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Abstract
The behaviors of many complex systems, from nanostructured materials to animal colonies, are governed by local events/ 
rearrangements that, while involving a restricted number of interacting units, may generate collective cascade phenomena. Tracking 
such local events and understanding their emergence and propagation in the system is often challenging. Common strategies consist, 
for example, in monitoring over time parameters (descriptors) that are designed ad hoc to analyze certain systems. However, such 
approaches typically require prior knowledge of the system’s physics and are poorly transferable. Here, we present a general, 
transferable, and agnostic analysis approach that can reveal precious information on the physics of a variety of complex dynamical 
systems starting solely from the trajectories of their constitutive units. Built on a bivariate combination of two abstract descriptors, 
Local Environments and Neighbors Shuffling and TimeSmooth Overlap of Atomic Position, such approach allows to (i) detect the 
emergence of local fluctuations in simulation or experimentally acquired trajectories of multibody dynamical systems, (ii) classify 
fluctuations into categories, and (iii) correlate them in space and time. We demonstrate how this method, based on the abstract 
concepts of local fluctuations and their spatiotemporal correlations, may reveal precious insights on the emergence and propagation 
of local and collective phenomena in a variety of complex systems ranging from the atomic- to the macroscopic-scale. This provides a 
general data-driven approach that we expect will be particularly helpful to study and understand the behavior of systems whose 
physics is unknown a priori, as well as to revisit a variety of physical phenomena under a new perspective.
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Significance Statement

Many phenomena in Nature originate from local fluctuations or rare dynamical transitions that amplify in cascade events with dras
tic large-scale effects. From the brittle fracture of atomic materials to rapid turns in bird flocks and animal colonies, local events are 
dominant in complex systems but are also difficult to track and predict. Here, we describe a general and abstract data-driven analysis 
approach that, starting solely from experimental or simulation trajectories of the constitutive units, provides fundamental insights on 
the emergence and amplification of dominant fluctuations in complex multibody systems from the atomic- to the macroscale. 
Building on the general concepts of local fluctuations and spatiotemporal fluctuations’ correlations, this method can help shedding 
light onto a variety of complex physical phenomena.
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Introduction
Complex systems, as an ensemble of interacting units, are charac
terized by nontrivial internal dynamics that are often challenging 
to unveil. From atomic to macroscopic sizes, global trends often 
hide local events, fluctuations, or instantaneous perturbations 
that, although rare, can trigger interesting behaviors (1, 2). A beau
tiful example is the boson peak in amorphous solids (3), that is, an 
excess in the heat capacity whose microscopic origin is attributed 
to the emergence of dynamical defects or locally ordered struc
tures in uniformly disordered systems (4, 5). Local perturbations 
of the atomic/molecular structure around a critical point are 

also at the origin of phase transition or nucleation phenomena 
(6, 7). Material properties, e.g. the brittle or ductile macroscopic 

deformation, are frequently controlled by the emergence and 

amplification of atomic-level defects (8). Even on larger scales, 

the collective behavior observed, for example, in active colloids 

converting selective energies into motion (9, 10), in bacterial col

onies, fish banks, or bird flocks can be controlled by local pertur

bations or events that involve a restricted number of individuals 

(2, 11, 12). Understanding how local fluctuations may emerge, 

their correlation and amplification in space and time, and how 

they may determine emergent collective behaviors has, therefore, 
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important implications in many fields and in the comprehension 
of complex systems in general.

Although crucial, localizing rare events and understanding the 
mechanisms at the root of emergent properties still present some 
unsolved challenges. Indeed, this requires to (i) unambiguously 
identify and (ii) classify such fluctuations according to their na
ture. In recent years, the increased volume of data generated by 
molecular simulations has led to a growing interest in the develop
ment of machine learning (ML)-based methods that are capable of 
identifying, within high-dimensional datasets, those local events 
revealing a disruption of structural and dynamical environments 
in both metals and soft matter (13–15). Numerous studies and con
sistent efforts have been focused on tracking local events/fluctua
tions rising from the time-space evolution of observed variables 
(2, 16, 17). Several methods, such as the change point detection 
(18), eigenvalue spectrum (19), critical slowing-down (20, 21), dy
namic network biomarkers/markers (DNB) (22, 23), have been 
adopted to distinguish critical transition points between two 
steady states. Within this framework, the selection of an adequate 
descriptor emerges as a primary task for effectively detecting fluc
tuations. Successful results have been obtained from system- 
based descriptors, i.e. tailor-made on specific system properties 
(24, 25), thus dependent on prior knowledge about system’s fea
tures. However, the goal is often to retrieve the dynamics of sys
tems whose features are not a priori known, whereby general 
descriptors, e.g. based only on the mutual arrangements or move
ments of neighbor units, may show wider applicability (26–31). 
Among them, an advanced representation of atomic environ
ments is provided by the Smooth Overlap of Atomic Position 
(SOAP) (32). Coupled with ML approaches, SOAP has enabled the 
characterization of diverse systems at equilibrium (33–35), includ
ing soft disordered assemblies (13, 30, 36–38) and metals (39–42). In 
the philosophy of tracking the time-space evolution of local 
events/fluctuations, two general descriptors have been recently 
developed: Local Environments and Neighbors Shuffling (LENS) 
(43) and TimeSOAP (τSOAP) (44). By keeping track of units along mo
lecular dynamics (MD) trajectories and any changes within their 
local environments, i.e. neighborhoods, LENS and τSOAP have 
been demonstrated to carefully characterize the dynamics of a 
wide range of systems albeit describing different local features 
(40, 43–45). LENS has been conceived to capture local reshuffling 
and permutation events that cannot be easily captured with other 
descriptors (e.g. SOAP) (43, 46). At the same time, LENS cannot cap
ture local structural reconfigurations in the neighborhood of each 
unit in the system, being a permutationally variant and structurally in
variant descriptor (43). On the other hand, τSOAP detects local var
iations in the order/disorder of the neighbors of every unit in the 
system. However, while keeping track of local structural reconfi
gurations, τSOAP cannot capture, e.g. local permutations and re
shuffling: Vice versa, it is a permutationally invariant and 
structurally variant descriptor (44). The complementarity of LENS 
and τSOAP opens the opportunity to capture different types of local 
events and study their correlations, thus unveiling precious infor
mation on the physics of a variety of complex systems by an ab
stract and purely data-driven approach.

Here, we present an abstract and general analysis based on a 
bivariate time-series obtained via the combination of the LENS 
and τSOAP descriptors, that we call LEAP. Using different case 
studies of systems on different scales and with different internal 
complexities, we demonstrate how the LEAP analysis allows to 
(i) detect dominant local fluctuations occurring in complex dy
namical systems of any types, (ii) classify such fluctuations based 
on their physical nature, and (iii) correlate them in time and space. 

Simply starting from experimental or simulation trajectories of 
the constitutive units, such analysis can provide unique informa
tion on the physics of a variety of complex dynamical systems in 
an exquisitely agnostic and data-driven manner. We tested it to 
study various types of complex dynamical systems ranging from 
the atomic to the microscopic scale. The obtained results demon
strate how the presented bivariate approach can efficiently pro
vide crucial insights, which can be useful to understand the 
mechanisms underpinning a variety of physical phenomena 
and, also, to trace them back to the spatiotemporal correlations 
between the local fluctuations that animate the systems. This 
provides us with a precious tool and a robust approach to explore 
and improve our understanding of complex systems whose phys
ics is not a priori known, as well as to revisit known physical phe
nomena under a new light.

Results and discussion
The bivariate LEAP analysis
In this work, we demonstrate the potential of the bivariate 
LENS-τSOAP (LEAP, for ease) time-series to unravel complex phys
ical phenomena occurring in a range of systems with different in
herent dynamical behaviors. As test cases, we study several types 
of prototypical systems in and out of equilibrium, dominated by 
rare-local, rather than collective nonlocal, events. We prove the 
generality of such an approach, analyzing both simulations and 
experimentally collected trajectories ranging from the atomic to 
the microscopic scales.

The philosophy of the analysis relies on considering systems as 
composed of N interacting units (IDs), and on monitoring each of 
them along the trajectory. We show how such “microscopic”—ra
ther than “macroscopic/average”—approach allows to identify 
different types of local and collective events and, consequently, 
to correlate them in space and time thereby providing a thorough 
description of the inherent physics underlying disparate complex 
systems. Figure 1A  shows a representation of two different types 
of local events that can be observed in the trajectories of complex 
systems. Considering ID 22 as an example, we report, on the left, 
an event where the unit is experiencing a “rigid” sliding on the oth
er units, namely a change in its neighbors’ identities (highlighted 
in magenta) without modifying its surrounding structural order: A 
permutationally variant, though structurally invariant, event. For 
the sake of simplicity, we refer to this type of event as a “local dif
fusive fluctuation.” Differently, on the right, the same unit 22 
undergoes a structural rearrangement of its closest neighbors, 
which yet preserve the same identities: Vice versa, a structurally 
variant but permutationally invariant event. This is an example 
of what we mean, for ease, with the term “local structural fluctu
ation.” Noteworthy, in realistic systems, these two different types 
of events are not easy to capture, nor it is easy to distinguish be
tween them. Such fundamental distinctions are relevant in the 
perspective of describing higher-scale dynamical events occur
ring in the systems.

Recently, LENS (43) and τSOAP (44) molecular descriptors have 
demonstrated to accurately detect these local dynamical events 
described above (see Materials and methods for details). As illus
trated in Fig. 1B, LENS and τSOAP are perfectly tailored to capture 
purely diffusive (top) and purely structural (bottom) fluctuations, 
respectively. Although conceived to be different, these two novel 
descriptors are, at the same time, perfectly complementary to 
each other. Motivated by these observations, here we demon
strate how combining LENS and τSOAP into a bivariate time-series 
allows to get a unique characterization of distinct systems.

2 | PNAS Nexus, 2025, Vol. 4, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/2/pgaf038/8003892 by P

olitecnico di T
orino user on 20 M

arch 2025



An illustration of the bivariate time-series (black) defined as 
LEAP = (LENS, τSOAP), namely composed of LENS (red) and 
τSOAP (blue) components, is reported in Fig. 1C. Noteworthy, 
both LENS and τSOAP have been normalized from 0 to 1 in the 
LEAP definition (additional details are provided in the Materials 
and methods section). In the following, we prove the broad applic
ability of our analysis not only in classifying local events occurring 
in the system into different types of local fluctuations but also in 
correlating such different fluctuations in space and time. This al
lows unveiling the overarching behavior in several prototypical 
systems dominated by diverse inherent physics with a growing 
level of internal complexity.

LENS-τSOAP fluctuations at the ice/liquid water 
equilibrium interface
As a first case study, we show the results of the proposed analysis 
on the trajectories of water molecules in a system where ice and 
liquid water coexist in a dynamic equilibrium (Fig. 2).

Figure 2A (top) shows an MD periodic simulation box contain
ing 2,048 TIP4P/Ice water molecules, of which 50% are arranged 
in the crystalline hexagonal ice configuration and the other 50% 
are in the liquid phase. This system is simulated for 100 ns, using 
a sampling time interval of Δt = 0.001 ns, at the melting tempera
ture for the employed TIP4P/Ice water model (47, 48). Herein, we 
focus on 3 ns, extracted from the last part of the 100 ns-long MD 
simulation, and we compute the bivariate LEAP time-series for 
each water molecule (see Materials and methods for computa
tional details). The bivariate time-series dataset, related to all 
the water molecules in the system, clearly shows a linear trend 
(Fig. 2A, Bottom). This means that, in a system characterized by 
two coexisting phases in an unstable equilibrium, the metastable 
interface fluctuations of atoms undergoing phase transitions can 
be described by concurrently occurring diffusive -detected by LENS 
—and structural—captured by τSOAP- fluctuations. The descrip
tion of such metastable interface fluctuations from the bivariate 
LEAP time-series perspective is detailed hereafter.

Calculating the LENS and τSOAP time-series for each ID in the 
system, similar Kernel Density Estimation (KDE) distributions 
can be observed (Fig. 2B): Two peaks, at ∼0.2 and at ∼0.8 intensity, 
emerge in both signals. Therefore, two main domains presenting 

clear dynamic fingerprints can be identified in the system. As a re
sult, an univariate Onion clustering analysis (45) carried out sep
arately on LENS and τSOAP KDEs (see Fig. S1) detects, in both 
cases, ice (lowest descriptors’ intensities), liquid water (highest 
descriptors’ intensity), and solid–liquid interface (intermediate 
values). A detail of the LENS and τSOAP signals related to an ex
ample water molecule, ID 595, is highlighted on each plot in red 
and blue, respectively. The marked signals display a clear corres
pondence between the two time-series: At t ∼ 0.5 ns, the ID 595 
simultaneously undergoes a LENS and τSOAP transition. 
Confirming our previous findings (43, 44, 46), the correspondence 
of the identified domains is a first evidence that both LENS and 
τSOAP descriptors come up to be equivalent in identifying water 
states in phase coexistence.

The projection of the bivariate time-series onto its 2D 
LENS-τSOAP phase space is shown in Fig. 2C for each molecule 
in the system. In such 2D plot, each single point displayed in 
gray is the LEAP value related to a specific water molecule in a pre
cise MD time step (3,000 time steps for 2,048 water molecules, for a 
total of ∼6×106 data points). Projected on this plot, the 
LENS-τSOAP path of the ID 595, chosen as a representative ex
ample, is colored from blue to yellow as time increases. The 
same water molecule (shown with the analogous color code, to
gether with its neighborhood in light cyan) is depicted in the three 
MD snapshots in Fig. 2C while diffusing from the ice (1) to the li
quid phase (3). During the transition, the water molecule moves 
on the 2D phase space along the diagonal meaning that, in this 
case, to every local structural rearrangement (τSOAP) corresponds 
an equivalent change in the local reshuffling dynamics (LENS). 
Similar results have been found by analyzing a longer (50 ns) MD 
trajectory, corresponding to the whole second half of such 100  
ns-long MD simulation (see Fig. S2).

The pathway that molecules’ trajectories follow onto such 
LENS-τSOAP phase space clearly determines the type of correl
ation between diffusive and structural fluctuations. To quantita
tively describe this correlation, we define the following parameter:

χ =
LENS − τSOAP
LENS + τSOAP

. (1) 

Over time, χ allows to measure to what extent the system’s dy
namics is driven by a specific type of fluctuation. When χ ∼ 0, 

A B C

Fig. 1. The bivariate LENS-τSOAP (LEAP) analysis scheme. A) Schematic illustration of two types of local events, i.e. occurring among units (IDs) within a 
neighborhood (outlined with dot circles), that can be observed in the trajectories of complex systems. Local diffusive fluctuation (left): ID 22 changes its 
neighbor’s identities yet preserving the structural order in its surrounding. Local structural fluctuation (right): ID 22 undergoes a structural rearrangement 
without changing the identities of its closest neighbors. B) Intrinsically distinct insights at the root of LENS and τSOAP molecular descriptors. Over time, 
and within a certain cutoff neighborhood, LENS (top) keeps track of changes in each ID’s neighbor list, while τSOAP (bottom) monitors variations in ID’s 
local order. C) LEAP as a bivariate time-series incorporating LENS and τSOAP components.
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LENS and τSOAP changes simultaneously occur. On the 
other hand, χ < 0 and χ > 0 indicate that the unit ID is 
interested by τSOAP-dominated and LENS-dominated fluctua
tions, respectively.

In such a specific case (the simplest we investigate, where LENS 
and τSOAP provide equivalent insights), the average χ is roughly 0, 
as displayed in magenta in Fig. 2D. This points out the correspond
ence between fluctuations in the structural order and in the 
neighbor identities while molecules move across phase transi
tions. However, there are systems exhibiting nontrivial behaviors 
which convey in nonsimultaneous diffusive and structural fluctua
tions and, hence, in a peculiar LENS-τSOAP mismatch, where fur
ther investigations are needed.

Nontrivial dynamical fluctuations on an atomic 
metal surface
As a second case study, we show the results of a LEAP analysis re
lated to a metal copper (Cu) surface which exhibits a peculiar dy
namics even well below the melting temperature (49, 50). The 
system consists of a portion of Cu(211) face-centered cubic 
(FCC) surface, containing 2,400 atoms, simulated for 150 ns using 
a DeepMD-based potential (51) which allows to reach length and 
time scales typically not affordable to DFT calculations (41). In 
particular, this Cu(211) FCC slab has been simulated at T = 600 K 
(T ∼ 1/3 of the Cu melting temperature, see Materials and meth
ods for simulation details), thus near the Hüttig temperature 
where metal surface dynamics can be observed (Fig. 3A). 
Recently, LENS-based analyses have highlighted, for the first 

time, the presence of sparse atoms sliding in a “rigid” manner on 
this surface (43, 46). Interestingly, such fascinating events had 
not been captured before by either looking at the average system’s 
properties or using traditional pattern recognition analyses based 
on structural descriptors, e.g. SOAP (41). This is thus an ideal, 
prototypical example system where local (purely diffusive) fluctu
ations emerge only (predominantly) in the LENS dimension, while 
no evident fluctuations can be observed in the τSOAP one.

Herein, we consider the three top-most layers (995 atoms) of 
the Cu(211) FCC slab described above (see the snapshot in 
Fig. 3B). For each Cu atom considered, we analyze 24 ns extracted 
from the last part of the 150 ns-long MD simulation, sampled 
every Δt = 12 ps. In Fig. 3B (right), we report the whole time-series 
dataset including the 995 LENS, τSOAP, and LEAP signals plotted 
in red, blue, and black, respectively. Contrary to the water case 
of Fig. 2, here the LEAP dataset is far from being linear in the 
LENS-τSOAP space. Such a peculiar nonlinearity is investigated 
by first decoupling the LEAP time-series in its LENS and τSOAP 
components (see Fig. 3C, left). Clearly, the two descriptors display 
diverse trends, as also emphasized by the distinct fingerprints of 
LENS (in red, top-left) and τSOAP (in blue, bottom-left) correspond
ing to the same representative atom (ID 460). Indeed, while LENS 
deviates from the average behavior after ∼15 ns, τSOAP slightly 
enhances. This represents an evident example where the two 
types of local events (diffusive and structural) do not simultan
eously occur.

To deepen this concept, in Fig. 3C (right), we plot the whole 
LEAP data set projected onto LENS-τSOAP phase space (995 Cu 
atoms for 2,000 time steps, for a total of ∼2×106 data points 

A B

C D

Fig. 2. LEAP analysis in Ice/liquid water phase coexistence. A) LEAP time-series dataset related to 3 ns extracted from a 100 ns-long MD trajectory (from 
95 ns to 98 ns, sampling time Δt= 0.001 ns) composed of 2,048 water molecules (TIP4P/Ice water model) (47), whose 50% arranged in the crystalline 
hexagonal ice configuration and the remaining 50% in the liquid phase, coexisting in a dynamic equilibrium. Oxygen atoms (OW) are considered as 
centers to compute both LENS and τSOAP. B) LENS and τSOAP time-series, with the related Kernel Density Estimation (KDE) distributions, for all the water 
molecules in the system. Signals related to an example water molecule (ID 595) are highlighted on both LENS and τSOAP components. C) Projection of the 
whole LEAP dataset on the 2D LENS-τSOAP phase space (3,000 time steps for 2,048 water molecules, for a total of ∼6×106 data points). The LEAP path 
related to the ID 595 is colored from blue to yellow as time increases. An analogous color code is used for the example water molecule (ID 595) in the 
representative MD snapshots taken at t = 0 ns (1), t ∼ 0.5 ns (2) and t ∼ 2.8 ns (3), while its neighborhood is colored in cyan. (D) χ parameter. Top: LEAP 
magnitude (left) and χ (right), represented on the 2D LEAP phase space. Bottom: χ parameter over time is reported for all the water molecules in the 
system, with the mean value (χ ∼ 0) highlighted in magenta.
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displayed in gray), and we select the peculiar path corresponding 
to the Cu atom ID 460. Coloring the selected trajectory from blue 
to red as a function of simulation time, we observe that during the 
early MD steps the atom path lies on a domain characterized by 
LENS <0.2 and τSOAP ∼0.2, which describes the atom incorporated 
(and vibrating) in the top-most surface layer (see the MD snapshot 
at t = 0 ns). At roughly 15 ns, the LEAP values increase dramatical
ly: Denoted by (1) in Fig. 3C, the τSOAP signal increases up to ∼0.5, 
while LENS remains ∼0.2. This indicates a first structural transi
tion, namely the detachment of the atom from the surface (MD 
snapshot at 15 ns in Fig. 3C). From 15 to 19 ns, data show a sharp 
enhancement of the LENS component, while the τSOAP value re
mains substantially constant. Denoted by (2), we point out the 
atom sliding along the surface, after the detachment occurring 
at t = 15 ns. In such a “rigid” event, the sliding atom continuously 
changes the IDs of its neighbors (the LENS signal reaches ∼0.8) 
while the structural order in the surrounding atoms exhibits 
only slight variations (sliding trajectory line displayed in the snap
shot (2), colored according to the time evolution from 15 to 19 ns). 
After ∼20 ns of MD, the atom comes back to the starting phase 
space domain (dark red line, overlapped to the dark blue one), 
meaning that it is stably reincorporated in the surface. This ex
ample reveals rare atomic events occurring on a metal surface 
at T = 600 K, which have a characteristic physics. Such an atomic 
surface diffusion is, in fact, characterized by sharp LENS signals, 
not accompanied by appreciable τSOAP fluctuations. At the 
same time, the trajectory analysis reveals that a sliding motion 
is conditioned by a preliminary structural transition, namely a 

sharp τSOAP variation with negligible LENS change (1). 
Interestingly, a sharp τSOAP variation occurs both when the 
atom jumps out and when it is reincorporated in the surface. 
The sliding mechanism follows a τSOAP⟶LENS⟶τSOAP se
quence. As reported in Fig. S3, predominantly LENS or predomin
antly τSOAP fluctuations may emerge also for other atom ID 
trajectories in this system.

In cases like this, where the internal dynamical events are 
characterized by nonsimultaneous LENS and τSOAP fluctuations, 
the sequence and localization of events might be crucial to inves
tigate the physics of the system. This opens, indeed, the possibility 
to understand (i) if there is a correlation between the number of 
structural fluctuations needed to generate diffusive LENS events 
(or vice versa) and (ii) how spatially correlated they have to be in 
such a way to generate a dynamical transition in the material.

Space and time correlations between different 
fluctuation types
A more detailed analysis of the dynamics of the Cu(211) FCC sur
face can be obtained by (i) classifying the local fluctuations emer
ging in the system into structural (τSOAP) and diffusive (LENS) 
fluctuations and (ii) analyzing their correlation in space and 
time. First, in Fig. 4A, we report the LENS and τSOAP time-series 
with the corresponding KDE distributions. An univariate Onion 
clustering analysis (45) of the individual LENS and τSOAP KDEs 
identifies different clusters in the two components, displayed in 
white, light red/blue, and dark red/blue colors (Fig. 4A). Except 

A

C

B

Fig. 3. LEAP fluctuations in a metal surface dominated by rare events. A) Portion of Cu(211) face-centered cubic (FCC) surface, composed of 2,400 atoms, 
simulated by DeepMD-based potential at T = 600 K. Two snapshots, taken at t = 0 ns and t = 15 ns, are colored according to their coordination number. B) 
LEAP time-series dataset related to the three top-most layers (995 atoms) of the Cu(211) FCC surface. Left: Focus on the local neighborhood 
representation of a central Cu atom and its closest neighbors. Right: LENS, τSOAP, and LEAP time-series plotted along the considered 24 ns of the MD 
trajectory. C) Left: LENS and τSOAP time-series, corresponding to all the 995 Cu atoms, are reported. The LENS and τSOAP signals of an example Cu atom 
(ID 460) are highlighted on each plot. Right: 2D LEAP dataset related to the Cu atoms on the three top-most layers (995 atoms for 2,000 time steps, for a 
total of ∼ 2×106 data points). Peculiar trajectory path, related to the example Cu atom (ID 460), colored from blue to red as time increases. Three MD 
snapshots taken at t = 0 ns (atom well incorporated in the surface), t = 15 ns (point (1), atom detaching from the surface) and 15 ns <t < 19 ns (point (2), 
sliding after the detachment), are reported.
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for the crystalline bulk atoms characterized by the lowest descrip
tors’ values (first KDE peaks and white atoms in both MD snap
shots), the other domains do not match each other. For 
example, the two clusters corresponding to the highest LENS 
and τSOAP values (dark red and blue, respectively) do not include 
the same atoms (compare the red and blue atoms in the MD snap
shots in Fig. 4A, right). While the τSOAP intermediate cluster 
(0.25⩽ τSOAP <0.5) well identifies the top-most surface layer, 
this is not the same in the LENS component. This indicates that 
the LENS and τSOAP descriptors detect different types of dynam
ical events on this metal surface. Figure 4B, indeed, shows that 
dominant LENS and τSOAP fluctuations are well distinguishable 
and detectable as two distinct and separated domains in the 
LEAP 2D space. Projected on such phase space, the data points 
that are classified with a CI >95% as LENS outliers are colored in 
red (top-most red cluster in Fig. 4A), while the data points identi
fied as τSOAP outliers with a CI >95% are shown in blue (top-most 
blue cluster in Fig. 4A).

It is interesting to look into the temporal correlations between 
LENS (red) and τSOAP (blue) fluctuations. Going back to the LEAP 
time-series, this classification (τSOAP vs. LENS fluctuations) al
lows us to color atoms based on the dynamical event they are ex
periencing over time (predominantly τSOAP, predominantly LENS 
or simultaneously occurring). On the right side of Fig. 4B, two ex
ample LEAP time-series (magnitude) for two representative atoms 
are reported in black: LENS and τSOAP (outliers) fluctuations are 
identified in red and blue bands, respectively. As clearly shown 
in both plots (see also Fig. S4), the selected IDs experience several 
structural fluctuations (sequence of blue bands) before sliding on 
the metal surface (red bands). Extending this analysis to all the 
atoms visiting the outlier (relevant fluctuation) regions, we can 
obtain a quantitative characteristic time estimation for the 
LENS and τSOAP fluctuations occurring in the system. For each 
atom crossing the τSOAP fluctuation region (blue domain in 
Fig. 4B), we compute the mean time interval (τ) between two suc
cessive τSOAP events, thereby obtaining the cumulative distribu
tion functions (CDFs) shown in Fig. 4C (see Materials and 
methods for technical details). The characteristic transition times 
(τ∗, Fig. 4C, left) of the structural reordering are reported by distin
guishing atom trajectories visiting the τSOAP outlier region 
(dashed blue line) from their subset also experiencing the sliding 
event (solid blue line). In addition, the characteristic curve related 
to the sliding events is displayed (in red). It is worth noting that the 
probability to observe τSOAP (blue) or LENS (red) fluctuations in 
the system follows the typical Poisson distribution, which is ex
pected for rare transition events. In detail, Fig. 4C (left) confirms 
the rare nature of sliding events which, indeed, happen less fre
quently than the structural reordering: 19 ns and 0.5 ns are the es
timated characteristic times of sliding and rearrangement before 
sliding, respectively. Furthermore, the blue CDFs reveal that the 
characteristic transition time scale of structural fluctuations is 
slightly shorter when atom’s rigid surface motion (LENS fluctu
ation) follows after (τ∗ = 0.3 ns for the solid blue, while τ∗ = 0.5 ns 
for the dashed blue line). This shows how, in this system, a local 
diffusive LENS event is always anticipated by a set of blue fluctu
ations occurring with a frequency that is ∼65–70% higher than the 
normal one (namely, compared to the average frequency ob
served for blue fluctuations in general in the system). Figure 4C 
(right) also shows the number (∼49) of τSOAP structural reordering 
transitions preceding the observation of every atomic sliding 
(LENS event) on the surface. This indicates that in a surface where 
structural fluctuations are ubiquitous, observing one rigid atomic 
sliding on the surface is a rare event (see also Materials and 

methods) that, statistically, is observed when one atom undergoes 
a set of τSOAP that are considerably more packed in time (more 
frequent) than what happens on average.

These data provide a mechanistic picture in terms of temporal 
correlation between the different types of fluctuations character
izing such a system. As a next step, we also investigate the spatial 
correlation between them. Figure 4D reports the probability dens
ity to observe structural events within a certain distance from dif
fusive events. Data show the presence of clear peaks, with the first 
one in correspondence of the interatomic distance (a ∼3.6 Å in FCC 
Cu). This means that atoms, during the sliding motion, are close to 
IDs which undergo a reconstruction transition. A closer look at this 
phenomenon is provided in the Movie S1. For each ID in each MD 
time step, the plot of Fig. 4E shows (on the left) the relationship be
tween the ID LENS value and the τSOAP mean value of its neigh
bors, and vice versa (on the right), between the ID τSOAP value 
and the LENS mean value of its neighbors (additional correlations 
are reported in Fig. S5). The two distributions show how, while 
LENS fluctuations require, in general, neighbors’ τSOAP values 
higher than the average, τSOAP fluctuations do not necessarily 
need high neighbors’ LENS values. Altogether, this data demon
strate how the sliding events identified as LENS fluctuations are 
(i) anticipated in time by structural (τSOAP) reconfigurations being, 
in intensity and frequency, higher than the average and (ii) charac
terized in space by local rearrangements of close neighborhoods.

The data reported herein demonstrate how classifying fluctua
tions into different categories and correlating them in space and 
time hold a great potential in revealing the physics underpinning 
complex system. The potential of the proposed approach can be 
emphasized by the comparison with other approaches often 
used to study the dynamics, e.g. the time-lagged Independent com
ponent analysis (tICA) (52, 53). By projecting the high-dimensional 
input space—typically coming from MD trajectories—to a low- 
dimensional linear subspace which maximizes the autocorrel
ation of the input coordinates, tICA is an outstanding method to 
shed light on the dynamics of many complex systems. Since con
ceived to best differentiate between slowly equilibrating popula
tions, however, tICA might lead to discard the fastest degrees of 
freedom, such that the slowest timescales can be better estimated 
(see Figs. S6 and S7). As a result, the fastest transitions/fluctuations 
might not be correctly represented. This is exactly where the po
tential of the analysis herein presented comes in. LENS and 
τSOAP descriptors are, per se, already capable of preserving any 
changes of local environments, from the slowest to the fastest 
ones. Incorporating them into a bivariate time-series allows to 
take a further step, that is, the classification and correlation of dy
namic domains of different nature (diffusive and structural). This is 
particularly relevant for characterizing the behavior of systems 
whose underlying physics is unknown, but also to revisit well- 
established physical phenomena, as shown in the following.

Plastic deformation of metals seen under the 
LEAP analysis
To prove the generality of the LEAP analysis, we tested it to revisit 
a well-known phenomenon controlled by the formation and amp
lification of local defects/fluctuations, namely the deformation 
and fracture of metals under tensile stress.

As a reference case, we consider a bulk of copper (Cu) FCC crys
tal containing 2,744 atoms and subjected to a constant strain rate 
at T = 300 K. Figure 5A shows the stress–strain curve alongside the 
potential energy profile obtained from the MD simulation of a 
periodic box using an Embedded atom method (EAM) potential 
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(54)(see Materials and methods section for details). The plot clear
ly shows the transition from the elastic to the plastic deformation 
phase (after ∼110 ns of MD and ϵ > 0.11). We use the LEAP analysis 
to gain insights into one reference plastic event (occurring at 
∼130–145 ns, as highlighted in Fig. 5A). Figure 5B shows a zoom 
in the temporal evolution of the LEAP (magnitude) time-series, re
vealing a pronounced peak at ∼138.88 ns. Interestingly, the de
composition of such LEAP signal in its LENS (Fig. 5C) and τSOAP 
(Fig. S8) components demonstrates that such LEAP fluctuation is 
governed by the LENS component, that is, by diffusive events 
(neighbors reshuffling) rather than by structural reconfigurations. 
This is consistent with the traditional view of plastic deformations 
in metals that proceed predominantly through dislocation planes, 
as also supported by the findings in Fig. 5D, where temporal and 
spatial correlation analyses are reported. The data demonstrate 
the collective and concerted nature of the fluctuations that con
trol the deformation of the material under tensile stress after en
tering the plastic region. In particular, the plastic deformation, 
controlled by the motion of the dislocation planes respect to 
each other, is reflected by sharp LENS fluctuations that are sub
stantially simultaneous in time and correlated in space: They oc
cur within ∼5 ps (see Fig. 5D) and with a distance corresponding to 
the interatomic spacing (a), as shown in the inset of 
Fig. 5D. Figure 5E shows that the dislocation first nucleates in 
the system and, when the nuclei grow, collective motions of 
planes emerge (identified by the red domains in the central green 
rectangle); Then, after the sliding of the dislocation planes, the 

system comes back and rests. Lastly, Fig. 5F provides a 3D re
presentation of the sliding regions, identifying rows (in red) of 
high-LENS atoms corresponding to the dislocation vectors.

The system herein discussed, used as a proof of concept case, 
proves the reliability of the LEAP analysis scheme. This example 
demonstrates how, in a purely agnostic manner and simply rely
ing on the concept of local fluctuations and their spatial and tem
poral correlations, it is possible to revisit and reconstruct 
nontrivial complex and collective phenomena such as those 
underpinning the well-known dislocation motion that control 
the plastic deformation in metals.

Into the physics of complex active matter systems 
with LEAP
Lastly, we show how a LEAP analysis can provide insights into the 
physics of complex active matter systems whose trajectory may 
be obtained experimentally rather than by MD simulations.

As a case study, we use Quincke rollers: Dielectric colloidal 
(polystyrene) particles immersed in a conducting fluid subjected 
to an external vertical DC electric field (E), as illustrated in 
Fig. 6A (17). In this system, an increase of E enhances the fluctua
tions of particle polarization vectors P, promoting particles rolling 
on the xy plane. Recent studies have demonstrated how interest
ing collective phenomena, such as activity waves, vortices, etc., 
may emerge and propagate in a quiescent population of such col
loidal particles in conditions where E is weaker than Ec, the 

A

C D E

B

Fig. 4. Time-space correlation between diffusive and structural fluctuations using LEAP. A) LENS and τSOAP time-series, computed for the three 
top-most layers (995 Cu atoms) of the Cu(211) FCC surface, with the corresponding KDE distributions. Univariate Onion clustering (45) is applied. The 
identified clusters are reported using different colors in both LENS (top) and τSOAP (bottom). The MD snapshots reported on the right, taken at the same 
time step (t ∼ 11 ns), are colored according to the identified clusters, respectively. B) Left: Projection of the LEAP dataset on the 2D LENS-τSOAP phase 
space. LENS and τSOAP outlier domains are colored in red and blue, respectively. Right: Time-series of the LEAP magnitude (black) for two example IDs. 
The transit through LENS and τSOAP outlier domains (red and blue regions shown on the left) are identified with red and blue bands, respectively. C) 
Characteristic time scale (τ∗) estimation for LENS and τSOAP fluctuations. Left: Cumulative distribution functions (CDFs) for the mean time interval (τ) 
between successive τSOAP fluctuations related to (i) trajectories visiting the blue region in (B) (dashed blue line), (ii) the subset of (i) crossing the red region 
in (B) after the blue one (solid blue line); (iii) CDF related to the time interval between LENS fluctuations occurring in the system (red line). Right: CDF for 
the number of τSOAP fluctuations preceding a LENS fluctuation. D) Space correlation between LENS and τSOAP fluctuations. x-axis: Distance between 
atoms lying in the LENS outlier region and atoms in the τSOAP outlier region, where (a) is the interatomic distance (a ∼3.6 Å in FCC Cu). E) Left: ID LENS 
value vs. τSOAP mean value of its neighbors. Right: ID τSOAP value vs. LENS mean value of its neighbors. Blue and red points correspond, respectively, to 
the blue and red domains in (B).
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threshold value promoting the motion of an isolated particle (17). 
Here, we consider the optical microscope movie reported by Liu 
et al. (17), where an activity wave emerges and flows directionally, 
through a field of view of 700 × 700 μm2 containing n= 6,921 par
ticles over 0.25 s of image acquisition. From this movie, we obtain 
a trajectory of T = 312 frames using the Python package Trackpy 
(see snapshot in Fig. 6A) (55). Of these, we retain only the first 
200 frames in the analysis (the portion of the movie in which the 
wave passage is observed). From the IDs’ positions along the tra
jectory, we compute the LENS and τSOAP time-series for each par
ticle, as plotted in Fig. 6B (complete technical details are provided 
in Materials and methods).

In both time-series, the high-density peaks in the KDEs can be 
isolated from the low-density high-intensity domains depicted 
by the red and the blue regions of Fig. 6B (see Fig. S9 for technical 
details). The high-density peaks, characterized by low-intensity 
signals, are related to the characteristic diffusive (top) and struc
tural (bottom) vibrations of the particles in the system, which re
present the “background” LENS and τSOAP noise, respectively. 
Conversely, the low-density domains of the time-series identify 
fewer particles undergoing intense LENS or τSOAP fluctuations in 
the system (high-intensity signals). Coloring these LENS/ 
τSOAP-fluctuating particles in each frame (in red and blue, respect
ively) allows visualizing the collective wave flowing left-to-right 
throughout the system (Fig. 6B: right). Both LENS and τSOAP com
ponents capture the wave propagation but not exactly in an iden
tical manner.

The projection of the LEAP dataset on the 2D LENS-τSOAP 
phase space (6,921 particles for 200 frames, for a total of ∼  
1.3×106 data points, Fig. 6C) allows to distinguish four different do
mains based on the thresholds discriminating the relevant fluctu
ations from noise in the LENS and τSOAP dimensions (clustering 
details in Fig. S9). Coloring the trajectory frames of Fig. 6D 

according to such a classification shows the quiescent particles 
in the system as depicted in white (corresponding to the bottom- 
left region of Fig. 6C: LENS ⩽0.056 and τSOAP ⩽ 0.169). These are 
particles that just vibrate, whose motion constitutes the intrinsic 
noise in the system. The lilac domain, which includes all the par
ticles in the core of the wave, corresponds to the region near the 
diagonal in the LENS-τSOAP phase space of Fig. 6C (LENS >0.056 
and τSOAP >0.169). In this region, every particle undergoing a 
LENS fluctuation is also undergoing a τSOAP fluctuation (struc
tural+diffusive fluctuations). The two most interesting domains 
are those colored in red (LENS >0.056 and τSOAP ⩽0.169) and 
blue (LENS ⩽0.056 and τSOAP >0.169), which identify particles 
undergoing fluctuations that are LENS- and τSOAP-dominated, re
spectively. In particular, the red cluster (LENS fluctuations) corre
sponds to the wavefront (the wave moves left-to-right, see also 
Movie S2), a region where LENS-dominated fluctuations appear 
as simultaneous in time and correlated in space. This indicates 
that the first event that anticipates the passage of the wave in 
this system is a LENS event (namely, every particle that becomes 
part of the wave, first undergoes a LENS fluctuation).

We can follow the trajectory of every particle in the system over 
time on the LENS-τSOAP phase space. Figure 6E shows one proto
typical trajectory of one example particle (ID 106): Very similar 
paths are observed for the other particles in the system. In general, 
the trajectories follow a characteristic path on the 2D LEAP phase 
space, where the particles move sequentially red ⟶ blue ⟶ lilac 
(where they spend ∼20–40 ms) ⟶ blue ⟶ white (where they re
turn to a quiescent configuration). In this system, where the raw 
trajectory obtained from the movie can be sampled at most every 
1 ms (17), the first LENS events (i.e. the passage through the red re
gion) are very short-lived and last at most ∼1–2 ms. For every par
ticle in the system, we calculated the χ parameter (as defined in Eq. 
1) over time. Figure 6F reports the χ parameter over time for all the 

A

E F

B C D

Fig. 5. LEAP analysis of bulk metal (Cu) during constant strain rate at T = 300 K. A) Stress–strain curve (black) over time with corresponding potential 
energy profile (red), indicating the regions of elastic and plastic deformation. Inset showing the simulated bulk copper structure, with arrows indicating 
the direction of strain. B) Time-series of the LEAP signal identifying one detail of the plastic phase highlighted in (A). C) Time-series of the LENS signal 
within the same timeframe, color-coded by intensity thresholds (LENS >0.3 in pink, LENS >0.6 in red); stars mark snapshots detailed in (E). This panel 
reveals how changes in LENS values dominate the LEAP signal over time. D) Temporal and spatial correlation analysis of high-intensity LENS signals, 
showing that most LENS spikes occur within 5 ps of each other and tend to cluster spatially (the inset shows the radial distribution function, g(r), of atoms 
with high LENS signals, illustrating their spatial proximity). E) Snapshots corresponding to the marked events in (C), color-coded to show the intensity of 
their LENS signals, highlighting both spatial and temporal correlations. F) 3D representation of atomic positions with high LENS signals, emphasizing 
regions of coherent plastic deformation, identified as dislocation lines.
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particles in the system that remain in the core of the wave (lilac re
gion) for at least 20 ms. All trajectories are phased in such a way 
that the point in t − t0 = 0 (in the x-axis) corresponds to the instant 
in which every particle undergoes the first LENS event, entering the 
front of the wave. The data show how for all particles entering the 
wave, the first LENS-dominated fluctuations annihilate within ∼3  
ms (the majority of them, within 1 ms). Only sparse new LENS fluc
tuations are seen to emerge after 5 ms of observation. These iden
tify the sparse, local (nonspatially correlated) LENS fluctuations 
that may emerge in the body of the wave (red particles within 
the lilac domain in the snapshots of Fig. 6D). Interestingly, when 
the LENS fluctuations annihilate, every particle undergoes a sharp 
τSOAP fluctuation (χ ∼ − 1). This demonstrates how all the particles 
in the system follow a red ⟶ blue ⟶ lilac pathway (like the tra
jectory of ID: 106 shown in Fig. 6E).

These results provide a demonstrative example of how such 
abstract detection–classification–correlation of local fluctuations 
LEAP approach can provide precious insights into the behavior 
and the internal phenomena occurring in complex dynamical sys
tems whose physics is unknown a priori.

Conclusions
In this article, we demonstrate how the combination of comple
mentary general descriptors allows elucidating the physical 
behavior of diverse complex systems by leveraging the concept 

of local fluctuations. In the philosophy of monitoring units 
along the trajectory, the bivariate LEAP time-series incorporates 
two complementary fingerprints, LENS and τSOAP, which detect, 
respectively, permutationally variant/structurally invariant 
(diffusive) and permutationally invariant/structurally variant 
(structural) local events (Fig. 1). Essentially, they are fluctuations 
that typically characterize the local neighborhoods in the trajec
tory of complex systems.

Trajectories linearly moving on the 2D LEAP phase space iden
tify molecules (or, in general, units) whose neighbors undergo local 
structural rearrangements while changing, at the same time, their 
local dynamics (in terms of dynamical reshuffling). This is the 
case, for instance, of phase transitions in the MD simulation of 
ice/liquid water at phase coexistence (Fig. 2), where structural 
and diffusive local events simultaneously occur. However, some 
physical phenomena may be governed by predominantly diffusive 
(LENS-dominated) or by predominantly structural (τSOAP- 
dominated) fluctuations, namely by local dynamical events that 
can be captured exclusively by the LENS or τSOAP component of 
our LEAP bivariate time-series. Interestingly, such phenomena 
can be described by strongly nonlinear trajectory paths on the 
2D LEAP phase space, thus identifying nontrivial dynamical 
events (from Figs. 3 to 6). In particular, LENS-dominated fluctua
tions identify “rigid” diffusive dynamical events, where units slide 
while changing, at every time step, the identity of their closest 
neighbors which, nonetheless, preserve their structural order. 

A

D E F

B C

Fig. 6. LEAP analysis of a microscopic experimental system: Quincke rollers. A) Top: Schematic illustration of Quincke rollers, i.e. dielectric colloidal 
particles in a weakly conductive fluid and exposed to a vertical DC electric field, E. Bottom: Top view of the experimental system, extracted from an optical 
microscope movie (17). n= 6,921 particles are tracked for 312 ms, with a sampling time of 1 ms (45). B) LENS and τSOAP time-series related to all the 
tracked particles, with the corresponding KDEs. The first 200 ms are considered. The tails of both the KDEs are isolated: LENS threshold = 0.056 (dashed 
line), τSOAP threshold = 0.169 (dashed line). They allow visualizing the collective wave flowing left-to-right throughout the system, shown in red for LENS 
(top-right) and in blue for τSOAP (bottom-right) in the two example snapshots (t = 50 ms). C) Projection of the LEAP dataset on the 2D LENS-τSOAP phase 
space (6,921 particles for 200 time steps, for a total of ∼ 1.3×106 data points). Based on the thresholds reported in (B), four different domains can be 
distinguished. D) Two example snapshots are colored according to the identified domains shown in (C). E) Representative example trajectory (particle ID 
106) following a characteristic path on the LEAP 2D phase space. Sixty milliseconds of the trajectory are shown, colored as time increases. F) χ parameter 
related to all the particles in the system remaining in the core of the wave (lilac domain in (C)) for at least 20 ms (2,680 particles in total). t0 corresponds to 
the first instant in which every particle enters the red region in (C), that is, the front of the wave.
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On the other hand, τSOAP-dominated fluctuations identify events 
where units do not dynamically reshuffle within close neighbor
hoods, but structurally rearrange (local rattling events). 
Leveraging such a classification in different types of fluctuations 
allows correlating such different events in space and time, obtain
ing precious information for understanding a variety of phenom
ena. For example, in the case of the atoms sliding on the Cu(211) 
FCC surface seen in Figs. 3 and 4, our data demonstrate how every 
Cu atom undergoing a surface diffusive LENS event (Fig. 4B: in red) 
sees a drastic increase in the frequency of the structural τSOAP 
fluctuations (blue) preceding such event (Fig. 4C: frequency aug
mented by ∼65% compared to the average τSOAP fluctuations in 
the system).

At the same time, the spatial correlation between the local 
events is also fundamental. In several cases discussed herein, it 
is interesting to observe where local fluctuations may occur. 
Besides the temporal one, a spatial relationship may emerge be
tween diffusive and structural fluctuations, e.g. in the case of 
Cu(211) FCC surface (Fig. 4D, E). Or even, local fluctuations 
may occur simultaneously in time and well localized in space. 
This identifies collective events, as demonstrated by the 
LENS-dominated fluctuations which describe the sliding of the 
dislocation planes in metals entering the plastic region (Fig. 5). 
Lastly, the active matter system case study proves how such 
a data-driven approach, based on the very simple and general 
concept of local events and their correlations, may help in eluci
dating the behavior of complex systems whose trajectories are ex
perimentally obtained (Fig. 6). Our LEAP analysis on Quincke 
rollers, indeed, unveils a well-defined sequential mechanism 
followed by all the particles involved in the wave passage: 
First, colloids undergo a local LENS-dominated fluctuation; then, 
the τSOAP-dominated fluctuations grow in the system; finally, 
particles return to a quiescent state via τSOAP fluctuations 
(Fig. 6E, F). This provides relevant insights into the origin and 
mechanisms underpinning the evolution and annihilation of 
such a phenomenon.

With a similar spirit as some causality detection methods 
(56–61), these results demonstrate how such abstract LEAP ana
lyses can provide crucial insights useful to understand the mech
anisms underlying a variety of physical phenomena and to predict 
their emergence in the system in space and time. In general, we 
envisage that this LEAP analysis approach will constitute a pre
cious tool to explore and understand complex systems whose 
physics is not a priori known, as well as to revisit known physical 
phenomena under a new light.

Materials and methods
Trajectories and preprocessing
Complete data and details concerning all molecular models and 
simulation parameters used to get the MD trajectories, as well 
as the complete LEAP analysis code, are available at https:// 
github.com/GMPavanLab/LEAP and at https://doi.org/10.5281/ 
zenodo.14851069.

All the setup details described in the following have been sum
marized in the Table S1.

Ice/liquid water phase coexistence
The atomistic ice/liquid water phase coexistence system is simu
lated employing the direct coexistence approach at the solid/li
quid transition temperature, as recently used (43, 44, 46). The 
TIP4P/ICE water model (47) is chosen to model both the ice Ih 

and the liquid water phase. In the coexistence model, the two 
phases are put in contact in the same simulation box. In the initial 
configuration, half of the water molecules (n = 1,024) are in the sol
id ice phase, the other half (n = 1,024) in the liquid phase. The MD 
trajectory analyzed herein is obtained by simulating the system at 
constant pressure (1 atm) at the melting temperature for the em
ployed water model (T = 267.5 K). The v-rescale thermostat with a 
time constant of t = 20 ps is used. For the pressure coupling, the 
c-rescale barostat is employed with a time constant of t = 20 ps 
(48). The GROMACS software is used (62). A 100 ns-long MD pro
duction run is performed using the same setup of Ref. (44), with 
a sampling time interval of Δt = 0.001 ns and an integration time 
step of 2 fs. The simulation is carried out in semiisotropic condi
tions, applying the pressure only in the direction perpendicular 
to the ice/water interface, thus reproducing the strictly correct en
semble for the liquid–solid equilibrium simulation according to 
the direct coexistence technique (63). The results reported in 
Fig. 2 are obtained by extracting, from the 100 ns-long simulation, 
3 ns (from 95 ns to 98 ns, for a total of 3,000 frames). Firstly, the MD 
trajectory has been preprocessed by considering only the oxygen 
atoms (OW) of the water molecules in the system as representa
tive centers in the LEAP analysis, i.e. for the calculation of LENS 
(43) and τSOAP (44) time-series. For each of the 2,048 oxygen atoms 
in the system, LENS and τSOAP are computed on the sampled MD 
configurations using a cutoff of 6 Å (second minimum of the 
OW-OW radial distribution function, thus enclosing the first two 
solvation shells) and smoothed using a moving average with 
width = 0.2 ns (200 frames). This analysis has been repeated also 
analyzing the whole second half of the same 100 ns-long MD tra
jectory, i.e. from 50 to 100 ns, using a sampling time interval of 
Δt = 0.1 ns (for a total of 500 frames) and a smoothing width = 8  
ns (80 frames), as reported in Fig. S2.

FCC Cu(211) surface
The atomistic model of copper FCC surface Cu(211) studied herein 
is composed of n = 2,400 atoms arranged in eight layers that model 
a portion of an infinite surface through periodic boundary condi
tions. A 150 ns-long MD trajectory is obtained using a deep neural 
network potential of the Cu(211) surface built training a Neural 
Network with the DeepMD platform (51) on DFT data (for details, 
see Ref. (41)). The MD simulation is carried out at T = 600 K and 
with a sampling time interval of Δt = 6 ps using the LAMMPS soft
ware (64). The MD simulation setup is described in detail in 
Ref. (41). For the analysis reported in Figs. 3 and 4, 24 ns are con
sidered (96–120 ns, for a total of 2,000 frames extracted every 
Δt = 12 ps along the MD trajectory). The analysis is conducted on 
the three top-most layers (995 atoms), since we are interested in 
the dynamics of the surface and most of the bulk remains sub
stantially immobile during the MD simulation (41). For each of 
the 995 surface Cu atoms, a cutoff of 6 Å is used to compute the 
LENS and τSOAP descriptors using a Δt time lapse of 12 ps. Both 
signals are smoothed by a moving average, using a width = 120  
ps (10 frames).

Plastic deformation of bulk Cu
The third system studied is a bulk of copper (Cu) FCC crystal com
posed of 2,744 atoms (see Fig. 5) and simulated at T = 300 K. The 
MD simulations are conducted with the LAMMPS software pack
age (64) using an EAM potential specifically designed for copper 
(54). The MD trajectories are saved using a sampling time interval 
of Δt = 5 ps. This potential has been proved to be reliable in mim
icking the phenomena occurring within these materials during a 
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tensile fracture test (e.g. it reproduces a Young modulus for cop
per consistent with the experiments, etc.) (65). The system under
goes minimization and then equilibration at 300 K for 2 ns, 
employing a Nose–Hoover thermostat and barostat to control 
the temperature and pressure (66). A time step of 1 fs is used in 
the simulation. Following equilibration, a uniaxial tensile deform
ation is applied along the x-direction with a strain rate of 0.1% 
strain per ns. The pressure in the y- and z-directions is maintained 
at zero during this deformation. The deformation simulation has 
been carried out for a total of 150 ns. The LEAP analysis is con
ducted for the entire simulation duration. However, due to the na
ture of the specific events being investigated, a brief time interval 
of 0.1 ns (from 138.85 ns to 138.95 ns) is reported in Fig. 4, showing 
details of the signals corresponding to the raw (LEAP and LENS) 
data. A cutoff of 8 Å is used in the LEAP analysis, which has 
been found as the best compromise between computational effi
ciency and the amount of information retained.

Experimental Quincke rollers trajectory
The Quincke rollers trajectory analyzed (in Fig. 6) is obtained from 
an optical microscope movie published by Liu et al. (17). 
Employing image recognition and the Trackpy tracking code 
(55), the x and y coordinates related to 6,921 colloidal particles 
for 312 consecutive frames have been obtained, as described in de
tail in Ref. (45). Since the collective propagation occurs in the first 
part of the trajectory, in the analysis we considered the first 200 
consecutive frames (0–200 ms). For each particle in the system, 
LENS and τSOAP are computed using a cutoff of 40 pixels (∼ 56μ, 
that takes into account the neighborhood at least up to the third 
minimum of the radial distribution function). A moving average 
is used to smooth the signal with width = 2 ms (two frames).

LENS and τSOAP data analysis
For each individual representative center i in each system, the 
LENS (43) and τSOAP (44) values are computed over time along 
the trajectory.

As detailed in Ref. (43), being Ct
i an array containing all the in

dividual identities (IDs) of the particles/individuals surrounding 
the center i within a sphere of radius rcut at the time step t, the 
LENS value, indicated by δi, is defined as

δt+Δt
i =

#(Ct
i

􏽓
Ct+Δt

i − Ct
i

􏽔
Ct+Δt

i )

#(Ct
i + Ct+Δt

i )
, (2) 

where Δt is the time interval between two consecutive sampled 
time steps. The first and the second terms of the numerator are 
the mathematical union and intersection, respectively, of the 
neighbor IDs within rcut from the center i at the time t and t + Δt. 
Thus, for each individual center i, δi(t) monitors the ith local envir
onment changes in terms of neighbor identities/individuals along 
the trajectory, ranging from 0 to 1 for persistent to highly dynamic 
neighborhoods, respectively.

Indicated by λi, the instantaneous τSOAP value is defined as

λt+Δt
i ∝

���������������

2 − 2pt
ip

t+Δt
i

􏽱

, (3) 

where pt
i is the full SOAP feature vector associated to the ith indi

vidual center within rcut at the time step t, as described in detail in 
Ref. (44). In a nutshell, λi(t) tracks the variations of the ith SOAP 
vector over time, that is, to what extent the atomic environment 
related to each center in the system changes at every consecutive 
time interval Δt in terms of SOAP power spectrum.

For each system’s individual center, therefore, two time-series 
were obtained, LENS (δi(t)) and τSOAP (λi(t)), tracking over time the 
neighbor list and the structural variations, respectively. In order 
to reduce the noise, both δi(t) and λi(t) time-series are smoothed 
by using a moving average with different time widths depending 
on the analyzed system (apart where explicitly stated otherwise). 
A time width of 200 frames is used for the ice/liquid water phase 
coexistence. To better detect the emergence of rare and often 
short-time fluctuations, smaller widths are chosen for the other 
systems. A time width of 10 and 2 frames have been chosen for 
the Cu(211) surface and the experimental Quincke rollers system, 
respectively. Thus, smoothed 〈δi(t)〉 and 〈λi(t)〉 time-series were ob
tained. No smoothing is applied in the case of bulk Cu during con
stant strain rate. For the sake of simplicity, we refer to 〈δi(t)〉 as δi(t) 
and to 〈λi(t)〉 as λi(t).

For each trajectory, both δi(t) and λi(t) are first normalized from 
0 to 1 and, then, combined in the LEAP bivariate time-series de
fined as

LEAPi(t) = (δi(t), λi(t)). (4) 

LEAPi(t), thus, is a bicomponent array related to the individual i, 
which keeps track of neighbor’s identity changes (first compo
nent) and of structural rearrangement (second component) over 
time.

Characteristic time estimation for LENS and 
τSOAP fluctuations
A quantitative characteristic time estimation of the diffusive and 
structural events occurring in the FCC Cu(211) surface is provided 
in Fig. 4C. In detail, for each Cu atom experiencing a τSOAP fluctu
ation, i.e. crossing the τSOAP outlier domain depicted in blue 
in Fig. 4B, we compute the mean time interval (τ) between two suc
cessive structural events. Thus, we obtain (i) the probability distri
bution function of the structural fluctuation frequency. For those 
atoms visiting the LENS outlier domain (Fig. 4B, red), the τSOAP 
fluctuations are only considered before the diffusive (LENS) 
event. Furthermore, (ii) a subset consisting of Cu atoms that 
visit the LENS outlier domain after undergoing τSOAP fluctua
tions is also considered. This allows to distinguish τ in the atoms 
undergoing LENS fluctuations after several structural rearrange
ments. The mean time intervals (τ) between consecutive τSOAP 
events are used to build the cumulative distribution functions 
(CDFs) Pn⩾1:

Pn⩾1 = 1 − e−τ/τ∗, (5) 

where τ∗ is the characteristic time scale of structural (τSOAP) 
fluctuations. The obtained CDFs are thus reported Fig. 4C, on 
the left (dashed blue line for (i), solid blue line for the subset 
(ii)). In addition, (iii) the probability distribution of LENS fluctua
tions occurring in the system is obtained and the related CDF is 
reported with a red line (Fig. 4C, left): In this case, τ∗ represents 
the characteristic time scale of diffusive (LENS) fluctuations. 
The same approach is used to compute the CDF related to the 
number of structural fluctuations needed before observing a dif
fusive event (see Fig. 4C, right). All these Pn⩾1 distributions turned 
out to be well fitted by the typical Poisson distribution expected 
for rare events.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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