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Abstract: In modern manufacturing, achieving high-speed laser cutting requires advanced
robotic trajectory planning for smoothness and collision avoidance. Poorly optimized
motion can cause frequent velocity changes, leading to mechanical vibrations that shorten
machine service life. This study presents an innovative trajectory optimization approach
for laser cutting machines equipped with a redundant standoff axis. A B-spline-based
analytical model formulates rotational axes trajectories as quadratic programming prob-
lems to minimize jerk (the rate of acceleration change) under machining accuracy and
kinematic constraints. Additionally, an M path, represented by the wrist center’s trajectory,
refines translational axes by adjusting the standoff axis through a similar optimization
model, thereby reducing mechanical stress. Collision avoidance is ensured through a con-
current iterative optimization process, considering the feasible domains of representative
3D geometric tool orientations. Simulation experiments on a complex B-pillar workpiece
demonstrate the framework’s effectiveness, clearly indicating significant reductions in jerk
and improved trajectory smoothness for both rotational and translational axes compared
with conventional methods and a prior approach. This work advances high-speed machin-
ing capabilities by offering a novel, robust solution that leverages redundant structures to
further improve trajectory smoothness and reliability in demanding industrial applications.

Keywords: laser cutting manufacturing; redundancy; collision avoidance; minimized jerk
trajectory optimization; quadratic programming

1. Introduction
High-speed and high-precision manufacturing applications, especially in 3D laser

cutting manufacturing (LCM) [1], demand trajectory optimization strategies that not only
achieve efficiency and accuracy, but also maintain collision-free operations. Leveraging re-
dundancy to enhance smoothness is paramount since abrupt changes in the machining path
can induce vibrations, degrade part quality, and intensify mechanical stress and wear [2].
Although modern five-axis CNC machines provide advanced motion-control capabilities,
the full integration of minimized-jerk methods with the simultaneous optimization of both
tool orientation and translational axes remains a significant challenge, yet it is essential for
maximizing performance in 3D LCM tasks.

Conventional five-axis laser cutting machines often struggle to maintain smooth
movement, especially when dealing with inertia effects and rapid axis accelerations in
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complex machining regions. These difficulties stem not only from the mechanical limita-
tions of traditional systems, but also from the computational burden of planning optimal,
interference-free tool paths. Existing studies frequently place an excessive focus on opti-
mizing the two rotational axes through tool orientation adjustments for smoothness and
collision avoidance. However, the significance of the three translational axes’ motion is
often underestimated, even though optimizing it is equally crucial for improving overall
machining accuracy, reducing dynamic stress, and enhancing the trajectory’s smoothness.

1.1. Related Works

Numerous studies on tool orientation adjustment in five-axis machining focus on
identifying discrete interference-free regions. They also aim to prevent vibrations caused by
abrupt changes between adjacent cutter location (CL) points in the rotational axes. Initially,
many of these works [3–5] demonstrated that smoother tool orientation transitions along
the tool path within the workpiece coordinate system (WCS) lead to improved trajectories.
For example, Ho et al. [3] proposed to represent the orientation of the tool using quaternions
and applied a smooth interpolation between the representative directions of the tool axis
in the WCS. Lauwers et al. [4] developed a method to evaluate potential collisions and
to incrementally adjust tool orientation using inclination and screw angles. Jun et al. [5]
developed a search algorithm to minimize machined surface errors in machining of the
five-axis sculptured surface. The algorithm determines local optimal tool orientations in
the configuration space (C-space) in both forward and backward directions.

However, it was later recognized that planning tool orientations solely within the
WCS does not necessarily guarantee smooth rotational axis movements. This is due to the
nonlinearity of the inverse kinematic transformation (IKT) used to convert from the WCS
to the machine coordinate system (MCS) in a five-axis machine structure [6].

The kinematic performance of the rotational axes can be further enhanced when opti-
mization is performed directly in the MCS, according to Castagnetti et al. [7]. In their work,
the feasible domain of tool orientation, known as the domain of admissible orientation
(DAO), was defined through four linear inequality constraints. This was achieved using a
gradient-based optimization model.

This initial attempt to smooth the rotational axis movements directly in the MCS in-
spired the development of many smoothing algorithms [2,8–11]. These methods focused on
avoiding gouging and collisions along the tool path while enhancing rotational axis motion
in five-axis machining. Wang et al. [9] represented the nonlinear kinematic constraints
and the irregular geometric feasible domain (GFD) using a linearization strategy, which
allowed the optimization problem to be solved using simple linear programming. Plakhot-
nik and Lauwers [10] proposed a graph-based method that utilized Dijkstra’s algorithm to
find the shortest path for rotational axis transitions between two adjacent admissible arcs.
Xu et al. [12] modeled the kinetic and frictional consumption of the rotational axes on a 3D
laser cutting head. They constructed a graph with four combinations of the two rotational
axes along discrete tool orientations to search for the shortest path, but the feasible regions
are not analyzed. Building on the work of Plakhotnik and Lauwers [10], Mi et al. [11]
improved rotational dynamics by incorporating an angular acceleration penalty component
into a differential graph.

Most of the aforementioned methods determine the rotational joint coordinates
along the continuous tool path using discrete points. Recent research suggests that the
use of higher-order differentiable mathematical expressions, such as polynomials [7] or
B-splines [13–15], offer better control and smoothness to generate tool orientation trajecto-
ries. Huang et al. [16] employed radial basis functions to construct the tool orientation field.
Xu et al. [13] developed an iterative representative tool orientation (RTO)-based method to
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generate a continuous rotational axis trajectory, represented using a B-spline curve in the
MCS. The method checks for interference along the entire tool path and iteratively inserts
additional RTOs as needed. This approach helps to decouple geometric and kinematic con-
straints during the tool orientation process. Xiao et al. [14] minimized sudden changes in
tool orientation by incorporating contour error prediction constraints. Wu et al. [15] formu-
lated a quadratic programming (QP) problem to compute jerk-optimal B-spline coefficients,
with linear constraints derived from kinematic limits and geometric constraints based on
the GFD. Their experiments showed enhanced machining stability and surface quality
compared to the quaternion interpolation (QI) and angular-acceleration optimal methods.

An alternative method [17] to determine the smooth tool orientation involves syn-
chronized interpolation using dual NURBS curves. Yuen et al. [18] achieved C3 smooth-
ness trajectories, improving the machining accuracy by minimizing the geometrical jerk.
Li et al. [19] incorporated machining error considerations into the dual spline method.

Significant advancements have been made in smoothing tool orientation through
various methodologies. Another promising approach to improve trajectory smoothness
in robotic systems is to use additional degrees of freedom. Additional degrees of free-
dom in redundant robotic systems allow trajectory planning and execution to be refined,
achieving greater smoothness and precision. A promising redundancy strategy is known as
macro–micro, which combines a macro-scale robot for large movements with a micro-scale
robot for precision [20]. Enhancing dexterity and precision through redundancy, this config-
uration has been widely used in industries for manipulation [21], robotic machining [22,23],
and medical surgery [24]. In laser cutting applications, which require speed and precision
over large areas, the macro–micro structure is highly advantageous. Uzunoglu [25] opti-
mized machining by distributing planar paths between primary x-y and secondary u-v
mechanisms. Liu [26] demonstrated efficiency improvements using a velocity planning
algorithm for macro and micro platforms. However, most laser cutting applications are
limited to planar surfaces and lack consideration for complex 3D five-axis machining appli-
cations. In our previous work [27], we proposed a conic posture interpolation method to cut
closed-contour holes with a “polar” robot on the laser head, achieving improved efficiency.
Substantial opportunities remain to optimize trajectories by utilizing the macro–micro
redundant structure in laser cutting applications.

1.2. Contributions

While significant advancements have been made in optimizing tool orientation and
collision avoidance for five-axis machining, trajectory planning methods specifically tar-
geting smoothness optimization along translational axes have received comparatively less
attention. To address this gap, our prior work [28] introduced a two-step optimization
approach, employing a graph-based algorithm for collision-free tool orientation planning,
followed by reinforcement learning to optimize the redundant standoff axis. Although ef-
fective in specific scenarios, these methods were computationally expensive [10,12] due to
the high dimensionality of the GFD required for graph construction and extensive collision
checks. Additionally, numerical errors introduced by discrete differentiation methods in
trajectory optimization increased substantially with higher-order derivatives, negatively
impacting trajectory accuracy and smoothness.

To overcome these limitations, this work proposes a novel trajectory optimization strat-
egy tailored specifically for 3D laser cutting machines equipped with a redundant standoff
axis. The primary contribution of our research lies in developing an innovative optimiza-
tion framework inspired by macro–micro structural approaches. This framework explicitly
leverages the redundant axis to optimize translational axis trajectories jointly with tool ori-
entations—an aspect rarely explored in the existing literature. A prototype of this machine,
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currently under development by EFORT Intelligent Robot Co., Ltd. (Wuhu, China), serves
as the basis for our study (see schematic and axis definitions in Figure 1).

Different from discrete graph-based methods, our proposed methodology uses an
analytical joint trajectory model represented by B-splines, formulated explicitly as a QP
problem. This analytical formulation significantly reduces computational complexity,
avoiding numerical errors typically associated with high-order discrete differentiation.
Moreover, by explicitly minimizing jerk instead of acceleration, the proposed minimized
jerk trajectory optimization (MJTO) algorithm directly enhances smoothness by effectively
mitigating abrupt changes in acceleration.

In addition, while existing iterative algorithms using RTO-based methods [3,13,15]
often successfully find collision-free trajectories, they typically overlook optimizing initial
RTO selections. Recognizing the critical impact of initial RTO configurations on trajectory
quality, our study introduces a dedicated optimization process for strategically selecting
initial RTOs. This dedicated selection process substantially improves trajectory smoothness,
as well as the efficiency and effectiveness of the overall optimization.

Lastly, the high-speed, non-contact characteristics inherent in 3D laser cutting manu-
facturing frequently involve rapid and extensive tool orientation changes when machin-
ing complex geometries. Such large-angle and high-rate transitions impose substantial
demands on trajectory smoothness and collision avoidance, challenges inadequately ad-
dressed by traditional methods. The MJTO approach developed herein specifically tackles
these demanding conditions, ensuring smooth, jerk-minimized trajectories and reliable
collision-free operations, thus effectively accommodating the challenging orientation varia-
tions that characterize advanced industrial laser cutting applications.

Figure 1. The schematic of the EFORT 3D laser cutting machine. (a) Overall view, showing the macro
robot (TTT) with three translational axes q1, q2, q3 (T for translation). (b) Close-up of the micro robot
(RRT), featuring the two rotational axes q4, q5 (R for rotation) and the redundant standoff axis q6.

1.3. Structure of the Paper

This paper is organized into four sections. Section 2 introduces the minimized jerk
trajectory optimization framework based on B-splines, first formulating a quadratic pro-
gramming model to enhance the smoothness of joint trajectories, particularly for 3D laser
cutting machines equipped with a redundant standoff axis. It then integrates an optimiza-
tion RTO-based iterative procedure to ensure collision-free trajectory. Section 3 presents
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two illustrative case studies involving automotive B-pillar components, demonstrating
significant improvements in trajectory smoothness and overall effectiveness compared
with conventional methods and our earlier graph-based optimization approach. Finally,
Section 4 summarizes the major contributions and suggests future research directions.

2. MJTO Methodology: Minimized Jerk Trajectory Optimization
This section introduces the proposed MJTO algorithm for 3D laser cutting machines

equipped with a redundant standoff axis. The approach utilizes B-spline curves [13] to
represent the joint displacement and ensure trajectory continuity and smoothness while
expressing kinematic constraints [15]. Known as minimized jerk trajectory optimization,
the method formulates the optimization problem as two QP tasks. A QP model based on
B-splines is developed for the two rotational axes to minimize jerk, thereby enhancing
trajectory smoothness and machining precision. Similarly, the redundant standoff axis is
modeled within a QP framework to further smooth the rotational axes center point path,
as referred to the M path in our previous work [28], and improve overall system perfor-
mance. In addition, a collision avoidance strategy is introduced. It is based on the GFD in
3D joint space and an iterative RTO-based process. This ensures that the trajectory remains
collision-free while satisfying kinematic constraints. The following subsections outline the
key components of the MJTO methodology, including the mathematical representation of
joint trajectories and M path using B-splines, the formulation of QP problems for rotational
axes and the redundant axis, and the integration of collision avoidance mechanisms.

Firstly, this study builds on the trajectory representation framework developed
in our previous work [28]. The laser head follows the CL point trajectory

C(u) =
[
Cx(u), Cy(u), Cz(u)

]T
∈ R3, which defines the tool path in Cartesian space,

and the tool orientation O(u) =
[
Ox(u), Oy(u), Oz(u)

]T
∈ R3, a unit vector representing

the tool’s orientation direction. Both are defined in the workpiece coordinate system (WCS),
as illustrated in Figure 2a. Here, the trajectories are parameterized using the normalized arc
length parameter u, which is generated by a standard G-code interpolator with demanding
machining parameters as

u(t) =
s(t)

σ
∀u ∈ [0, 1], (1)

where s(t) denotes the arc length with respect to time t and σ is the total length of the
tool path.

The concept of the second M point M(u) =
[

Mx(u), My(u), Mz(u)
]T

∈ R3 is intro-
duced here, as shown in Figure 2b. This auxiliary point is used to characterize and enhance
the smoothness of the primary translational axes during trajectory planning. Figure 2c
illustrates the relationship between coordinate systems with respect to the joint coordinates

q =
[
q1, q2, q3, q4, q5, q6

]T
∈ R6 defined as in Figure 1. The forward kinematic equations,

which transform joint coordinates q(u) in MCS into WCS, are given by:

Cx(u) = q1(u) + q6(u) cos q4(u) sin q5(u)

Cy(u) = q2(u) + q6(u) sin q4(u) sin q5(u)

Cz(u) = q3(u) + q6(u) cos q5(u)

Ox(u) = cos q4(u) sin q5(u)

Oy(u) = sin q4(u) sin q5(u)

Ox(u) = cos q5(u)

, (2)
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reversely, the conversion from WCS back to MCS, denoted as IKT, is formulated as

q1(u) = Cx(u)− q6(u) cos(q4(u)) sin(q5(u))

q2(u) = Cy(u)− q6(u) sin(q4(u)) sin(q5(u))

q3(u) = Cz(u)− q6(u) cos(q5(u))

q4(u) = arctan 2(Ox(u), Oy(u)) + kπ, with k = 0,±1

q5(u) = arccos(Oz(u))

, (3)

where the arctan 2(·) function determines the angle by considering the signs of Ox(u)
and Oy(u).

We note that u is not equivalent to the time variable t. The relationship between them
is governed by the feedrate ṡ(t) along the path and can be derived using (1) as

du
dt

=
ds
dt

· 1
σ
=

ṡ(t)
σ

. (4)

Figure 2. (a) Laser head trajectory in the Local Coordinate System (LCS); (b) relationship between CL
point, tool orientation, and M point in the LCS; (c) forward and inverse kinematic transformations
between the Machine Coordinate System (MCS) and the Workpiece Coordinate System (WCS).

2.1. B-Spline Representation of Joint Space and Kinematic Constraints

The proposed MJTO algorithm uses B-spline curves to represent rotational axis dis-
placement trajectories. Their smoothness and flexibility make them suitable for mod-
eling complex trajectories, as they ensure continuity and differentiability up to a de-
sired order [29]. Therefore, the displacement trajectories of the rotational axes q∗(u),
for ∗ = 4 or 5, can be mathematically represented as

q∗(u) =
n

∑
j=0

Θ∗
j Nj,k(u), (5)

where Nj,k(u) are the B-spline basis functions of degree k, Θ∗
j is the control coefficient,

and n + 1 is the number of the control coefficients.
The choice of degree of B-spline k determines the smoothness of the trajectory. A quin-

tic B-spline (k = 5) is typically chosen to ensure C3 continuity since third-order differentia-
bility helps to minimize abrupt changes in acceleration. The B-spline basis function Nj,k(u)
can be derived recursively using a knot vector U. A uniform method is employed for gen-
erating the knot vector, ensuring (n + 1) control points along the tool path. Consequently,
the collection of control coefficients {Θ∗

j }n
j=0 becomes the set of decision variables in (5),

to be optimized in the jerk-minimization process.
Tool path interpolation is performed in the WCS, considering Cartesian tangential

dynamic parameters with u. However, joint kinematic constraints are typically ignored
during this stage, which can result in abrupt or non-smooth joint motions. Therefore, using
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the chain rule, the kinematic parameters of the joints, including angular velocity ω∗(t),
angular acceleration α∗(t), and angular jerk J∗(t), are derived incorporating tangential
dynamic parameters as

ω∗(t) =
dq∗

dt
=

dq∗

du
du
dt

α∗(t) =
d2q∗

dt2 =
d2q∗

du2

(
du
dt

)2
+

dq∗

du
d2u
dt2

J∗(t) =
d3q∗

dt3 =
d3q∗

du3

(
du
dt

)3
+ 3

d2q∗

du2
du
dt

d2u
dt2 +

dq∗

du
d3u
dt3

. (6)

The kinematic parameters can then be reformulated using (4) as

ω∗(t) = q∗u(u)
ṡ(t)

σ

α∗(t) = q∗uu(u)
(

ṡ(t)
σ

)2

+ q∗u
s̈(t)

σ

J∗(t) = q∗uuu(u)
(

ṡ(t)
σ

)3

+ 3q∗uu
ṡ(t) · s̈(t)

σ2 + q∗u
...
s (t)

σ

, (7)

where s̈(t) and
...
s (t) represent the first and second deviates of feedrate with respect to

time, respectively. Similarly, q∗u(u), q∗uu(u), q∗uuu(u) denote the first, second, and third
geometricalderivatives of q∗ with respect to u. Hence, q∗u captures how the joint variable
changes along the path from a purely geometric standpoint, whereas the feedrate ṡ(t)
describes how fast we traverse that path in time. The geometrical derivatives of the joint
displacement are given below as

q∗u(u) =
n

∑
j=0

Θ∗
j N′

j,k(u), (8)

q∗uu(u) =
n

∑
j=0

Θ∗
j N′′

j,k(u), (9)

q∗uuu(u) =
n

∑
j=0

Θ∗
j N′′′

j,k(u). (10)

However, to impose linear constraints on the geometrical derivatives in terms of the
design variable Θj, we can reshape the geometrical derivatives in (8)–(10) in a general form
for the r-th derivative, following De Boor’s algorithm for B-splines [15], as

q∗u . . . u︸ ︷︷ ︸
r

(u) =
i−r

∑
j=i−k

Θ∗,r
j Nj,k−r(u), (11)

where u ∈ [ui, ui+1] ⊂ [uk, un+1] , ui is the interpolated node assigned on the CL point C(ui),
and the geometrical derivative of the control coefficient can be computed recursively as

Θ∗,0
j = Θ∗

j

Θ∗,l
j =

k − l + 1
uj+k+1 − uj+1

(Θ∗,l−1
j+1 − Θ∗,l−1

j )

for l = 1, 2, . . . , r; j = i − k, i − k + 1, . . . , i − r

, (12)

where {Θ∗,r
j }n−r

j=0 are the control coefficients for the r-th geometric derivative of q∗(u).
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In many theoretical treatments, a constant feedrate (i.e., ṡ(t) = f ) is assumed. This
simplification is also adopted here to ease the parametric forms. However, in the application
of practical machining, a variable value is assigned to feedrate, which is influenced by
multiple factors, such as drive limitations, variations in machining trajectories, and specific
manufacturing process requirements. In the current study, we assume a constant feedrate,
as in [13,15,30], to highlight the core mechanisms of the minimized jerk method. Under this
assumption, the kinematic parameters in (6) can be reformulated using (4) as

ω∗(t) = q∗u(u)
f
σ

α∗(t) = q∗uu(u)
f 2

σ2

J∗(t) = q∗uuu(u)
f 3

σ3

, (13)

where we observe that the joint velocities, accelerations, and jerks are scaled by powers of
the constant feedrate f .

Furthermore, these can be expanded by integrating the B-spline form in (11) for
∀u ∈ [ui, ui+1] ⊂ [uk, un+1] into (5), yielding

ω∗(t) =
i−1

∑
j=i−k

Θ∗,1
j Nj,k−1(u) ·

f
σ

α∗(t) =
i−2

∑
j=i−k

Θ∗,2
j Nj,k−2(u) ·

f 2

σ2

J∗(t) =
i−3

∑
j=i−k

Θ∗,3
j Nj,k−3(u) ·

f 3

σ3

. (14)

To guarantee that the resulting trajectories remain within the feasible ranges of robot
kinematics, we impose constraints on the rotational axes, including limits on angular
velocity ω∗

max, acceleration α∗max, jerk J∗max, and the axis range [ q∗min, q∗max ]. Owing to the
convex hull property of B-spline curves, the resulting curve is guaranteed to lie entirely
within the convex region defined by its control points. Therefore, by transferring the
constant factor into the constraint formulation, the kinematic restrictions can be linearly
expressed in terms of the control coefficients Θ∗

j and their geometrical derivatives Θ∗,r
j as



q∗min ≤Θ∗
j ≤ q∗max

−ω∗
max ·

σ

f
≤Θ∗,1

j ≤ ω∗
max ·

σ

f

−a∗max ·
σ2

f 2 ≤Θ∗,2
j ≤ α∗max ·

σ2

f 2

−J∗max ·
σ3

f 3 ≤Θ∗,3
j ≤ J∗max ·

σ3

f 3

, (15)

thus ensuring the desired bounds on velocities, accelerations, and jerks are not exceeded.
These linearized constraints, together with the recursive relation in (12), provide a frame-
work amenable to kinematic constraints using the B-spline representation. The subsequent
section details how these constraints and objective functions are integrated into our pro-
posed minimized jerk algorithm.
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2.2. QP Minimized Jerk Modeling for Rotational Joint Trajectory Based on B-Spline

Achieving a smooth trajectory is crucial in high-precision 3D laser cutting applications,
directly influencing the quality of the machining and the mechanical stress. Minimization of
the jerk is an effective optimization objective, as it reduces abrupt motion changes, resulting
in smoother tool movements [15,18].

Minimization of the jerk can be formulated as a QP problem subject to the kinematic
constraints listed in (15). This ensures computational efficiency and guarantees the attain-
ment of a global optimum due to the convexity of the QP, allowing efficient computation
with standard solvers.

Therefore, the objective function J∗R for minimizing jerk on rotational axes can first be
formally defined as the integral of squared jerk with respect to time over the total trajectory
duration T as

min
Θj

J∗R =
∫ T

0
(J∗(t))2dt. (16)

By using the relationship between time t and the normalized arc-length parameter u
given by (4), the integral domain can be transformed from the time domain to the parameter
domain u. Incorporating (13) and assuming a constant feedrate f , (16) can be rewritten as

min
Θj

J∗R =
∫ u(T)

u(0)

(
f 3

σ3 q∗uuu(u)
)2

σ

f
du

=
σ

f

∫ 1

0

(
f 3

σ3

n

∑
j=0

Θ∗
j N′′′

j,k(u)

)2

du

=
f 5

σ5

∫ 1

0

n

∑
i=0

n

∑
j=0

Θ∗
i Θ∗

j N′′′
i,k(u)N′′′

j,k(u)du

=
f 5

σ5

n

∑
i=0

n

∑
j=0

(∫ 1

0
N′′′

i,k(u)N′′′
j,k(u)du

)
Θ∗

i Θ∗
j .

(17)

Defining the integral term as a scalar coefficient hij, which is nonzero only when
|j − i| ≤ k, we have

hij =


∫ 1

0 N′′′
i,k(u)N′′′

j,k(u)du, |j − i| ≤ k

0, |j − i| > k
, i, j = 0, 1, . . . , n. (18)

Observing that the constant scaling factor f 5/σ5 does not influence the optimization
search direction, we can safely omit this factor. Thus, by introducing the symmetric Hessian
matrix H with elements hij, the objective function can be compactly expressed in standard
quadratic programming form with respect to the control coefficient vector Θ∗ as

min
Θ∗

J∗R = Θ∗THΘ∗. (19)

The kinematic constraints outlined in (15) play a critical role in ensuring the feasibility
of the trajectory and are incorporated into the QP problem as inequality constraints. Ad-
ditionally, the states of kinematic parameters at u(0) = 0 and u(T) = 1, corresponding to
the initial and final trajectory conditions, must be enforced as equality constraints. These
constraints ensure continuity and smooth transitions while adhering to specified boundary
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values, such as ω∗
0 , ω∗

1 , α∗0 , and α∗1 . The complete trajectory optimization problem is then
expressed as a kinematic constrained QP problem, formulated as

min
Θ∗

J∗R =Θ∗THΘ∗

s.t. q∗u(0) =ω∗
0 , q∗uu(0) = α∗0

q∗u(1) =ω∗
1 q∗uu(1) = α∗1

q∗min ≤Θ∗
j ≤ q∗max

−ω∗
max ·

σ

f
≤Θ∗,1

j ≤ ω∗
max ·

σ

f

−α∗max ·
σ2

f 2 ≤Θ∗,2
j ≤ α∗max ·

σ2

f 2

−J∗max ·
σ3

f 3 ≤Θ∗,3
j ≤ J∗max ·

σ3

f 3

for j =0, 1, . . . , n.

(20)

As discussed in (12), linearization and recursive computation of control coefficients
are crucial for optimization modeling. The linearization of kinematic constraints, detailed
in Wu et al. [15], is further simplified here for practical implementation. The geometrical
derivatives of the decision variables are expressed as linear combinations of Θ∗

j , as follows

Θ∗,1
j = c1

j Θ∗
j − c1

j Θ∗
j+1, (21)

Θ∗,2
j = c2

j Θ∗
j − 2c2

j Θ∗
j+1 + c2

j Θ∗
j+2, (22)

Θ∗,3
j = c3

j Θ∗
j − 3c3

j Θ∗
j+1 + 3c3

j Θ∗
j+2 − c3

j Θ∗
j+3, (23)

where c1
j , c2

j , c3
j are computed using the recursive formulation in (12), as

c1
j =

−k
uj+k+1 − uj+1

, (24)

c2
j =

k2 − k
(uj+k+1 − uj+2)(uj+k+1 − uj+1)

, (25)

c3
j =

−k3 + 3k2 − 2k
(uj+k+1 − uj+3)(uj+k+1 − uj+2)(uj+k+1 − uj+1)

. (26)

Consequently, the kinematic equality and inequality constraints, encompassing eight
kinematic conditions, are reformulated into a concise vector representation as

A∗
kinΘ∗ = b∗

kin, (27)

A∗
q Θ∗ ≤ b∗

q , (28)

A∗
ωΘ∗ ≤ b∗

ω, (29)

A∗
αΘ∗ ≤ b∗

α, (30)

A∗
J Θ∗ ≤ b∗

J , (31)

−A∗
ωΘ∗ ≤ b∗

ω, (32)

−A∗
αΘ∗ ≤ b∗

α, (33)

−A∗
J Θ∗ ≤ b∗

J . (34)

The variables in constraints (27)–(34) are defined as follows:
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A∗
kin: It is a 4 × (n + 1) matrix with elements at the initial and final states, representing the

derivatives of the coefficient of the basis functions for equality constraints.

b∗
kin: It is a 4 × 1 column vector representing the kinematic boundary values.

A∗
q : It is a (2n + 2) × (n + 1) coefficient matrix, defined as

[
N
−N

]
, where N is a

(n + 1)× (n + 1) B-spline basis function matrix with elements ni,j.

b∗
q : It is a (2n + 2)× 1 column vector representing position limits.

A∗
ω: It is a symmetric (n− k)× (n+ 1)matrix with elements aω,∗

i,j , representing velocity constraints.

b∗
ω: It is an (n − k)× 1 vector representing velocity limits.

A∗
α: It is a symmetric (n − k − 1) × (n + 1) matrix, with elements aα,∗

i,j , representing
acceleration constraints.

b∗
α: It is an (n − k − 1)× 1 vector representing acceleration limits.

A∗
J : It is a symmetric (n − k − 2) × (n + 1) matrix, with elements aJ,∗

i,j , representing
jerk constraints.

b∗
J : It is an (n − k − 2)× 1 vector representing jerk limits.

According to (24)–(26), the detailed expressions for the elements of the coefficient
matrices are given as

ni,j =

Ni,k(ui), |j − i| ≤ k

0, otherwise
(35)

for i = 0, 1, . . . , n; j = 0, 1, . . . , n,

aw,∗
i,j =


c1

i , j = i

−c1
i , j = i + 1

0, otherwise

(36)

for i = 0, 1, . . . , n − k; j = 0, 1, . . . , n,

aα,∗
i,j =


c2

i , j = i

−2c2
i , j = i + 1

c2
i , j = i + 2

0, otherwise

(37)

for i = 0, 1, . . . , n − k − 1; j = 0, 1, . . . , n,

aJ,∗
i,j =



c3
i , j = i

−3c3
i , j = i + 1

3c3
i , j = i + 2

−c3
i , j = i + 3

0, otherwise

(38)

for i = 0, 1, . . . , n − k − 2; j = 0, 1, . . . , n.
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The right-hand-side vectors with terms of scaled boundary kinematic parameters are
detailed as follows:

b∗
q =

q∗max · · · q∗max︸ ︷︷ ︸
n+1

,−q∗min · · · − q∗min︸ ︷︷ ︸
n+1


T

, (39)

b∗
ω =

(σ/ f ) · ω∗
max · · · (σ/ f ) · ω∗

max︸ ︷︷ ︸
n−k


T

, (40)

b∗
α =

(σ2/ f 2) · α∗max · · · (σ2/ f 2) · α∗max︸ ︷︷ ︸
n−k−1


T

, (41)

b∗
J =

(σ3/ f 3) · J∗max · · · (σ3/ f 3) · J∗max︸ ︷︷ ︸
n−k−2


T

. (42)

Thus, the kinematic equality and inequality constraints can be summarized into a
compact form for the QP problem as

min
Θ∗

J∗R = Θ∗THΘ∗

s.t. A∗
ineqΘ∗ ≤ b∗

ineq

A∗
kinΘ∗ = b∗

kin

, (43)

where the left-side matrices and right-side columns’ vector are constructed as follows

A∗
ineq =



A∗
q

A∗
ω

A∗
α

A∗
J

−A∗
ω

−A∗
α

−A∗
J


, b∗

ineq =



b∗
q

b∗
ω

b∗
α

b∗
J

b∗
ω

b∗
α

b∗
J


, (44)

A∗
kin =


N′

0,k(0) N′
1,k(0) . . . N′

n,k(0)
N′

0,k(1) N′
1,k(1) . . . N′

n,k(1)
N′′

0,k(0) N′′
1,k(0) . . . N′′

n,k(0)
N′′

0,k(1) N′′
1,k(1) . . . N′′

n,k(1)

, b∗
kin =


ω∗

0
ω∗

1
α∗0
α∗1

. (45)

The kinematic constraints of the spline curve have been formulated into the opti-
mization problem in (43). However, the entire curve must satisfy geometric constraints
O(u) ∈ GFDs, which are nonlinear, to ensure machining accuracy and prevent collisions
along the tool path. The updated via points on the planning curve are transformed using
the RTO-based iterative method and incorporated as equality constraints in the QP problem,
as described in Section 2.4.

2.3. QP Modeling for Redundant Joints Based on B-Spline for Optimal M Path Jerk

While the optimization problem for rotational axes has been effectively modeled
using B-spline curves in Section 2.2, ensuring smooth motion along translational axes
is equally critical for precision and lifespan in 3D laser cutting machining. To achieve
smooth translational trajectories, we have introduced the concept of the M path here in
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our previous work [28]. The M path deviates from the direct tool path by introducing a
redundant standoff axis q6 along the tool direction. The spatial transformation of the M
point M(u) is expressed as

M(u) = C(u) + q6(u)Oopt(u), (46)

where Oopt(u) denotes the optimized tool orientation, computed via forward kinematics (2)
based on the optimized rotational joint values q4(u) and q5(u).

To clarify the relationship between the M path and the translational axes, it is important
to note that, in the kinematic model, the rotational axes q4 and q5 primarily define the
end-effector’s orientation, while the M point M(u) depends on the translational axes
and the redundant standoff axis q6. In other words, M(u) is decoupled from q4 and q5,
since its position is derived by linear mapping from the translational joints (q1, q2, q3) in
combination with the offset q6. Consequently, the B-spline trajectory of M(u) directly
influences the motion of the translational axes. Ensuring the smoothness of the M path
in Cartesian space consequently leads to smoother joint commands for the translational
axes, as the transformation from C(u) to M(u) is linear with respect to the joint coordinate
q6(u) combined with O(u). This decoupling allows for the leveraging of a minimized jerk
strategy for the rotational axes, while separately optimizing and refining the M path to
maintain smooth translational movement and prevent abrupt accelerations or vibrations in
the three translational axes.

The redundant axis introduces an additional degree of freedom, enhancing trajectory
smoothness and flexibility. This enhancement is achieved through a reinforcement learning-
based exploration method. It dynamically adjusts the wrist center point position along
the tool orientation. While reinforcement learning improves adaptability, the M path
smoothness can be further enhanced. Specifically, quintic B-spline curves, akin to those
used for rotational axes, are employed to define the M path M(u) as

M(u) =
n

∑
j=0

P†
j Nj,k(u), (47)

where {P†
j }n

j=0 represents a set of n + 1 control points for the B-spline curve, organized as
an (n + 1)× 3 matrix to define the geometric control points in three-dimensional space,
as illustrated in Figure 3.

Figure 3. Schematic diagram of the introduced M path represented by a B-spline curve and its control
points P†

j to be optimized.
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Similar to (19), the integrated jerk along the entire M path is minimized through a
quadratic objective function. It is expressed in terms of P† as

min
P†

JM = P†T
HP†. (48)

where the Hessian matrix H is the same used in (18), as the B-spline knot vector U
is unchanged.

The geometric constraint of the optimization problem mandates that the B-spline
curve M(u) passes through the M points Mi at interpolated arc-length parameters ui; the
set of Mi can be defined using the B-spline in matrix form with the basis function coefficient
matrix N as

M = NP†, (49)

where M is an (n + 1)× 3 matrix, in which each row corresponds to a single M point Mi.
As Mi depends on the unknown standoff axis length wi at ui, the optimization problem

becomes nonlinear and cannot be directly solved. Thus, by integrating (47) into (49) and
reorganizing the terms, P† can be expressed as a linear function of w as

P† = K1 + K2w, (50)

where w = [q6
0, q6

1, . . . , q6
n]

T is an (n + 1)× 1 column vector, while K1 and K2 are expressed
using the pseudo inverse of B-spline coefficient matrix N as

K1 = (NTN)−1NTC, (51)

K2 = (NTN)−1NTOopt. (52)

Then, according to (49)–(52), the objective function in (48) can be expanded in quadratic
form in terms of w as

min
w

JM = wTDw + fw, (53)

where D is a positive definite symmetric matrix and f is a column vector. The detailed
mathematic derivation is reported in Appendix A.

The optimization problem in QP form has to incorporate the objective function (53)
with the inequality kinematic constraints to limit the length of the standoff axis within the
stroke [q6

min, q6
max] as 

min
w

JM = wTDw + fw

s.t. q6
min ≤ wj ≤ q6

max

for j = 0, 1, . . . , n

. (54)

The geometric constraints will be detailed in the next section.

2.4. GFD Construction in 3D Space and Iterative Processing of RTOs

The C-space method [4,5,11] can be employed for collision-free trajectory planning,
providing a robust framework for exploring all possible configurations and ensuring colli-
sion avoidance, as demonstrated in our previous work [28]. However, building graphs that
define feasible and forbidden zones for each node of the overall trajectory is computation-
ally intensive, particularly when combined with shortest-path optimization. Furthermore,
our method incorporates a secondary collision-avoidance process to refine trajectory plan-
ning while optimizing the redundant standoff axis.

To create a unique GFD that represents the forbidden areas for the three wrist joints
q̃i = [q4

i , q5
i , q6

i ]
T , we extend the rotational axes’ C-space to a three-dimensional representa-

tion. Similar research [31] introduced cutter lift height δ to construct a 3D C-space using
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inclination and yaw planes. However, the extended GFD in our method incorporates
an additional degree of freedom provided by q6, alongside the rotational axes q4 and q5,
to enhance flexibility. This design is derived from the constrained leading and tilt angles
(ϕ, φ), as illustrated in Figure 4. The detailed process of constructing the GFD from the LCS
to the WCS is described in our previous work [28].

Figure 4. Proposed 3D GFD on a single CL point. The forbidden areas are indicated within the
red regions, and the feasible candidates are represented by the shades of blue corresponding to the
distance from the reference point.

It is worth mentioning that the IKT in (3) allows two configurations of the rotational
axes for a single tool orientation. However, typical 3D laser head configurations, as shown
in Figure 5, result in interference patterns distinct from those of CNC machine tool spin-
dles. Consequently, the proposed GFD is constructed based on wrist joint coordinates,
similar to the DAO representation in [7], rather than the tilt and yaw planes used in other
studies [5,13].

Figure 5. Mechanical structure of 3D laser cutting heads. (a) Zero-offset head on EFORT machine;
(b) conventional head on traditional 3D laser cutting machines with offsets l1 and l2.

The concept of C-distance , introduced in [5], quantifies the distance between the
collided tool orientation and the reference orientation using ϕ and φ angles. The shortest
C-distance identifies the minimal change in tool orientation between consecutive local
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optimal candidates. In our method, the distance equation adopts this principle for consis-
tency. However, since joint trajectories are directly influenced by kinematic constraints,
the Euclidean distance is weighted based on the dynamic performance of each joint, as

∆di,p =

√
k4

(
q4

i,p − q̂4
i

)2
+ k5

(
q5

i,p − q̂5
i

)2
+ k6

(
q6

i,p − q̂6
i

)2
for i = 0, 1, . . . , m. (55)

Here, p represents the index of the non-collided candidate q∗i,p within the feasible region of
the ith GFD. The value q̂∗i serves as the reference joint configuration derived via IKT based
on the geometric features of RTOs at the ith CL point among (m + 1) initialized or updated
RTO collections. Additionally, k4, k5, and k6 serve as the dynamic weights in this process.

The RTO-based processing strategy, initially introduced in [3], minimizes collisions
and mitigates abrupt tool orientation changes by leveraging RTOs. This strategy involves
three main steps to generate a collision-free trajectory:

1. Initialize RTOs: Define initial RTOs to act as via points, serving as the foundation for
each joint trajectory.

2. Trajectory Optimization: Utilize an optimization algorithm to compute smooth, feasi-
ble trajectories, leveraging the current set of RTOs as constraints.

3. Update RTOs: Add new RTOs when necessary and iteratively refine the optimization
process until the entire trajectory is verified to be collision-free.

This iterative method systematically refines the trajectory, eliminating collisions and
preserving smooth tool orientations along the entire path. The initial selection of RTOs
is crucial for successful trajectory optimization. It significantly impacts both the conver-
gence speed of the optimization algorithm and the effectiveness of collision avoidance.
A well-chosen set of RTOs enables the efficient exploration of feasible domains, facilitat-
ing the identification of smooth, collision-free trajectories. Conversely, an inadequate or
poorly initialized selection of RTOs can lead to suboptimal trajectory solutions, increased
computational time or even failure to find a collision-free path.

The selection of initial RTOs should prioritize candidates with minimal Euclidean
distance ∆di,p to identify the closest safe ones between the candidate q∗i,p and the ith GFD.
Additionally, the relative distance between two adjacent RTOs concerning the segment
length should be considered to avoid abrupt changes in tool orientation. A greedy algorithm
(i.e., Dijkastra algorithm) addresses this problem by optimizing a multi-objective function.
This function, parameterized by the decision variable q̃, represents all the defined RTOs
[q̃0, q̃1, . . . , q̃m] and is expressed as

min
q̃

k1

m

∑
i=0

∆di,p + k2

m

∑
i=1

||q̃i − q̃i−1||2
σi

, (56)

where || · ||2 indicates the Euclidean distance between two adjacent RTOs, and σi represents
the tool path length between the CL points Ci and Ci−1. Here, k1 and k2 are the weights
assigned to the two components of the objective function to be tuned.

Let ũi be the arc length parameter corresponding to the resolved RTO q̃i for i ∈ [0, m].
The spline form of a set of joint coordinates can be represented as follows

q∗(ũi) =
n

∑
j=0

Θ∗
j Nj,k(ũi) for i = 0, 1, . . . , m. (57)
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According to (27), (36) and (43), the above set of via joint coordinates can be expressed as
an equality constraint equation in the following form:

A∗
RTOΘ∗ = b∗

RTO, (58)

where A∗
RTO is the (m + 1)× (n + 1) coefficient matrix and b∗

RTO is the (m + 1)× 1 vector
including q∗(ũi), as follows

A∗
RTO =


N0,k(ũ0) N1,k(ũ0) · · · Nn,k(ũ0)

N0,k(ũ1) N1,k(ũ1) · · · Nn,k(ũ1)
...

...
. . .

...
N0,k(ũm) N1,k(ũm) · · · Nn,k(ũm)

, (59)

b∗
RTO =

[
q∗(ũ0), q∗(ũ1), . . . q∗(ũm)

]T
. (60)

At least two RTOs are required, typically specified at the start and the end of the tool
path. Once a collision occurs with the currently generated trajectory, the dynamic m + 1
dimension of the equality constraint matrix needs to be updated by inserting new RTOs
into the optimization equations during iterative processing.

The final formulation of the minimized jerk trajectory optimization for the rotational
axes, incorporating the additional geometric equality constraint (58), can be expressed as
an extension of (43): 

min
Θ∗

J∗R = Θ∗THΘ∗

s.t. A∗
ineqΘ∗ ≤ b∗

ineq

A∗
kinΘ∗ = b∗

kin

A∗
RTOΘ∗ = b∗

RTO

. (61)

Similarly, the geometric equality constraint for the extension value of the redundant
standoff axis q6 must be incorporated into (54). The design variable w must be constrained
within the feasible domain to ensure collision-free conditions during the adjustment of
q6. Consequently, the minimized jerk optimization problem for the M path can be refined
as follows: 

min
w

JM = wTDw + fw

s.t. Aw
RTOw = bw

RTO,

q6
min ≤wj ≤ q6

max,

for j = 0, 1, . . . , n,

, (62)

where Aw
RTO is an (m + 1) × (n + 1) coefficient matrix with a single value of ‘1’ in the

column corresponding to ũi as a 1 × (n + 1) row vector ei, and zeros elsewhere. The vector
bw

RTO is (m + 1)× 1, containing the values of q6(ũi). These matrices are defined as follows:

Aw
RTO =


ei(ũ0)

ei(ũ1)
...

ei(ũm)

, bw
RTO =


q6(ũ0)

q6(ũ1)
...

q6(ũm)

, (63)

ei,k =

1, if k = index corresponding to ũi,

0, otherwise.
(64)

for k = 0, 1, . . . , n.
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Finally, the two optimization problems, incorporating both kinematic and geometric
constraints, are summarized in (61) and (62). These formulations collectively aim to achieve
a minimized jerk and collision-free trajectory, as outlined in the preceding sections.

2.5. Summary of the Methodology

The proposed MJTO algorithm for 3D laser cutting machines integrates smoothness
optimization, collision avoidance, and redundancy exploitation. Figure 6 illustrates the
structured, iterative process of the methodology:

Figure 6. Flow chart of MJTO algorithm

Initial RTO Optimization: Initial RTOs are refined to minimize orientation changes
and align with reference points according to (56), forming the basis for trajectory planning.

Rotational Joint Trajectory Generation: B-spline modeling (5) is used to generate
minimized jerk for the displacement of rotational axis trajectories according to the QP
optimization (61), ensuring smooth motion satisfying the kinematic constraints (15) and
the geometric constraints (58) in the GFDs.

M Path Optimization: The redundant standoff axis trajectory, modeled with B-splines
as (47), is optimized via a separate QP problem in (62) to achieve collision-free via points
and smooth translational motion.

Collision Checking: The entire tool path is checked for collisions. Detected collisions
are resolved by introducing additional RTOs as constraints with the shortest distance in (55),
repeating the trajectory generation.

Iterative Refinement: The process cycles through rotational axes generation, M path
optimization, and collision checking until achieving a smooth, collision-free trajectory.

As shown in Figure 6, this methodology ensures collision-free operation while bal-
ancing smoothness and precision. By integrating B-spline-based MJTO, iterative refinement,
and redundancy exploitation, the framework excels in high-speed, high-precision machining.

3. Illustrative Simulations on B-Pillar Machining
The proposed Minimized Jerk Trajectory Optimization method was implemented

in Python 3.11.8 using CVXPY for QP modeling and interfaced with the MOSEK 10.2.5
solver [32]. While the QP-based structure facilitates efficient optimization, the computa-
tional costs are affected by the complexity of 3D geometric representations for collision
detection and the iterative nature of the RTO-based framework. At this stage, the proposed
algorithm runs in an offline computation on a PC platform with a i5-10210U CPU (1.6 GHz,
8-core) and 32 GB of RAM. Two typical cases are presented to demonstrate the effectiveness
and advancements of the method, illustrated with an automotive component, as shown
in Figure 7. The first case study illustrates the methodology in a straightforward and
long machining scenario with minimal tool orientation variation, whereas the second case
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compares the proposed algorithm with our previous work [28] in a challenging corner
scenario involving significant tool orientation adjustments.

Figure 7. B-pillar workpiece and corresponding tool paths. The purple line shows the trajectory
followed in Case 1, while the red line shows that of Case 2

The data of machining parameters and joint kinematics parameters used in the follow-
ing two cases are provided in Tables 1 and 2.

Table 1. Machining parameters.

Machining Parameters

Parameter Case Study 1 Case Study 2

Feedrate f 20 m/min 15 m/min
Acceleration ḟmax 8 m/s2 8 m/s2

Jerk f̈max 80 m/s3 80 m/s3

Lead angle ϕmax 5° 15°
Tilt angle φmax 5° 10°
Sampling Interval ∆t 0.01 s 0.004 s

Table 2. Joint kinematic parameter of the objective laser machine.

Joint Kinematic Parameters

Joint q∗min q∗max ω∗
max α∗

max J∗max

q1 0 m 1.6 m 2 m/s 12 m/s 2 120 m/s3

q2 0 m 1.4 m 2 m/s 12 m/s 2 120 m/s3

q3 0 m 3.0 m 2 m/s 12 m/s 2 120 m/s3

q4 −2π 2π 10 rad/s 80 rad/s2 200 rad/s3

q5 π/2 π/2 10 rad/s 80 rad/s2 200 rad/s3

q6 −0.1 m 0.02 m 2 m/s 40 m/s2 400 m/s3

3.1. Case Study 1: Long Segment Machining

This study case aims to illustrate the application of the proposed minimized jerk
trajectory optimization method in a straightforward machining scenario. The trajectory
details and corresponding 3D GFDs across six RTOs for a long segment with minor tool
orientation variations are depicted in Figure 8.
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Figure 8. The long tool path in purple line and its corresponding RTOs, represented as six GFDs for
Case 1 prior to optimization.

This scenario involves simulating the machining of a long, straight segment on the
side of the B-pillar workpiece using the Python-based physical simulation environment
pybullet, as shown in Figure 9. The initial path of the tool, generated without optimization,
is shown in Figure 9a. However, Figure 9b illustrates an accidental collision between
the cutting head and the workpiece caused by significant adjustments in joint angle q4

following the conventional QI interpolation result, despite the minor angle variations
between the initial RTOs.

Figure 9. Pybullet simulation of the long trajectory using the MJTO algorithm for case study 1.
(a) Initial position setup and six RTOs shown in blue; (b) collision observed with the original
trajectory using QI interpolation, highlighted in red; (c) zoomed-in view of the initial RTO adjustments,
optimized via Equation (56) transitioning from the blue RTO to the updated red RTO; (d) final
trajectory with the optimized M path represented by the orange line.

The optimal trajectory is obtained within the first iteration of the optimization process,
as shown in Figure 9d. Consequently, no additional RTOs are needed, as no further
collisions are detected due to the effective initial RTO optimization depicted in Figure 9c.
After optimizing the initial RTOs to ensure a collision-free trajectory, the angular changes
between consecutive RTOs were carefully controlled. By keeping these angle adjustments
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within the tolerance for the allowable processing error, excessive movements in the joint q4

were avoided, even with minimal changes in tool orientation.
The joint trajectory plots in Figure 10 highlight the significantly smoother kinematic

performance of the proposed MJTO algorithm compared to the conventional QI method.
This smoothness is evident across velocity, acceleration, and jerk levels, primarily due to
the global optimization applied across all RTOs. Unlike the traditional QI method, which
often causes discontinuities in acceleration and jerk between trajectory segments, the MJTO
algorithm ensures holistic trajectory optimization, minimizing abrupt motion changes. This
improvement not only enhances machining precision, but also reduces mechanical stress
and wear on cutting components, thereby improving the the longevity and reliability of the
manufacturing system.

Figure 10. Comparison of initial (red) and optimized (blue) rotational axes trajectories for position q∗,
velocity ω∗, acceleration α∗, and jerk J∗ levels, along with their boundaries, represented by the
dotted lines.

Furthermore, with the assistance of the high dynamic performance of the redundant
standoff axis, the curvature of the M trajectory was optimized, resulting in improved per-
formance on the translational axes. Although the original tool path in this case is relatively
simple and long, posing minimal challenges to most translational axes, the integration of
the redundant axis allows for finer control and smoother motion even in straightforward
scenarios. This ensures translational movements are not only smoother, but also more effi-
cient, contributing to reduced mechanical stress and improved overall system performance.
The benefits of the redundant standoff axis become more evident in complex tasks, such
as sharp corner navigation, as it will be demonstrated in the following case study, which
validates the effectiveness of the MJTO algorithm in enhancing trajectory smoothness and
reducing mechanical stress.

3.2. Case Study 2: Shape Corner Segment Machining

Sheet metal components with large angles of bend are exceedingly common in the
automotive manufacturing industry. These pronounced bends pose significant challenges
for 3D LCM processes. To meet high-speed machining requirements, the tool orientation
must execute rapid and substantial rotations within short segments to accurately cut
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the lateral surfaces of bent sheet metal. In this case, the objective trajectory follows an
irregular and complex corner surface with ten RTOs at key waypoints, as illustrated in
Figure 11. Notably, there are two significant orientation changes of approximately 77◦

between adjacent tool orientations over short distances, posing a major challenge for
smooth trajectory planning. This scenario, also considered in our previous work [28],
demonstrates the effectiveness of the proposed optimization method in handling large-
angle rotations smoothly and maintaining collision-free machining under demanding
conditions. Furthermore, the optimized M trajectory, based on the proposed redundant
standoff axis, ensures smoother translational motions during high-curvature machining,
further enhancing overall performance and reliability.

Figure 11. The objective trajectory on the target surface with a side view; note the 77◦ angular
deviation between two adjacent tool orientations.

The experimental test data can be summarized as follows. The initial tool-path trajec-
tory is interpolated by a standard G-code interpolator using QI for the orientation, leading
to a total machining time of 2.51 s with the dynamic machining parameters. Based on
the 4 ms sampling interval (∆t = 4 ms) of the motion controller, 628 CL points are gener-
ated. The proposed MJTO framework demonstrates significant computational advantages
compared to our previous graph-based method: While conventional collision checking
required exhaustive evaluation at all 628 CL points, our current implementation signifi-
cantly reduces the number of collision detection operations from 628 to 12 critical RTO
positions. Calculating the large-scale Hessian matrix in (18) takes 9.5 s, while the QP solver
in CVXPY requires an additional 0.8s of computation time, yielding a total optimization
time faster than the time of our prior approach. This acceleration stems from both reduced
collision detection iterations and the unified 3D GFD method introduced in Section 2.4,
which eliminates three axes collision checks together.

Figure 12 illustrates the evolution of RTOs throughout the optimization stages.
In Figure 12a, the initial RTOs are first reselected to minimize abrupt angle changes in the
short segments. This redistributes angular adjustments across multiple RTOs (Figure 12b).
In subsequent iterations (Figure 12c), additional RTOs are inserted when intermediate
collisions or interference issues are detected. These extra RTOs serve as additional con-
straints in the optimization. Ultimately, the minimized-jerk planning produces a smoother,
collision-free trajectory, as shown in Figure 12d.
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Figure 12. Evolution of RTOs through the optimization process: (a) initial RTOs; (b) RTOs after the
first optimization; (c) additional RTOs added; (d) final collision-free and smoother trajectory.

To demonstrate the improvement in smoothness, Figure 13 compares the rotational
axes q4 and q5 among three methods: the initial trajectory generated by quaternion interpo-
lation (blue), a graph-based approach (green), and the proposed MJTO algorithm (orange).
In the position plots, MJTO noticeably alters the original q4 profile, redistributing the large
angular changes more evenly. This is enabled by adjusting the RTOs in the early phases.
In terms of acceleration, MJTO achieves much smaller and fewer spikes than the other
two methods, indicating reduced dynamic stress and smoother motion when facing large
orientation changes. However, one should note that the B-spline curves used here may
produce overshooting or oscillations between non-keyway points in the trajectory, as they
minimize the integral of the jerk over the entire path. This phenomenon can introduce
angular errors or posture drifts, especially in regions of high curvature.

Figure 13. Comparison of rotational axes q4 and q5 in position (left), acceleration (center), and
jerk (right) among QI (blue), graph-based (green), and MJTO (orange) methods.

Beyond the rotational axes, we also optimized the redundant translational axis M.
Figure 14 compares the M path trajectory generated by QI (yellow) and MJTO (red) from
the CL tool path (blue). By eliminating unnatural “knot” bends, the MJTO-based approach
achieves a much smoother, more continuous path, which is particularly advantageous for
high-speed machining tasks, where excessive velocity or acceleration discontinuities can
lead to vibrations or inaccuracy.
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Figure 14. Comparison of M paths before (QI in blue) and after (MJTO in orange) optimization.
A zoomed view highlights how MJTO smooths out any abrupt “knot” in the original path.

A more detailed view of smoothness enhancement can be observed in Figure 15, where
q1, q2, q3 are compared in terms of position, acceleration, and jerk. The MJTO trajectories
(orange) show significantly reduced acceleration peaks and smoother jerk profiles compared
to QI (blue) and graph-based methods (green). To better visualize the distribution of jerk
values for each joint, Figure 16 shows a violin plot, where the horizontal axis represents
different planning methods QI, graph-based, and MJTO, whereas the vertical axis shows
the corresponding range and probability distribution of jerk for each joint. The “width”
of the violin at each vertical level indicates how densely the jerk values are concentrated
around that magnitude. Therefore, narrower violins (especially at higher jerk magnitudes)
indicate fewer extreme jerk values; from these plots, one can see that MJTO’s distributions
tend to be narrower and more centered around lower jerk levels, implying a significant
improvement in smoothness.

Figure 15. Translational joints q1, q2, q3 under QI, graph-based, and MJTO: position (left),
acceleration (center), and jerk (right).

In summary, by introducing refined RTO placement and employing minimized-jerk
B-spline planning, the proposed MJTO method effectively handles large-angle rotations
(up to 77◦) while also enhancing the smoothness of both the rotational and translational
axes. Compared to the QI and graph-based methods, MJTO demonstrates smaller accel-
eration peaks, reduced jerk, and fewer sudden orientation shifts. Although local over-
shoots may arise from the spline formulation, these can be controlled through additional
keyway constraints until machining precision and posture accuracy are satisfied. Over-
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all, the MJTO approach provides a stable, high-speed solution for sheet-metal corner-
segment machining, ensuring accuracy and collision-free performance even under signifi-
cant orientation variations.

Figure 16. Violin plots of jerk distributions across five main axes (q1 to q5) for QI, graph-based,
and MJTO methods. The horizontal axis indicates different methods; the vertical axis is the jerk
value. Narrower shapes at high jerk ranges signify fewer extreme jerk points, reflecting smoother
overall motions.

4. Conclusions and Future Work
In this study, we presented a novel trajectory optimization strategy specifically for

3D laser cutting machines equipped with a redundant standoff axis. Building on our
previous work, the proposed approach employs a Minimized Jerk Trajectory Optimization
framework with B-spline modeling to formulate two QP tasks: one focus on smoothing
the rotational axes trajectories and the other dedicated to refining the M path governed
by the redundant standoff axis. By integrating an iterative RTO-based optimization pro-
cess within the feasible domains defined by the 3D joint-coordinate GFD, our method
not only reduces abrupt angular transitions among multiple RTOs, but also significantly
improves the continuity of the translational axis movements. Consequently, the optimized
trajectories demonstrated enhanced smoothness, reduced mechanical stress, and consistent
collision-free operation.

The effectiveness of our proposed method was demonstrated through two simulation
cases involving the machining of an automotive B-pillar workpiece. In the first case, char-
acterized by minimal orientation changes, a single iteration of our algorithm successfully
produced a smooth, collision-free trajectory. Kinematic performance evaluations revealed
reductions in acceleration and jerk peaks compared to the conventional QI method, under-
scoring the improved trajectory stability. In the second more demanding case featuring
large-angle rotations and high-curvature corners, our iterative strategy effectively managed
abrupt orientation transitions by strategically inserting additional RTOs and leveraging
optimized adjustment to the M path. These results highlight the method’s capability of ac-
commodating complex geometries while maintaining trajectory smoothness and ensuring
precise, collision-free movements.

Future work will explore the expension of the optimization framework to more intri-
cate machining scenarios and broader industrial applications. While a constant feedrate
assumption was adopted in this study, future research could incorporate adaptive feedrate
control strategies to further enhance the trajectory smoothness. Additionally, integrating
real-time collision detection and avoidance mechanisms will be investigated to accommo-
date unexpected disturbances. Meanwhile, two specific open issues remain to be addressed.
First, since the free-form nature of B-splines can occasionally introduce local overshoot or
oscillations, employing monotonic spline interpolation strategies [33] may help to mitigate
these effects by enforcing strictly monotonic interpolation patterns. Second, further algorith-
mic refinements of MJTO, along with more computationally efficient implementations for
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the RTO insertion process, could reduce the computational overhead and improve scalabil-
ity. Lastly, future efforts will include experimental validations conducted on physical laser
cutting machines to verify simulation results and assess practical machining performance.
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Abbreviations
The following abbreviations are used in this manuscript:

LCM laser cutting manufacturing
CNC computer numerical control
CL cutter location
WCS workpiece coordinate system
MCS machine coordinate system
LCS local coordinate system
IKT inverse kinematic transformation
C-space Configuration space
DAO domain of admissible orientation
GFD geometric feasible domain
RTO representative tool orientation
QP quadratic programming
QI quaternion interpolation
MJTO minimized jerk trajectory optimization

Appendix A. Derivation of the Quadratic Objective Function
In this appendix, we provide a concise derivation of the quadratic objective function

used to minimize the integrated jerk along the M path.
Starting from the relationship between the control points P† and the redundant stand-

off axis w defined in (50), the objective function defined in (48) can be rewritten as

JM = (K1 + K2w)TH(K1 + K2w). (A1)

Expanding the quadratic form as

JM = wTKT
2 HK2w + 2KT

1 HK2w + KT
1 HK1, (A2)

the objective function can be finally expressed in the standard quadratic form

JM =
1
2

wTDw + fw + c, (A3)
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where the components are defined as

D = 2KT
2 HK2, (A4)

f = 2KT
2 HK1, (A5)

c = KT
1 HK1. (A6)

As the constant part c of the quadratic objective function can be omitted, this formula-
tion transforms the optimization problem into a standard QP form in (53), facilitating an
efficient solution using QP solvers.
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