled individuals [34],
[35], [36].

C. Turns

In all the analyses performed, turns emerged as a prominent
and consistent feature across all cohorts. The significant
findings in univariate, multivariate, and clinical concurrent
validity analyses notably highlighted the importance of turning
dynamics. Turns encompassing 90◦ (T1, T3) and 180◦ (T2)
rotations exhibited distinctive kinematic patterns crucial in
distinguishing various clinical cohorts from healthy adults.
In real-world scenarios, individuals often perform turns in
various directions and angles, reflecting the complexity of
everyday mobility. Studies have underscored the connections
between turning strategies and factors such as fatigue, balance
impairment, and geriatric syndromes such as increased risk
of falling [37], [38], [39], [40], [41]. Our findings align
with these studies, highlighting the significance of including
both narrow and wide turns in mobility assessments to
encompass a broader spectrum of real-world movement
patterns.

In the MS cohort, reduced ranges in T2 and T3 vertical
angles, coupled with increased jerk, signify notable differences
in turning dynamics compared to healthy adults. These
difficulties are often attributed to a combination of factors,
including muscle weakness, spasticity, sensory deficits, and
impaired central processing of motor commands. Specifically,
the reduced ranges in T2 and T3 vertical angles observed
in our study may reflect the altered postural control and
coordination typically seen in MS during turns [42], [43], [44].
The correlation analysis with EDSS confirmed that a reduced
movement range, longer duration, and higher jerk during turns
were associated with a higher EDSS score (i.e., increased
disability).

Similarly, individuals with PD exhibited reduced ranges in
T2 and T3 vertical angles, along with increased jerk, indicating
distinctive turning patterns. The reduced ranges in T2 and T3
vertical angles observed in our PD cohort during the L-test are
consistent with previous studies reporting alterations in turning
kinematics in PD [22], [45], [46], [47], [48], [49]. Individuals
with PD often exhibit jerkier, smaller, and more segmented
turns, commonly described as “en bloc” turning [50], which
can be attributed to underlying motor deficits. Moreover,
the literature supports the idea that turning deficits in
PD are not solely related to motor symptoms but may
also involve cognitive aspects. PD patients often experience
difficulties in dual-tasking situations, and turning is considered
a cognitively demanding task [51]. This cognitive-motor
interaction can contribute to the observed alterations in turning
dynamics.

In the PFF cohort, reduced T1, T2, and T3 vertical
accelerations and increased T3 jerk were identified in
univariate analysis, pointing to altered acceleration patterns
during turns. These findings may stem from factors such
as residual pain, muscle weakness, altered joint mechanics,
or an adaptive gait strategy aimed at minimizing discomfort
during turning activities [33], [52]. Also, the correlation
analysis showed that longer durations, lower vertical angular
velocity, and higher jerk during turns were associated with a
lower SPPB score, indicating potential connections between
impaired turning dynamics and physical performance in
individuals with PFF.

For the TFA cohort, reduced T1 and T2 vertical angles,
coupled with increased T2 jerk, suggest distinct kinematic
patterns during turning. Furthermore, longer durations, jerkier
transitions, and reduced movement ranges during turns were
associated with a lower AMP score. These findings may be
attributed to altered biomechanics due to limb loss. They could
reflect the complex interplay between prosthetic use, residual
limb function, and compensatory movements to navigate
turning tasks effectively [53], [54]. Associations between
turn-related features and the AMP score highlight the clinical
relevance of turning dynamics in the context of amputee
mobility.

In Dunn’s test, reduced angles and ranges for all turns (T1,
T2, and T3) were observed in the CHF cohort, suggesting
altered kinematics during turning. Also, in COPD, a distinct
reduction in T3 vertical angle was identified, indicating
potential limitations in vertical angular movements during the
third turn. However, in the multivariate analysis, these specific
features did not exhibit discriminative power, suggesting that
these cohorts did not show substantial mobility limitations in
the iL-test.

The turn-to-sit phase revealed congruent results with
previous postural and turning events (see supplementary
materials). Considering the shared emphasis on turns in
all cohorts, personalized rehabilitation interventions target-
ing turning movements could benefit individuals across
clinical cohorts. Home-based exercise programs focus-
ing on turning activities could empower individuals to
improve their turning abilities independently, addressing
unique mobility needs identified from different angles and
directions.

Still, our study presents some limitations, including sample
size impacting generalizability, influence of cohort severity
on observed results, the absence of age-matched groups for
direct comparisons, and the cross-sectional nature limiting
longitudinal assessment. Differences in L-test path distances
between the Mobilise-D and MOTU datasets (4m × 2m versus
7m × 3m) might have influenced certain outcomes. However,
we mitigated this issue by excluding metrics directly sensitive
to distance differences, such as walking duration and focused
on distance-independent metrics such as turn and transfer
durations.

Future studies should further validate these preliminary
results in larger populations, include age-matched groups to
better discriminate between cohorts and address potential
confounding factors, explore subgroup analyses, longitudinal
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changes, and integrate additional sensors for a more com-
prehensive understanding of movement patterns. Furthermore,
the normalized jerk score might be correlated with the
task’s duration, so future studies should explore alternative
smoothness metrics. Additionally, while this study emphasized
speed, cadence, and stride length for their proven value
in walking, as past studies showed, future studies could
expand the repertoire with other walking-related metrics.
Finally, comparative analyses with other mobility assessments,
such as the Timed Up and Go (TUG) test, could provide
deeper insights into digital mobility outcomes across diverse
populations.

V. CONCLUSION

In conclusion, this study has validated the instrumented
L-test automatic segmentation in seven cohorts, demonstrating
its potential to foster mobility assessment across diverse
clinical cohorts. The algorithms’ accuracy in identifying and
segmenting activities within the L-test offers an automatic
objective tool for precise mobility assessment. The analysis of
kinematic features as discriminators between clinical cohorts
highlights the iL-test discriminative utility to provide nuanced
insights into specific mobility characteristics, and supply hints
for implementing personalized rehabilitative interventions.

This work advances the state of the art by introducing
a novel mobility assessment tool that expands upon the
currently used instrumented Timed Up and Go (iTUG) test.
The inclusion of multiple turns, both 90◦ and 180◦, highlights
unique movement characteristics that are not captured by
the TUG, emphasizing the importance of evaluating diverse
turning movements. Additionally, the use of state-of-the-
art algorithms ensures high accuracy in gait and activity
segmentation. Finally, the multicohort framework, involving
seven distinct clinical populations, underscores the versatility
of the iL-test in addressing the mobility needs of various
clinical conditions.

The significance of multiple turns, encompassing both
90◦ and 180◦ angles and different directions, emerged as a
common theme across cohorts. These findings suggest that
the iL-test, providing information about diverse activities
such as turns, provides a promising, versatile platform for
digital mobility assessment in various clinical populations. The
findings presented here can serve as a foundation for future
exploration, innovation, and the pursuit of more informed and
individualized care for diverse clinical conditions.
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