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Abstract—We demonstrate the use of existing terrestrial optical
networks as a smart sensing grid, employing a bidirectional
long short-term memory (Bi-LSTM) model enhanced with an
attention mechanism to detect road vehicles. The main idea of
our approach is to deploy a fast, accurate and reliable trained
deep learning model in each network element that is constantly
monitoring the state of polarization (SOP) of data signals
traveling through the optical line system (OLS). Consequently,
this deployment approach enables the creation of a sensing smart
grid that can continuously monitor wide areas and respond with
notifications/alerts for road traffic situations. The model is trained
on the synthetic dataset and tested on the real dataset obtained
from the deployed metropolitan fiber cable in the city of Turin.
Our model is able to achieve 99% accuracy for both synthetic
and real datasets.

Index Terms—Fiber optic sensing, machine learning, road
traffic detection, smart sensing grid.

I. INTRODUCTION

ROAD transportation plays a vital role in modern cities
and civilizations, yet it extracts a heavy toll, with 20–50

million injuries and 1.19 million fatalities happening each
year globally [1]. Therefore, it becomes essential to keep up
constant traffic monitoring to maintain continuous traffic flow.
Essential information on traffic jams and accidents is provided
by real-time road traffic monitoring. Using this data, traffic
control centers are better equipped to react to accidents quickly
and apply intelligent transportation system solutions, such as
lane closures or the temporary use of hard shoulders, when
needed. Real-time traffic management and intelligent road
pavement are two recent developments in the field of smart
infrastructure [2]–[4]. Real-time traffic flow is continuously
monitored and controlled, which helps to identify unusual
behavioural patterns and adjust traffic signal management and
regulation to reduce traffic congestion.

Various technologies are presently employed in traffic mon-
itoring systems, relying on sensors placed above, below, or
next to highways to measure traffic volume. A variety of
technologies are covered by these sensors, such as video
cameras [5], infrared [6], radar [7], ultrasonic [8], acous-
tic [9], and magnetic [10]. Vehicle flow is measured by

processing changes in the magnetic field brought about by
passing vehicles. Nevertheless, these techniques are costly and
challenging to install and manage. Moreover, they are vul-
nerable to damage and environmental interference. Solutions
that are stable, economical, reliable, precise, and durable are
crucial to overcoming the aforementioned challenges in traffic
monitoring.

Recently, Optical fibre became an excellent candidate for
environmental monitoring with sensing technology since it has
remarkable intrinsic qualities in addition to its ability for high-
speed data transfer [11]. To enable sensing over wide areas,
fibre optic sensing (FOS) makes use of the already deployed
telecommunication fibre infrastructure [12]. Over the past few
decades, the topic of FOS has drawn a lot of interest from the
research community and engineers across different fields [13],
[14]. FOSs are outperforming traditional electrical sensors be-
cause of their popularity for precision, robustness, tolerance to
electromagnetic interference, and comparatively cheap power
consumption and lifetime costs [15]. Utilizing the physical
characteristics of light waves and their interaction with the
surroundings has facilitated the development of FOS designs
capable of sensing pressure, humidity, viscosity, acceleration,
rotation, magnetic fields, temperature, acoustic signals, and
acceleration. FoS finds its applications in various fields in-
cluding oil and gas [16], aerospace [17], civil engineering [18],
biomedical [19], energy [20], and transportation [21].

The core idea of most FOS methods revolves around the
measurement of changes in the frequency, intensity, phase,
and state of polarization (SOP) of light waves. It is important
to note that, even though many FOS applications rely on
specialised hardware like distributed acoustic sensors (DAS),
phase-sensitive optical time-domain reflectometers (OTDRs),
or interferometric setups, these methods have demonstrated
excellent performance in terms of event detection and local-
ization. However, the deployment and maintenance of OTDR
and DAS-based solutions are costly, especially for large-scale
networks or deployments spanning wide areas. This includes
the cost of installation, calibration, specialized hardware, and
continuous maintenance. Furthermore, because the optical
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Fig. 1. An LSTM cell

isolators within the amplifiers prevent the backscattered DAS
signals, these sensing approaches are incompatible with inline
optical amplifiers, which frequently exist within the optical
fibers. Meanwhile, interferometric methods demand expensive
devices. Another viable approach is to compute the SOP
fluctuations using the optical lines that have already been
implemented instead of utilizing specialized equipment [22].
[23] discussed SOP-based strategy in detail for applications
like underwater seismic detection. Furthermore, work in [24]–
[27] demonstrates the potential of SOP-based sensing for
automatic network downtime detection, network-wide health
monitoring, cable break monitoring, and seismic sensing.

In this study, our proposed approach aims to utilize the
entire terrestrial optical network as an integrated smart sensing
grid. The objective is to detect road traffic and generate
notifications without the need for costly additional equipment
and eliminate the necessity for dedicated dark fibers. This is
enabled by a smart sensing grid optical network’s centralized
architecture. Utilizing the existing telecommunications infras-
tructure allows for the accessibility of several sensing sources
across wide terrestrial regions. In this context, we monitor
changes in the SOP in coherent channels [23] or intensity-
modulated optical channels [22] resulting from mechanical
stress induced by passing vehicles. Specifically, since service
channels are received at each amplification site, they can offer
a wide range of sensing sources. While numerous studies have
explored phase and polarization monitoring, one important
point remains unanswered: regardless of the measured param-
eter, how can specific events, such as traffic be detected on
incoming waveforms.

Deep learning (DL) based approaches emerged as a promis-
ing solution to accomplish this task, as they enable the seg-
mentation or identification of events based on an understanding
of the key characteristics that distinguish them. These ap-
proaches have substantially enhanced the sensing capabilities
of FOS [28]–[30].The detection and categorization of harmful
fiber events [31], anomaly detection in optical networks [32],
and earthquake detection [33] are some examples of works
that highlight the benefits of using DL in FOS. Since DL
techniques have contributed to substantial advancements in
applications for traffic monitoring, detecting road traffic in
SOP observations has not received much attention, especially

Fig. 2. Experimental setup

Fig. 3. Real dataset SOP measurements

for one based on a real SOP dataset obtained from an ex-
perimental setting. In our previous work [34], we investigate
an unsupervised autoencoder-based long short-term memory
(LSTM) model for detecting road traffic patterns on real-time
SOP measurements of 96 hours. In [35], [36], we develop an
early warning earthquake smart sensing system based on SOP
measurements and demonstrate its effectiveness in realistic
scenarios.

In this work, we present a low-cost hardware-based smart
sensing grid architecture that utilizes 10G transceivers and
polarization beam splitters (PBS) to observe SOP variations.
The DL model based on a bidirectional long short-term
memory (Bi-LSTM) with an attention mechanism is integrated
into each network element (NE) of existing terrestrial optical
networks. This integration allows for effective monitoring and
detection of road vehicles, leveraging the low-cost hardware
to gather SOP data, which is then processed by the DL
model embedded in the network elements. Our objective is to
enhance environmental sensing services, particularly for road
traffic detection. The PBS monitors state of polarization (SOP)
variations in data signals transmitted through the optical line
system (OLS). These SOP variations are then analyzed by the
DL model, which is implemented in each NE. Importantly, our
approach utilizes the existing infrastructure primarily designed
for data communication, repurposing it seamlessly for sensing
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Fig. 4. SOP footprint of vehicle passage

without requiring any dedicated costly hardware. This dual-
use strategy optimizes resource utilization while ensuring fast,
accurate, and robust detection of road traffic patterns. By
leveraging PBS for SOP detection and the DL model for data
analysis within the network elements, our architecture enables
the development of a smart sensing grid capable of continuous
and precise monitoring over large areas.

The main contributions of our work include the following:-
• We propose to integrate a Bi-LSTM with an attention

mechanism model on every NE in the smart sensing grid,
which processes the sequences in forward and backward
directions simultaneously with an attention mechanism to
detect vehicle passing events in an optical fiber sensing
network.

• Due to the scarcity of labeled real data, we generated
a synthetic labeled dataset mimicking the real dataset to
train our proposed supervised learning model.

• The real dataset acquired from the deployed metropolitan
fiber cable in the city of Turin is used to evaluate the
performance of our proposed model.The obtained results
demonstrate that our approach achieves notable accuracy,
precision, recall, and F1-score, indicating its effectiveness
in road traffic detection.

The rest of the paper is structured as follows:- Section II
details our proposed methodology’s background knowledge.
Section III discusses the dataset generation procedure for
real and synthetic datasets and data pre-processing steps. A
thorough explanation of our proposed methodology is given
in Section IV. The performance analysis of our proposed
approach is provided in Section V. Finally, the conclusion and
the future directions are given in Section VI.

II. BACKGROUND ON PROPOSED METHODOLOGY

This section provides details about the two primary compo-
nents of our proposed DL model.

A. Long Short Term Memory (LSTM)
The basic building block of our proposed approach is a long

short-term memory (LSTM) cell. LSTM is an enhanced ver-
sion of recurrent neural networks (RNN), it addresses the key

Fig. 5. SOP measurements and vehicle passage event

challenge of vanishing gradient problem faced by traditional
RNNs. The vanishing gradient problem occurs when network
learning is impeded by a large decrease in the gradients of
the network weights during back-propagation. LSTM networks
overcome this challenge with the use of specific gates that
regulate information flow inside the network. These gates
allow information to be selectively retained or excluded across
longer sequences, which promotes efficient learning over
longer times. Long-term dependencies in sequential data are
also well-captured by LSTM networks, which increases their
usefulness in a variety of applications [37]. The components
of a typical LSTM unit are shown in Fig 1, which consists of
a cell comprising input, output, and forget gates. These gates
control the information that enters and leaves the cell, and the
cell stores data for varying durations of time. The forget gate,
input gate, and output gate are the three fundamental gates of
the LSTM unit, and examining their functions can lead to a
thorough grasp of how the unit operates.
• Forget Gate: The forget gate’s main objective is to assess

whether bits within the cell state are relevant. The neural
network uses input from both the current input data and
the past hidden state to accomplish this task. The network
creates a vector with a sigmoid activation function in
which each element ranges between 0 and 1. The output
from the forget gate is given in Equation 1.

ft = σ(Wf · [ht−1, xt] + bf ) , (1)

where ft represents the forget gate activation vector at the
time step t. σ denotes the sigmoid activation function.
Wf is the weight matrix specific to the forget gate.
ht−1 signifies the previous hidden state. xt represents the
current input at the time step t. bf is the bias vector for
the forget gate.

• Input Gate: The input gate of an LSTM decides which
data should be stored in the cell state Ct from the current
input and the previous hidden state. It is composed of a
bias term and a weighted sum of the concatenated input,
applied with a sigmoid activation function as illustrated
in Equation 2.

it = σ(Wi · [ht−1, xt] + bi) , (2)
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Fig. 6. Variation in time of the SOP vector S1 component.

where it represents the input gate vector at the time step
t. Wi is the weight matrix for the input gate. ht−1 is the
previous hidden state. xt is the current input. bi is the
bias vector for the input gate. Following the computation
of the input gate vector it, the cell state Ct is updated by
the input gate. Equation 3 updates the cell state:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (3)

where ⊙ represents element-wise multiplication, C̃t is
the candidate cell state, which contains new information
from the current input and the previous hidden state. Ct−1
is the previous cell state. The forget gate ft controls
how much of the previous cell state Ct−1 should be
retained, while the input gate it determines how much
of the candidate cell state C̃t should be incorporated into
the updated cell state Ct. This mechanism effectively
allows the model to balance retaining past information
and incorporating relevant new information.

• Output Gate: The main purpose of the output gate of the
LSTM’s network is to determine which portions of the
cell state are appropriate to be shown as the LSTM cell’s
output. To create the output, it integrates data from the
previous cell state, the prior hidden state, and the current
input. Equation 4 shows the output that an output gate
produces.

ot = σ(Wo · [ht−1, xt] + bo) , (4)

where ot is the output gate vector at the time step t. σ is
the sigmoid activation function. Wo is the weight matrix
for the output gate. ht−1 is the previous hidden state. xt

is the current input. bo is the bias vector for the output
gate.

B. Bidirectional LSTM

An LSTM layer comprises several LSTM cells that pro-
cess input data only in the forward direction. Conversely, a
Bidirectional LSTM (Bi-LSTM) adds another LSTM layer
that operates in a backward direction. Training two separate
unidirectional LSTM networks is similar to training a Bi-
LSTM network. One network learns from the original input

sequence, while the other learns from a reversed version of
the input sequence. By providing the network with greater
contextual knowledge, this approach enables the network to
understand the problem more quickly and thoroughly.

C. Attention Mechanism

The attention mechanism plays a key role in many contem-
porary neural network architectures, especially for sequence-
based tasks [38]. It allows the model to prioritize distinct
portions of the input sequence by focusing on particular
segments of the sequence. Basically, for every element in
the input sequence, the attention mechanism computes a set
of attention weights. These weights indicate each element’s
importance or relevance to the processing step that is cur-
rently being performed. By doing this, the model is able
to dynamically change its focus during the sequence, giving
more weight to important parts and less weight to irrelevant
ones. Usually, representations of each element in the sequence
are compared with the model’s current state to determine
attention weights. A compatibility function is frequently used
for this comparison, and then a normalization step is added
to ensure that the attention weights add up to one. After the
attention weights are calculated, they are applied to the input
elements to create a weighted sum, with the weights acting as
coefficients. The most important data from the input sequence
is summarized in this weighted sum, also known as the context
vector, for the current processing stage.

III. DATASET GENERATION AND PREPROCESSING

In this section, we provide the details of the experimental
setup used to acquire a real traffic dataset from the deployed
fiber in the city of Turin and thoroughly explain the procedure
for synthetic dataset generation and data pre-processing.

A. Experimental setup

An experimental setup to obtain real traffic data is shown in
Fig 2. The setup includes a commercial wavelength division
multiplexing (WDM) card with an enhanced small form-factor
pluggable (SFP+) transceiver (TRX) module acting as the
optical source at the transmitter side. This optical signal passes
through a 38 km fiber installed across Turin, with its intensity
modified at 10 Gbps to carry data. The signal is received by
a commercial re-configurable add/drop multiplexer (ROADM)
that has a dense WDM filter and inbuilt erbium-doped fiber
amplifier. It is accessible from both ends through an optical
terminal box at the LINKS laboratory [22]. The ROADM
serves as both a 10G dropping node and a pre-amplifier.
The detection of polarization change was investigated with
two different receiver configurations. The SOP development
is monitored with a commercial polarimeter (Novoptel PM-
1000) as a baseline. The second setup uses a cascade of
polarization beam splitter (PBS) and an optical power meter
(OPM) to track power fluctuations of a single polarization
state across time. Both techniques are configured to record
measurements for up to 96 hours at a sampling rate of 95
samples per second. Both setups are evaluated in [22], where
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Fig. 7. Time variation square magnitude of the SOP vector.

they show similar dataset characteristics. For this particular
work, we acquired the dataset from PBS setup to train our
model. Fig. 3 shows the SOP measurements collected for 10-
minutes from the experimental setup.

B. Synthetic dataset generation

In this study, we faced the challenge of an unlabeled SOP
dataset acquired from the experimental setup of fiber optic
sensing of vehicle passage. The lack of SOP labels makes
it challenging to effectively train our supervised learning
model. Given the limited number of manually SOP-labeled
datasets available, we devised a novel approach to address
this issue. Firstly, we extract the pattern by analyzing vehicle-
passing events from our experimental setup, capturing the SOP
variations induced by different vehicle lengths, speeds, and
distances from the fiber-optic sensing system. Using these
patterns, we developed a parametric function designed to
replicate the observed SOP variations and create synthetic
datasets that imitate the event of vehicle passage/no vehicle
passage observed in the real data and label them accordingly.
The function used to generate a synthetic dataset is expressed
as follows:

func(t, t0, A, θ, λ) = A sin(θs
3/2
1 )e−λs1 (5)

where:
• t is the time variable.
• t0 is the time offset, marking the beginning of the vehicle

passage event.
• A is the amplitude parameter, which regulates the SOP

signal’s strength or magnitude.
• θ is the shape modulation parameter, which affects how

the signal oscillates.
• λ is the decay rate parameter that controls how quickly

the signal deteriorates over time.
• s1 = Heaviside(t − t0) represents the shifted step func-

tion, which guarantees that the signal begins at t0 and
stays constant for t < t0.

The synthetic signal is returned by the function func, and
it consists of the following elements:

• sin(θ · s3/21 ): This term causes the signal to exhibit
oscillatory behavior, the shape of which is determined
by the parameter θ.

• e−λ·(t−t0): The signal is subjected to an exponential
decay in this term, with the parameter controlling the
rate of decay λ.

By adjusting the values of t0, A, θ, and λ, synthetic SOP
signals generated by the function func closely mimic real
vehicle passage events observed in the real data. Curve fitting
is employed to optimize the parameters t0, A, θ, and λ of
the func function. The real and emulated traffic peak is
shown in Fig. 4. An 8-hour synthetic dataset is generated
by using the optimized parameters t0, A, θ, and λ. In this
process, a variety of variables are arbitrarily selected within
predetermined limits, including the length, speed, and distance
of vehicles traveling through a fiber-optic sensing system:
• The vehicle length is randomly chosen between 1 and 5

meters.
• The velocity of the vehicles is randomly chosen between

20 and 50 km/h.
• The distance between subsequent vehicles is randomly

selected in the range of 20 and 50 meters.
The synthetic dataset is generated by iterating over the spec-
ified duration of 10 minutes at a rate of 100 samples per
second, resulting in a time difference of 0.01 seconds between
each sample. For each iteration, a random number of vehicles
is selected within the range of 100 to 200 vehicles, and the
time pairs for the front and rear wheels of each vehicle are
calculated based on the chosen parameters. These time pairs
are then used to label the time axis, indicating the presence of
each vehicle in the dataset. The signal is generated for each
vehicle. Based on the distributions derived from the optimized
parameters, random variations are introduced in the amplitude,
shape modulation, and decay rate. The total synthetic dataset
is then created by combining the signals produced for every
vehicle. The resulting synthetic dataset contains the time
axis, combined SOP signal, and corresponding labels. The
synthetic dataset for 10-minute SOP signal measurements is
demonstrated in Fig. 5. The insights show the waveform (red
line ) generated during the vehicle passage event.

C. Data pre-processing

Preprocessing is an essential step in data analysis that aims
to improve the quality of data by capturing important charac-
teristics for further analysis tasks. In our proposed approach,
we employed two primary pre-processing steps: computing the
time variation of the SOP vector, S⃗ = (S1, S2, S3),and then
calculating its square magnitude.
• SOP variation: The time variation represents the rate of

change of the SOP values. We can identify significant
temporal dynamics or trends in the signal by computing
the time derivative, which allows us to record fluctua-
tions in the SOP over time. When fast polarization state
changes or transitions occur, this step is beneficial in
identifying important events or phenomena that could be
related to the underlying system. Given the SOP signal
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S⃗(t), where t represents time, the discrete derivative of
the SOP for time t is expressed as follows:

dS⃗(t)

dt
=

(
dS1(t)

dt
,
dS2(t)

dt
,
dS3(t)

dt

)
dSj(t)

dt
≈ Sj(ti+1)− Sj(ti)

ti+1 − ti
∀j ∈ [1, 2, 3] (6)

where ti and ti+1 are consecutive time points. The time
variation of the S1 component for 10-minute dataset is
shown in Fig 6.

• Time variation square magnitude calculation: Following
the computation of the time variation, we further process
the data by calculating its square magnitude in order to
obtain a scalar metric quantifying the SOP variation in
time. This emphasizes the magnitude of changes in the
SOP while disregarding their direction. This simplifica-
tion enables robust feature extraction and analysis which
helps to concentrate on the whole intensity of fluctuations
in the SOP. The time variation square magnitude is
expressed as follows:∣∣∣∣∣dS⃗(t)dt

∣∣∣∣∣
2

=

3∑
j=1

(
dSj(t)

dt

)2

. (7)

The time variation square magnitude of 10 minute for the
SOP measurements is shown in the Fig. 7.

IV. BI-LSTM BASED SMART SENSING GRID APPROACH
WITH AN ATTENTION MECHANISM FOR AUTOMATIC

TRAFFIC DETECTION

A. Smart sensing grid approach

Optical networks are turning into dynamically reconfig-
urable, autonomous systems to handle the complexity brought
on by quickly shifting traffic patterns. A centralized optical
network controller (ONC), in charge of these systems, interacts
with NEs via application programming interfaces (APIs).
Using a variety of metrics that are gathered from every NE,
the ONC follows the streaming telemetry paradigm to run
the network efficiently [39]. Streaming telemetry is a well-
known and widely used paradigm in network monitoring
and management. The ability to offer real-time visibility into
network performance and condition has contributed to its rise
in popularity in recent years [40]. Network managers can
gather and examine data continuously from different network
devices using streaming telemetry, eliminating the need for
periodic polling. This framework enables the delivery of
diverse services to higher network layers. We propose an
extension of the streaming telemetry paradigm to incorporate
road traffic detection services seamlessly into the existing net-
work infrastructure, as depicted in Fig. 8. In order to provide
network management and control, the streaming telemetry
paradigm involves the constant transmission of data from
NEs to the ONC. Essential information from devices such as
ROADM and amplifiers include power levels and temperature
variations, while coherent TRXs capture changes in the phase
and SOP of optical signals. Notably, external strain can impact

Fig. 8. Architecture of smart sensing network

the phase and SOP of the signal, making SOP changes
valuable for sensing purposes as they inherently encode en-
vironmental information [41]. Moreover, an integrated post-
processing agent in the NEs analyzes, filters, and selectively
forwards crucial information to the ONC. In metro and access
networks, intensity-modulated direct-detected (IM-DD) TRX
remain popular, especially for lower data speeds or functioning
as slower optical supervisory channels (OSCs), despite the fact
that data from coherent transceivers is frequently inaccessible
due to vendor lock-in. OSCs usually come to an end at each
amplification site. The polarized nature of IM-DD signals
allows for the detection of OSC SOP changes induced by
external strains by extracting a small portion of power to
supply SOP monitoring devices, such as a simple polarimeter
or a PBS [22], [42]. Hence, we propose to integrate the DL
model into NEs, offering continuous predictions derived from
SOP variations. This utilizes the edge-computing capabilities
of NEs, enabling them to transmit timely updates to the ONC,
thereby establishing a smart grid network.

B. Bi-LSTM with an attention mechanism

This section presents our proposed framework for analyzing
the time series data to detect and count road traffic instances
using the smart sensing grid approach. Our framework lever-
ages a Bi-LSTM network with an attention mechanism. The
suggested model architecture, which has four primary phases,
is shown in Figure 9. The algorithm for the proposed approach
is illustrated in Algorithm 1. In the following section, we go
into detail of each phase.
• Input Data Sequences: The initial phase requires con-

verting the original time-series road traffic dataset into
an LSTM cell-compatible format. LSTMs expect input
data in the form of 3-dimensional arrays derived from
time-series data. The initial dataset is structured into
a set of time sequences represented by the notation
(X1, X2, X3, ..., Xn). For every sequence X , there are
fixed-length time window data (x1, x2, x3, ..., xt), where
an input of m features at time instance t is represented
by xt ∈ Rm. This data is then converted into a two-
dimensional array, where the dimensions stand for sam-
ples and time steps. For instance, a sequence from our
dataset is structured into a 3D array with a shape of
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Fig. 9. Architecture of proposed DL model

Algorithm 1 Traffic Detection Using Bi-LSTM with Attention
Mechanism
Require:

1: Input sequences dataset: X
2: Number of sequences: N
3: Number of time steps per sequence: Tx

4: Number of features per time step: m
5: Number of units in Bi-LSTM pre-attention layer: na

6: Number of units in Bi-LSTM post-attention layer: ns

7: Attention weight matrix: Wa

8: Number of training epochs: Ttrain

9: Learning rate: lr
Ensure: Trained model M for traffic detection.

Procedure TrafficDetection
10: Input: X , N , Tx, m, na, ns, Wa, Ttrain, lr
11: Initialize Bi-LSTM network MBiLSTM with na and ns

units.
12: Initialize attention mechanism MAttention with Wa.
13: Initialize output layer MOutput.
14: for epoch = 1 to Ttrain do
15: for each batch B in X do
16: Forward pass through MBiLSTM to compute forward

and reverse hidden states.
17: Concatenate forward and reverse hidden states to

obtain final hidden state h.
18: Compute attention weights a using MAttention.
19: Compute context vector c using a and h.
20: Forward pass through MOutput to generate predic-

tions.
21: Compute loss and perform backward pass through

MOutput.
22: Update parameters of MOutput using gradient de-

scent with learning rate lr.
23: end for
24: end for
25: return Trained model M for traffic detection.

(1223, 150, 1). Here, 1223 represents the total number
of sequences, 150 represents the number of time steps,
and 1 indicates the single feature (SOP in our case) at
each time step. This format ensures that each sequence is
structured appropriately for input into an LSTM model,
with each dimension representing a specific aspect of the
data: samples, time steps, and features.

• Bi-LSTM network: Our model takes an input sequence X
to the Bi-LSTM module that enables it to consider data
from both previous and next time steps at the same time.
It processes the input sequence in forward and reverse
directions to produce hidden state H and cell state C.
The forward and reverse hidden states are computed as
follows:

h→t = LSTMf (xt,h
→
t−1, c

→
t−1) , (8)

h←t = LSTMb(xt,h
←
t+1, c

←
t+1) , (9)

where h→t (Equation 8) and h←t (Equation 9) represent
forward and reverse hidden states at time t, xt denotes
input at time t, c→t and c←t are the forward and reverse
cell states at time t, LSTMf and LSTMb represent the
forward and reverse LSTM functions, respectively. The
forward and backwards hidden states are concatenated to
get the final hidden state h:

h = [h→1 ,h→2 , ...,h→T ,h←T ,h←T−1, ...,h
←
1 ]

In our proposed model, each direction of the Bi-LSTM
layer consists of 64 units with a hyperbolic tangent
(tanh) activation function, selected through grid search
for hyperparameter tuning to effectively capture contex-
tual information.

• Attention layer: The final hidden state h is passed to
the attention mechanism module which computes the
attention weights et at different time steps according to
the provided hidden and cell states from the Bi-LSTM
module as follows: The output h from the Bi-LSTM layer
is used as an input to the attention layer. The attention
layer computes the context vector to learn to focus on
the most useful information in the input sequences as
follows:

a = softmax(Wa · h) (10)
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Fig. 10. Precision, Recall, F1 score, and Accuracy on validation dataset

Fig. 11. Confusion matrix.

c =
T∑

t=1

at · ht (11)

where Wa is the attention weight matrix, a is the attention
weights and c is the attention context vector.

• Post-attention LSTM: The context vectors produced by
the attention mechanism are processed by the Post-
Attention LSTM Cell in conjunction with its prior hidden
and cell states. The post-attention layer in our proposed
methods consists of 64 neurons with a tanh activation
function. The context vectors are weighted according
to the attention mechanism’s computations and include
information about important segments of the input se-
quence. The attention mechanism provides context, and
the LSTM cell, by incorporating the context vectors, is
able to grasp dependencies between various time steps
in the input sequence. The LSTM cell updates its hidden
state and cell state based on the input context vectors and
its previous states, enabling it to adjust to the dynamics

of the sequence and develop the ability to produce precise
predictions.

• Traffic detection: We employ a dense layer with a sigmoid
activation function as the output layer in our model,
which consists of a single neuron. The output layer uses
the post-attention LSTM’s hidden state to predict the
output at each time step. The knowledge gained from
the input sequence and the context given by the attention
mechanism are combined in the hidden state of the post-
attention LSTM. The output layer generates the output
prediction at each time step by applying the sigmoid
activation function to the post-attention LSTM’s hidden
state. Based on the input sequence and the context data
obtained from the attention mechanism, the output values
represent the model’s prediction of the likelihood of
traffic being detected.

V. PERFORMANCE ANALYSIS

In this section, we describe the model training process, the
evaluation measures used to assess the model’s performance
and the results.

A. Model training and evaluation metrics

The model is trained using an adaptive learning rate op-
timization (adam) technique. The learning rate for every
parameter is modified by taking into account approximations
of the gradients’ first and second moments. Training is done
using the binary cross-entropy loss function, which is specified
as follows:

Binary Crossentropy(ytrue, ypred) = − 1

N

N∑
i=1

(
y
(i)
true·log(y

(i)
pred)

+ (1− y
(i)
true) · log(1− y

(i)
pred)

)
, (12)

where ytrue represents the true labels or ground truth values,
while ypred represents the predicted probabilities generated
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Fig. 12. DL model predictions on real dataset.

by the model. N denotes the total number of samples. y(i)true
and y

(i)
pred represent the true label and predicted probability

(or score) for the i-th sample, respectively. The expression
y
(i)
true·log(y

(i)
pred) calculates the cross-entropy loss for the positive

class, while (1 − y
(i)
true) · log(1 − y

(i)
pred) calculates the cross-

entropy loss for the negative class. The overall loss is the
average of these per-sample losses over all N samples.

The model is trained exclusively on the synthetic dataset,
allowing it to learn the intricate relationships between vehicle-
induced perturbations and their corresponding SOP variations.
To evaluate our model’s performance and ensure its appli-
cability to real-world data, we conducted a validation phase
using a carefully curated dataset. We extracted specific vehicle
passage patterns from our experimental setup and manually
labeled a limited set of real-world data.The proposed model
is trained using a synthetic time series of 8-hour dataset files
that mimic real-world scenarios with a learning rate of 0.0001.
Each data file has a single feature, defined as the norm of
SOP variation over time. During the training phase, 60% of
the dataset is used to train the model, while 20% for validation
and another 20% for testing purposes. In terrestrial scenarios,
SOP measurements can often be affected by polarization noise
originating from various anthropic activities. We added 10%
Gaussian noise to the original signal to simulate real-world
environmental circumstances and assess the robustness of the
model. This noise level is determined by considering the
variance of the original signal. During training, the adam op-
timizer uses the binary cross-entropy loss function to compute
gradients to adjust the model parameters. The best weights
for the model are restored by early stopping, which is used to
monitor the validation loss and terminate training if there is
no improvement after 3 epochs. For a total of 500 epochs, the
training data is fed into the model in batches of size 16. The
grid search method is employed to tune the hyperparameters
of the model such as learning rate, batch size, and number of
units in the hidden layers.

To assess the performance of our proposed model, we em-
ploy accuracy, precision, recall, and F1 score metrics described
in Equations 13, 14, 15 and 16 as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

The overall precision of the model’s predictions is mea-
sured by accuracy. The number of cases accurately predicted
as ”traffic detected” is known as true positives (TP). True
negatives (TN) represent the number of cases where ”traffic
not detected” is accurately anticipated. The number of cases
that are mistakenly reported as ”traffic detected” while none
are known as false positives (FP). The number of cases where
”traffic not detected” is mistakenly predicted when in fact there
is traffic is represented as false negatives (FN).

Precision =
TP

TP + FP
(14)

Precision is used to measure the proportion of true positives
among all of the model’s positive predictions.

Recall =
TP

TP + FN
(15)

Out of all actual positives, recall quantifies the percentage
of true positives that the model properly detected.

F1 Score = 2× Precision×Recall

Precision+Recall
(16)

It is difficult to evaluate classification model performance
accurately when imbalanced datasets are present. Conventional
accuracy measures could have a bias towards the majority
class, which could conceal the model’s actual effectiveness.
Given this, another reliable metric for assessing detection
performance is the F1 measure. The F1 score is especially
useful for imbalanced datasets because it achieves a balance
between precision and recall.

B. Results

The precision, recall, F1 score, and accuracy of our model
are shown in Fig. 10 on the validation dataset during the
training process across 500 epochs. The model was trained for
500 epochs, and checkpoints were saved periodically based
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Fig. 13. Relative Traffic Activity

on validation performance. After analyzing the training and
validation accuracy trends, it was observed that the validation
accuracy stabilized around the 400th epoch with minimal
fluctuations and close alignment to the training accuracy.
Therefore, the checkpoint corresponding to this range was
selected for testing, as it demonstrated the best generalization
performance. The results demonstrate that every metric per-
forms consistently and promisingly, with an accuracy rate of
around 99%. This indicates that the model is effectively trained
and demonstrates strong performance even on unseen data
during training. In Fig. 11, we present a confusion matrix to
visualize the performance of a model for classifying traffic and
no traffic. The findings demonstrate that the model accurately
identifies 2140 out of 2141 traffic instances, resulting in an
accuracy of 99.9%. Fig. 12 shows the model performance on a
few vehicle passage events on a real dataset. Red dashed lines
show the model predictions for label 0 (no traffic) and label 1
(traffic). The main goal of our model is to identify the arrival
of a leading wheel (wheel 1) and the trailing wheel (wheel 2)
of a vehicle. The arrival of wheel 1 is indicated by a signal
peak, followed by a subsequent peak of wheel 2. Our model
is able to correctly identify the vehicle passage event starting
from the arrival of wheel 1 and ending on the passage of
wheel 2 as shown in zoomed in part of the Fig. 12. The model
is also clearly able to distinguish between the noise and the
actual event. In order to further investigate the efficacy of our
proposed method, we computed a qualitative representation
of traffic activity per hour for the full 96-hour real dataset
starting from January 21, 2022, at 09:30 AM, as shown
in Fig. 13. The results demonstrate how well our proposed
approach captures hourly and daily traffic trends. Notably,
there are noticeable variations in patterns from day to night and
weekdays to Sundays, which closely correspond with expected
traffic trends. It is important to note that the values in Fig. 13
do not represent exact vehicle counts but rather a qualitative
traffic intensity based on SOP variations. Additionally, we
compared the relative traffic activity detected by our method
with the statistics obtained from the experimental setup [22]
and our manually labeled dataset from different portions of the
96-hour dataset. The results showed that our method provides

a high correlation with observed traffic trends, indicating its
effectiveness in detecting relative changes in traffic activity.

VI. CONCLUSION AND FUTURE WORK

This study presents a significant advancement in traffic mon-
itoring applications, highlighting the effectiveness of utilizing
existing terrestrial optical networks, empowered with deep
learning, as a smart sensing grid for road vehicle detection
based on SOP measurements. The proposed smart architecture
integrates sensing functions into data and service channels
with low-cost hardware at the network nodes. Due to the
polarized nature of SOP variations, they can be observed on
10G data channels by extracting a portion of the received
signal without disrupting data transmission. We monitor the
SOP variations by utilizing a 10G commercial transceiver and
a polarization beam splitter, ensuring the setup remains simple,
cost-effective, and easily integrated into the network nodes.
The monitored SOP data is then fed into our proposed deep
learning-based model, which detects road vehicles based on
SOP variations. Our methodology can reliably detect road
vehicles with 99% accuracy, serving as a foundational step
in developing an automated traffic monitoring system. This
approach offers an intelligent, cost-effective alternative to
SOP detection using coherent transceivers and is particularly
suitable for metro network segments where 10G channels
are still widely utilized. Future work involves incorporating
more advanced simulation techniques to explicitly analyze
and address the effects of superposition caused by multiple
vehicles. This approach provides deeper insights into how SOP
variations from different vehicles interact, further enhancing
the system’s robustness and accuracy in detecting and classi-
fying vehicles in complex traffic scenarios.
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