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A B S T R A C T

For decades, a number of nonlinear control methodologies such as backstepping control and model predictive
control have been studied to guarantee the stability and performance of systems under control. Most of these
designs were based on local coordinates like Euler angles or quaternions, coming with inherent limitations
such as singularities and unwinding phenomena, thereby hindering practical applications where large angle
rotational maneuvers are commanded. In this paper, we propose a novel adaptive geometric tracking controller
based on the logarithmic map of 𝖲𝖮(3), the special orthogonal group, for aggressive maneuvers of a quadrotor
subject to uncertain mass and inertia matrix. By directly synthesizing control laws on 𝖲𝖮(3), issues raised by
local coordinates can be circumvented. Furthermore, we provide theoretical proofs establishing asymptotic
tracking and the boundedness of all signals in the closed-loop system. We enhance robustness by applying
projection operators to adaptive laws, addressing nonparametric uncertainties like sensor noise. Through
simulation, our proposed controller outperforms prior geometric controllers in tracking aggressive trajectories,
particularly excelling in the face of uncertainties.
1. Introduction

In recent years, quadrotors have garnered substantial attention and
demonstrated significant utility in various aspects of our daily lives,
spanning from entertainment, such as aerial photography, to meeting
industrial demands such as delivery of goods and infrastructure inspec-
tion, just to list a few [1–4]. This is attributed by and large to their
high mobility, vertical take-off and landing capability, as well as low
maintenance cost. Nonetheless, the design of controllers for quadrotors
toward trajectory tracking or attitude stabilization is non-trivial due to
the inherent nonlinearities and strong coupling properties in quadrotor
dynamics, let alone uncertainties and disturbances, which are ubiqui-
tous in real-world flight operations [5]. The challenge escalates even
more when the quadrotor is assigned to perform aggressive maneuvers,
particularly for specific tasks such as aerial acrobatics or rapid changes
in direction [6,7].

For decades, a number of nonlinear control methodologies have
been studied to guarantee stability and performance of systems under
control; see, e.g., Backstepping Control (BSC) [8], Sliding Mode Control
(SMC) [9], Model Predictive Control (MPC) [10], and Disturbance-
observer-based Control (DOBC) [11]. Most of these designs were based
on local coordinates such as Euler angles and quaternions to describe

∗ Corresponding author.
E-mail addresses: weibin.gu@polito.it (W. Gu), stefano.primatesta@polito.it (S. Primatesta), alessandro.rizzo@polito.it (A. Rizzo).

the rotational kinematics and dynamics of quadrotors. Despite merits,
such as quaternions being the minimal representation without singular
points [12], and Euler angles providing an intuitive representation for
3-D rotations, local coordinates come with inherent limitations that
hinder practical applications, especially for aggressive maneuvers [13].
Specifically, the Gimbal lock (or singularity), arisen from Euler an-
gles, results in the loss of one degree of freedom in 3-D orientation
systems [14]; Unwinding phenomena related to quaternion representa-
tions can cause rotations through large angles before stabilizing at the
desired attitude, even with a close initial state [15]. These issues are
particularly undesirable in aerospace applications, as they may induce
catastrophic instability.

Geometric control techniques have recently been proven to be
effective in tackling these issues, especially in the execution of aggres-
sive maneuvers; see, e.g., [16–22]. Instead of using local coordinates,
geometric controllers are designed directly on the special orthogonal
group 𝖲𝖮(3), which is a nonlinear manifold on which the configuration
space of attitude dynamics evolves. For example, one of the first
applications of geometric control to quadrotors was [16], where a
controller was proposed on the nonlinear configuration Lie group. As
such, through the intrinsic characterization of the geometric properties
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of nonlinear manifolds, singularities and ambiguities associated with
ocal coordinates can be circumvented, thereby enabling the execution
f large-angle rotational maneuvers.

While notable advancements have been made in geometric control
for quadrotors, crucial gaps persist, particularly in addressing uncer-
tainties and disturbances, as well as in selecting configuration error
unctions. Like other model-based control approaches, the effectiveness

of the control law derived from 𝖲𝖮(3) hinges on the precise knowledge
of the system parameters. Additionally, the exploration of configuration
error functions for control synthesis remains an open topic in geometric
control, sometimes chosen without careful consideration. Although
some studies draw on the results in [16] (see, e.g., [1,3,18,20,23]), it

as observed that the chosen configuration error vector can lead to
egraded performance with increasing initial attitude error, prompting
 new error function proportional to the rotation angle for consistent
racking performance [17]. Another alternative for the configuration

error function is the logarithmic map of 𝖲𝖮(3) [24]. Thanks to the
nherent ability to transform geodesics on 𝖲𝖮(3) into straight lines in
ts Lie algebra so(3), the logarithmic map establishes a proportional
elationship between the magnitude of the attitude error vector and the
otation angle, with a higher proportionality constant than that used
n [17], hence facilitating accelerated convergence rates for tracking
rrors [22,25]. However, existing studies in this direction focus only

on the nominal case, neglecting uncertainties and disturbances, which
could potentially compromise controller performance or even lead to
instability in the worst condition.

In this work, we present a novel robust adaptive geometric con-
troller for aggressive quadrotor maneuvers in the presence of para-
metric uncertainties, namely the quadrotor mass and inertia matrix.
While there are existing works using the special Euclidean group 𝖲𝖤(3)
on spacecraft control [26,27] taking into account the coupling be-
tween the translational and rotational dynamics, a common practice
in quadrotor control is to decompose the problem into two distinct
subtasks: position tracking in R3 and attitude tracking in 𝖲𝖮(3) [28].
As illustrated in Fig. 1, our proposed method utilizes BSC for thrust de-
termination and the logarithmic map of 𝖲𝖮(3) to represent the attitude
error for torque determination. In contrast to the existing approaches
n [21,22] that employ the logarithmic map for nominal conditions,

we present a fully nonlinear control synthesis with the capability to
address uncertainties, thereby extending its applicability beyond lin-
earized and uncertainty-free scenarios. Two adaptive laws are derived
through Lyapunov analysis aimed at dynamically compensating for
uncertainties in the mass and inertia matrix. Along with the use of
projection operators [29], we show asymptotically stable tracking and
he boundedness of all signals in the closed-loop system even when

there exist non-parametric uncertainties such as sensor noise [30]. The
main contributions of this paper are summarized as follows:

(i) We developed a novel adaptive geometric controller, leveraging
the logarithmic map of 𝖲𝖮(3) and BSC, for executing aggressive
maneuvers without requiring precise knowledge of the mass and
inertia matrix of the quadrotor.

(ii) We proved almost globally asymptotically stable tracking and the
boundedness of all signals in the closed-loop system through Lya-
punov analysis in the presence of non-parametric uncertainties.

(iii) We showed through simulation that the proposed controller out-
performs prior studies [16,17,22] in tracking aggressive trajecto-
ries, particularly excelling in the face of uncertainties.

The remainder of this paper is organized as follows. Section 2
reviews the existing research in the field of geometric control for
quadrotors. Section 3 introduces the notations and preliminary con-
cepts used in the design of our controller, followed by the problem
statement of this study. As the main results of this paper, Sections 4 and
5 elaborate the control synthesis of our proposed adaptive geometric
tracking control for position and attitude with stability guarantees,
2 
respectively. Theoretical proofs on asymptotic stability and the bound-
dness of all signals in the closed-loop system are also given therein.
ection 6 demonstrates simulation results within MATLAB/Simulink

environment, showcasing superior performance in tracking aggressive
trajectories compared to prior geometric controllers, especially in han-
dling parametric uncertainties. Finally, the paper draws to a close in
Section 7 where we outline some directions for our future research.

2. Prior studies

Research endeavors in the domain of geometric control pertaining
to quadrotors can be broadly categorized into two classes: one focuses
on addressing uncertainties and disturbances, whereas the other centers
around the selection of configuration error functions. A comparative
analysis of previous studies is summarized in Table 1.

The first line of research aims to extend the results in [16] by taking
into account uncertainties and disturbances. For example, [18] adopted
ntegral control terms to guarantee almost global asymptotic stability
hen there exist fixed disturbances in both translational and rotational

dynamics; [19] proposed a robust adaptive tracking controller without
he knowledge of the inertia matrix and guaranteed the boundedness of
racking errors in the presence of unstructured disturbances; [20] de-

veloped adaptive control laws that guarantees asymptotic convergence
of tracking errors for modeling error and uncertainties in dynamical
equations; and [31] proposed an adaptive law for the geometric con-
troller to estimate the center of gravity of the quadrotor, which differs
from the geometric center. Other applications of tiltrotor [32] and load
transportation quadrotor [1,3,23] can also be considered to fall into this
class of studies.

Another avenue of research contributes to exploring configura-
tion error functions, an ongoing subject in geometric control. These
functions continue to be extensively examined and, at times, selected
without meticulous consideration [17]. For example, the configuration
error functions chosen in [16] may result in diminished performance
as the initial attitude error tends to grow. To counteract this issue,
several alternatives have been proposed to ensure consistent tracking
performance by building a proportional relationship to the rotation
ngle. [17] adopted a revised version of [16] for the stabilization of a

quadrotor subject to unknown inertia matrix; [25] designed a quadratic
ost function in the Lie algebra through its gradient for the control on
ie groups thanks to their symmetry structure such that faster error
onvergence can be achieved; [21] proposed a Proportional-Integral-

Derivative (PID) controller directly on so(3), the Lie algebra associated
with 𝖲𝖮(3), with rotation modeled using exponential coordinates to
perform complex acrobatic maneuvers; [33] employed a homogeneous

ethod to address the finite-time control problem of a quadrotor on a
Lie group, utilizing exponential and logarithmic maps; [22] presented
a geometric tracking controller based on the logarithmic map of 𝖲𝖮(3),
achieving faster convergence speed of tracking error; [34] studied
the performance of several attitude error vectors for the control of
a quadrotor subject to rotor failures; and [35] proposed a hybrid
attitude controller which guarantees global exponential stability and
overcomes the topological obstacles of global control on 𝖲𝖮(3) [13].
Nonetheless, almost none of these studies incorporate robust or adap-
tive designs to handle uncertainties and disturbances. Recently, [36]
introduced an estimator-based approach that uses the logarithmic map
f 𝖲𝖮(3) to address disturbances in the tracking of multiple quadrotors.
owever, their controller was not evaluated under aggressive maneu-
ers. Our work differentiates itself by explicitly handling parametric
ncertainties through adaptive laws.

3. Preliminaries and problem statement

Henceforth, we use case-sensitive bold symbols to represent multi-
dimensional variables, e.g., 𝐚 stands for a vector, while 𝐀 stands for
a matrix. The 𝑛-dimensional Euclidean space is denoted by R𝑛 with
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Fig. 1. Overall architecture of the proposed robust adaptive geometric tracking controller.
Table 1
A comparative analysis of selected literature on geometric control based on 𝖲𝖮(3) with applications to quadrotors. We compared the error function for
rotational configuration (2nd column), control methods for handling uncertainties (3rd column), and obtained results (4th column; Num: numerical, Sim:
simulation, Exp: experimental). We kindly direct readers to Section 3 for detailed explanations of notations used.
Rotational error Citation Robustness and adaptability Results

1
2
t r (𝐈 − 𝐑𝑑

𝑏 )

[16] (2010) n/a Num
[18] (2013) Integral control for handling constant disturbances Num, Exp
[20] (2014) Adaptive laws for unmodeled dynamics Num, Exp
[23] (2018) Control of quadrotor load transporting via rigid cables Num
[1] (2019) Control of a quadrotor-pulley-load system Num
[3] (2021) Control of quadrotor load transporting via elastic cables Num

2 −
√

1 + t r (𝐑𝑑
𝑏 ) [17] (2010) Stabilization under an unknown inertia matrix Num

1
2
t r [𝐆(𝐈 − 𝐑𝑑

𝑏 )], 𝐆 ≻ 0 [19] (2013) A robust adaptive law for inertia matrix and bounded disturbances Exp
[31] (2020) A robust adaptive law for center of gravity Num

1
2
t r [𝐊(𝐈 − 𝐑𝐑⊤

𝑑 )], 𝐊 ≻ 0 [32] (2017) Control of a tiltrotor Num

‖ log(𝐑𝑑
𝑏 )

∨
‖

[21] (2015) n/a Exp
[33] (2017) n/a Sim
[22] (2021) n/a Sim, Exp
[25] (2022) n/a Num
[36] (2023) A disturbance observer for handling time-varying disturbances Sim

Hybrid error [35] (2016) n/a Sim, Exp
the Euclidean norm ‖ ⋅ ‖. The transpose operator is denoted by (⋅)⊤.
The trace, determinant, and eigenvalues of a matrix are denoted by
t r (𝐀), det (𝐀), and 𝜆(𝐀), respectively. The Frobenius norm of a matrix
is denoted by ‖𝐀‖𝐹 =

√

t r (𝐀𝐀⊤). The positive and semi-positive
definiteness of a matrix is denoted by 𝐀 ≻ 0 and 𝐀 ⪰ 0, respectively.
The symbol 𝐞3 denotes a vector in the unit 2-sphere S2 = {𝐚 ∈ R3 ∶
‖𝐚‖ = 1} and 𝐈𝑛 denotes 𝑛 × 𝑛 identity matrix. The hat operator is
denoted by (⋅)∧ ∶ R3 → so(3) and inversely, the vee operator is
denoted by (⋅)∨ ∶ so(3) → R3, where so(3) represents the Lie algebra
associated with a special orthogonal group 𝖲𝖮(3) = {𝐑 ∈ R3×3 ∶ 𝐑⊤𝐑 =
𝐈3, det (𝐑) = 1}. The symbol ∞ denotes the space of bounded functions
and 𝑘 (𝑘 = 0, 1, 2,…) denotes the differentiability class of a function
if its derivatives up to 𝑘th order exist and are continuous. To avoid
confusion, the estimated variables are denoted by ̄(⋅) instead of the
conventional ̂(⋅), and the error variables are denoted by ̃(⋅).

3.1. Quadrotor kinodynamic model

The continuous-time kinodynamic model of a quadrotor can be
written in terms of differential equations as

 𝐩̇ = 𝐯, (1)
 𝐯̇ = 𝑔𝐞3 −

1
𝑚
𝑓𝐑𝐞3 +  𝐟ext, (2)

𝐑̇ = 𝐑 𝝎∧, (3)
3 
𝐉 𝝎̇ = − 𝝎∧𝐉 𝝎 + 𝝉 + 𝝉ext, (4)

where left superscripts {} and {} indicate inertial and body-fixed
reference frame, respectively, for state variables following North-East-
Down (NED) and Front-Right-Down (FRD) conventions. 𝐩, 𝐯 ∈ R3

denote the position and linear velocity, 𝝎 = [𝑝, 𝑞 , 𝑟]⊤ ∈ R3 denotes
the body-fixed angular rate, 𝐑 ∈ 𝖲𝖮(3) denotes the rotation matrix
from {} to {} constructed by Euler angles 𝜙, 𝜃 , 𝜓 (i.e., roll, pitch,
yaw) following the ‘‘3-2-1’’ convention, 𝑓 ∈ R>0, 𝝉 ∈ R3 denote the
thrust and torques produced by the four rotors (i.e., control inputs),
 𝐟ext ∈ R3, 𝝉ext ∈ R3 denote the external forces and torques such as
aerodynamic drag, 𝑚 ∈ R, 𝐉 ∈ R3×3 denote the quadrotor mass and
inertia matrix, and 𝑔 ∈ R denotes the gravity constant. Note that the
hat operator on 𝝎 in (3) is equivalent to the skew-symmetric operator,
which is the Lie algebra of 𝖲𝖮(3),

𝝎∧ =
⎡

⎢

⎢

⎣

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

⎤

⎥

⎥

⎦

∈ so(3), (5)

and the rotation kinematics can also be expressed in form of other
3-D rotation representation such as Euler angles and quaternions at
the cost of singularities and unwinding phenomenon as discussed in
Section 1. In the sequel, we omit the left superscripts that indicate
reference frames for brevity unless needed to clarify ambiguities.
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Remark 1. It is worth noting that the modeling of forces and torques
has been simplified by omitting the motor model, which can be typi-
cally represented as follows:

𝑓𝑖 = 𝑘𝑓 𝑛
2
𝑖 (6)

𝜏𝑖 = 𝑘𝜏𝑛
2
𝑖 (7)

𝑛̇𝑖 = 𝑘𝑚(𝑛𝑐 𝑚𝑑𝑖 − 𝑛𝑖) (8)

for 𝑖 = 1, 2, 3, 4, where 𝑓𝑖, 𝜏𝑖 denote the force and torque generated by
ach rotor, 𝑛𝑖, 𝑛𝑐 𝑚𝑑𝑖 denote the executed and commanded angular speeds
f each rotor in revolutions per minute, and 𝑘𝑓 , 𝑘𝜏 , 𝑘𝑚 denote the motor

characteristic constants normally obtained through experimentation.
These expressions have been omitted in (2) and (4), as the control
inputs are directly formulated as forces and torques. Nonetheless, as
will be shown in Section 6, we verify the performance of the controller
with motor dynamics incorporated into the simulation, despite these
dynamics not being explicitly modeled during the controller design
phase. Moreover, given the scope of this study on parametric uncer-
tainties in aggressive quadrotor maneuvers, the explicit handling of
external forces and torques is beyond the scope of the current work
and is left for future work.

3.2. Exponential and logarithmic map

The exponential map relates a matrix Lie group to its associated Lie
algebra. For rotations, it can be computed through Rodrigues’ rotation
formula [37] as

𝐑 = exp(𝝓∧) = 𝐈3 + sin(𝜙)𝐚∧ + (1 − cos(𝜙))𝐚∧𝐚∧, (9)

where 𝝓 = 𝜙𝐚, 𝐚 ∈ S2 is the rotation axis, and 𝜙 ∈ R is the rotation
ngle.1

The inverse of the exponential map is called logarithmic map [24]
enoted as

𝝓 = log(𝐑)∨, (10)

which can be computed from

𝜙 = ar ccos
( t r (𝐑) − 1

2

)

, (11)

= 𝜙𝐚 =
𝜙

2 sin(𝜙) (𝐑 − 𝐑⊤)∨. (12)

Remark 2. The exponential map from so(3) to 𝖲𝖮(3) is surjective only,
which means that there exist multiple candidates of so(3) that produce
the same element of 𝖲𝖮(3). This can be revealed by the fact that 𝐑 =
exp((𝜙 + 2𝜋 𝑛)𝐚∧), with 𝑛 being an arbitrary integer and the ambiguity
in the sign of 𝜙 due to the even function cos(𝜙). However, we can
confine the map so that it is bijective by: (i) limiting |𝜙| < 𝜋, and (ii)
determining the correct sign of 𝜙 by verifying if the rotation matrix
generated by such 𝜙 using (9) is correct; if not, reversing the sign of 𝜙
and recalculating the rotation axis. □

Finally, the left Jacobian of 𝖲𝖮(3) [24] is defined as

𝐉𝑙(𝝓) = ∫

1

0
exp(𝝓∧)𝛼𝑑 𝛼 (13)

=
sin(𝜙)
𝜙

𝐈3 +
(

1 − sin(𝜙)
𝜙

)

𝐚𝐚⊤ +
1 − cos(𝜙)

𝜙
𝐚∧, (14)

and its inverse is given by

𝐉𝑙(𝝓)−1 =
𝜙
2
cot

(𝜙
2

)

𝐈3 +
(

1 − 𝜙
2
cot

(𝜙
2

))

𝐚𝐚⊤ −
𝜙
2
𝐚∧. (15)

1 Note that there is a slight abuse of notation here, since 𝜙 denotes the
ngle of rotation in view of axis-angle representation and has nothing to do

with the roll angle previously defined for quadrotor attitude.
4 
Remark 3. There exist singularities associated with 𝐉𝑙 using the above
quations due to the appearance of cot (𝜙∕2) at 𝜙 = 2𝜋 𝑛 with 𝑛 being
n arbitrary integer. To address this, we can use the approximation
𝑙(𝝓) ≈ 𝐈3 +

1
2𝝓

∧ and 𝐉𝑙(𝝓)−1 ≈ 𝐈3 −
1
2𝝓

∧ [24]. □

3.3. Problem statement

Our control objective is to achieve asymptotically stable tracking for
a quadrotor of a given, possibly aggressive reference trajectory 𝐱ref(𝑡)
in the presence of an uncertain mass and inertia matrix while ensuring
that all signals in the closed-loop system remain bounded.

To this end, we present a robust adaptive geometric tracking con-
roller as illustrated in Fig. 1, which consists of: (i) a backstepping

controller for thrust determination and providing attitude reference
in terms of body 𝑧-axis) to the inner-loop attitude controller, (ii) a
eometric controller based on the logarithmic map of 𝖲𝖮(3) to gener-

ate commanded torques for attitude tracking, and (iii) two adaptive
laws for handling uncertainties in mass and inertia matrix, robus-
ified by projection operators. Throughout the control synthesis in

Sections 4 and 5, we make the following assumptions and drop the
time-dependent notation for simplicity.

Assumption 1. The reference trajectory is given in the form 𝐱ref(𝑡) =
[𝐩⊤ref(𝑡) 𝜓ref(𝑡)]⊤ ∈ R4 using the differential flatness property of the
uadrotors [38], which satisfies 𝐱ref(𝑡) ∈ 3, i.e., the derivatives up to

𝐱(3)ref(𝑡) exist and are continuous.

Assumption 2. The derivatives up to the 3rd order of the reference
trajectory are bounded, i.e., 𝐱(𝑘)ref(𝑡) ∈ ∞ (𝑘 = 0, 1, 2, 3).

Assumption 3. The quadrotor mass 𝑚 and inertia matrix 𝐉 are uncer-
tain but slowly time-varying,2 with their variations bounded, i.e., 𝑚̇, 𝐉̇ ∈
∞.

4. Thrust determination for position tracking

In this section, we present the primary results for achieving globally
symptotically stable tracking of position reference in the presence
f uncertain mass through a backstepping formulation. To ensure the
obustness of the adaptive law under nonparametric uncertainties such
s sensor noise, a projection operator is applied to guarantee the
oundedness of estimated parameters and avoid sudden instability.

Theorem 1 (Adaptive Tracking Control for Translational Dynamics). Con-
sider the translational dynamics given by (1), (2), and for a given tracking
ommand 𝐩ref ∈ 3, we define the desired control input (16) and an
adaptive law for mass estimation (17) as

𝐟 = 𝑚̄(−𝐊𝑣𝐯̃ − 𝐩̃ − 𝑔𝐞3 + 𝐯̇𝑟), (16)

̇̄ = 𝛾𝑚𝐯̃⊤(𝐊𝑣𝐯̃ + 𝐩̃ + 𝑔𝐞3 − 𝐯̇𝑟), (17)

𝐯𝑟 = 𝐩̇ref −𝐊𝑝𝐩̃, (18)

where 𝛾𝑚 ∈ R is a positive constant, and 𝐊𝑝,𝐊𝑣 ∈ R3×3 are positive definite
gain matrices. The estimate of 𝑚 is given by 𝑚̄, with the estimation error
defined as 𝑚̃ ∶= 𝑚 − 𝑚̄. The virtual control input 𝐯𝑟 ∈ R3 in (18) is
derived from the backstepping formulation. Then, the zero equilibrium of
ranslational tracking errors (𝐫̃, 𝐯̃) = (𝟎, 𝟎) is globally asymptotically stable,
nd furthermore the mass estimation error 𝑚̃ is uniformly bounded.

2 For instance, in agricultural applications, the weight of a quadrotor with
a sprayer decreases as liquid is dispersed, while for quadrotors with suspended
loads, the inertia varies with changes in load position.
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Proof. To show that Theorem 1 holds, we start with designing the
certainty-equivalent controller by assuming perfect knowledge on 𝑚.
Subsequently, we relax this assumption, accounting for the unknown
mass, resulting in the final control law with adaptation. Defining the
position tracking error as

̃ ∶= 𝐩 − 𝐩ref, (19)

it is straightforward to design a virtual control input (18) such that if 𝐯
perfectly tracks 𝐯𝑟. Hence, the following two Lyapunov conditions are
met:

𝑉1(𝐩̃) = 1
2
𝐩̃⊤𝐩̃ > 0,

̇1(𝐩̃) = 𝐩̃⊤ ̇̃𝐩 = 𝐩̃⊤(𝐯 − 𝐩̇ref) < 0.

Next, define the velocity tracking error as

𝐯̃ ∶= 𝐯 − 𝐯𝑟, (20)

and construct the composite Lyapunov candidate function

𝑉2(𝐩̃, 𝐯̃) = 𝑉1(𝐩̃) + 1
2
𝐯̃⊤𝐯̃ > 0.

We can easily derive the desired (nominal) thrust vector

𝐟 = 𝑚(−𝐊𝑣𝐯̃ − 𝐩̃ − 𝑔𝐞3 + 𝐯̇𝑟) (21)

using backstepping technique [39] along with translation dynamics (2),
such that
̇2(𝐩̃, 𝐯̃) = 𝐩̃⊤ ̇̃𝐩 + 𝐯̃⊤ ̇̃𝐯

= 𝐩̃⊤(𝐯̃ −𝐊𝑝𝐩̃) + 𝐯̃⊤(𝑔𝐞3 −
1
𝑚
𝑓𝐑𝐞3 − 𝐯̇𝑟)

= −𝐩̃⊤𝐊𝑝𝐩̃ + 𝐯̃⊤(𝐩̃ + 𝑔𝐞3 −
1
𝑚
𝑓𝐑𝐞3 − 𝐯̇𝑟)

= −𝐩̃⊤𝐊𝑝𝐩̃ − 𝐯̃⊤𝐊𝑣𝐯̃ < 0.

That being said, under nominal conditions (i.e., 𝑚 is perfectly known),
if we choose the desired thrust and the desired body 𝑧-axis, which shall
be opposite to the thrust direction, as

𝑓 = ‖𝐟‖, (22)

,des = − 𝐟
‖𝐟‖

∈ S2, (23)

then, 𝐩̃, 𝐯̃ will globally asymptotically go to zero for 𝑡 → ∞.
Now, we assume 𝑚 to be unknown and rewrite the certainty equiv-

lent control law (21) by replacing 𝑚 with its estimate 𝑚̄, yielding (16).
To derive the adaptive law for 𝑚̄, we construct a composite Lyapunov
andidate function and take the time derivative as

𝑉3(𝐩̃, 𝐯̃, 𝑚̃) = 𝑉2(𝐩̃, 𝐯̃) + 1
2𝛾𝑚𝑚

𝑚̃2 > 0.

Hence,
̇3(𝐩̃, 𝐯̃, 𝑚̃) = 𝐩̃⊤ ̇̃𝐩 + 𝐯̃⊤ ̇̃𝐯 + 1

𝛾𝑚𝑚
𝑚̃ ̇̃𝑚

(16)
= −𝐩̃⊤𝐊𝑝𝐩̃ + 𝐯̃⊤

(

𝐩̃ + 𝑔𝐞3 +
𝑚̄
𝑚
(−𝐊𝑣𝐯̃ − 𝐩̃ − 𝑔𝐞3 + 𝐯̇𝑟)

−𝐯̇𝑟
)

+ 1
𝛾𝑚𝑚

𝑚̃ ̇̃𝑚. (24)

Recalling Assumption 3, the following equalities hold:
𝑚̄
𝑚

= 1 − 𝑚̃
𝑚
,

̇̃𝑚 = − ̇̄𝑚,

which allow us to further organize (24) as
̇3(𝐩̃, 𝐯̃, 𝑚̃) = −𝐩̃⊤𝐊𝑝𝐩̃ − 𝐯̃⊤𝐊𝑣𝐯̃ +

𝑚̃
𝛾𝑚𝑚

(

− ̇̄𝑚

+𝛾𝑚𝐯̃⊤(𝐊𝑣𝐯̃ + 𝐩̃ + 𝑔𝐞3 − 𝐯̇𝑟)
)

. (25)

By selecting the adaptive law for mass estimation as in (17), it can be
proved that 𝑉̇3(𝐩̃, 𝐯̃, 𝑚̃) ≤ 0, which implies 𝐩̃, 𝐯̃, 𝑚̃ ∈ ∞, but with no
guarantees on asymptotic stability. Nonetheless, we have ̇̃𝐩 = 𝐯̃−𝐊𝑝𝐩̃ ∈
 , 𝑚̄ ∈  from Assumption 3, and 𝐯̇ ∈  from (18) together with
∞ ∞ 𝑟 ∞

5 
Assumption 2. Hence, it can be proved that 𝐯̇ = 𝑔𝐞3 + 1
𝑚 𝑚̄(−𝐊𝑣𝐯̃ −

𝐩̃ − 𝑔𝐞3 + 𝐯̇𝑟) ∈ ∞. From (20), we get ̇̃𝐯 = 𝐯̇ − 𝐩̈ref + 𝐊𝑝 ̇̃𝐩 ∈ ∞.
herefore, 𝑉3 = −2𝐩̃⊤𝐊𝑝 ̇̃𝐩− 2𝐯̃⊤𝐊𝑣 ̇̃𝐯 ∈ ∞, implying that 𝑉̇3 is uniformly
ontinuous. By invoking Barbalat’s Lemma, it can be concluded that
im𝑡→∞ 𝑉̇3(𝑡) = 0, i.e., 𝐩̃, 𝐯̃ → 0 for 𝑡→ ∞. □

Proposition 1 (Robustification of Adaptive Law Using Projection Op-
erator). To improve the robustness of estimation algorithms (such that
parameter drift can be avoided when sensor noise exists in the system), the
daptive law of mass estimation (17) is adjusted as
̇̄ = Pr oj𝛾𝑚 (𝑚̄, 𝑣̃⊤(𝐩̃ + 𝑔𝐞3 − 𝐯̇𝑟 +𝐊𝑣𝐯̃), ℎ),
where Pr oj(⋅) denotes 𝛤 -projection [29], and the continuously differentiable
convex function ℎ ∶ R × R × R → R is chosen as

ℎ(𝑚̄, 𝑚0, 𝜖𝑚) =
𝑚̄2 − 𝑚2

0

2𝜖𝑚𝑚0 + 𝜖2𝑚
,

where 𝑚0 and 𝜖𝑚 are two constant scalar quantities. If 𝑚̄(𝑡 = 0) ∈ 𝛺𝑚 =
{𝑚̄ ∈ R ∶ ℎ(𝑚̄, 𝑚0, 𝜖𝑚) ≤ 1}, then we can conclude 𝑚̄(𝑡) ∈ 𝛺𝑚, or
equivalently ‖𝑚̄(𝑡)‖ ≤ 𝑚0 + 𝜖𝑚,∀𝑡 ≥ 0, guaranteeing the boundedness of
he estimated parameter.

Proof. The readers interested in the proof of the projection operator
are kindly referred to [29,40] for details. □

5. Torque determination for attitude tracking

In this section, we first introduce the dynamics of attitude and
angular velocity error based on the logarithmic map of 𝖲𝖮(3). Then,
we present the main results on achieving almost globally asymptotically
stable tracking of attitude reference in the presence of uncertain inertia
matrix through geometric control synthesis. Lastly, in the same vein as
in Section 4, we also ensure the boundedness of estimation parameters
by projection operator even when nonparametric uncertainties exist.

The desired orientation for attitude control can be expressed in
terms of rotation matrix, which can be derived by using the heading
angle reference and the desired body 𝑧-axis (23) from backstepping
controller as
𝐲𝑐 = [− sin(𝜓r ef ), cos(𝜓r ef ), 0]⊤,
,des = 𝐲∧𝑐 𝐳,des ∕ ‖𝐲∧𝑐 𝐳,des‖,

,des = 𝐳∧,des𝐱,des,
𝑖
𝑑 = [𝐱,des, 𝐲,des, 𝐳,des],

where 𝐑𝑖𝑑 represents the rotation matrix from desired frame {} to
inertia frame {}. This formulation is similar to that in [38], with a
slight difference due to the rotation convention used (here we use ‘‘3-
2-1’’, while in [38] they use ‘‘3-1-2’’). To address the singularity issue
when 𝐲∧𝑐 𝐳,des = 𝟎 or when 𝐲𝑐 and 𝐳,des become parallel, which can
ause significant variations in the rotation matrix for minor changes

in the flat output, we adopt the practical solution from [38]. This
approach involves flipping signs and selecting the solution that aligns
closest to the quadrotor’s actual orientation, ensuring consistent desired
rotation even near singularities. Since 𝐑𝑖𝑑 ∈ 𝖲𝖮(3), we can write

𝐑̇𝑖𝑑 = 𝐑𝑖𝑑
𝝎∧

𝑑∕𝑖,

where subscripts describe the relation of the rotational motion,
e.g., 𝝎𝑑∕𝑖 indicates the rotational motion of {} with respect to {}.

Next, we introduce the definition of attitude and angular velocity
error vector based on the logarithmic map of 𝖲𝖮(3).

Definition 1 (Attitude and Angular Velocity Error Vector). For a given
tracking command (𝐑𝑖𝑑 ,

𝝎𝑑∕𝑖), and current attitude and angular veloc-
ity (𝐑𝑖𝑏,

𝝎𝑏∕𝑖), we define an attitude error vector 𝐫̃ ∶ 𝖲𝖮(3) ×𝖲𝖮(3) → R3

and an angular velocity error vector 𝝎̃ ∶ 𝖲𝖮(3) × R3 × 𝖲𝖮(3) × R3 → R3



W. Gu et al.

𝐫

𝝎

a
f

a

𝐉

𝐑

𝐑

𝐑

t

d

c
f

t
g
e
t

L

U

i
T

m

t

Robotics and Autonomous Systems 188 (2025) 104942 
as

̃ (𝐑𝑖𝑏,𝐑
𝑖
𝑑 ) ∶= log ((𝐑𝑖𝑏)⊤𝐑𝑖𝑑 )

∨ = log (𝐑𝑏𝑑 )
∨, (26)

̃ (𝐑𝑖𝑏,
𝝎𝑏∕𝑖,𝐑𝑖𝑑 ,

𝝎𝑑∕𝑖) ∶= 𝝎𝑑∕𝑏 = 𝐑𝑏𝑑
𝝎𝑑∕𝑖 − 𝝎𝑏∕𝑖. (27)

By Definition 1, we can derive the error dynamics of attitude and
ngular velocity as stated in Proposition 2. Since we are going to
ormulate our main results in the body frame, the 𝝎’s in the sequel are

by default expressed in {}, hence left superscripts are omitted unless
mbiguities must be resolved.

Proposition 2 (Attitude and Angular Velocity Error Dynamics). The
dynamics of 𝐫̃ and 𝝎̃ satisfy
̇̃𝐫 = 𝐉𝑙(𝐫̃)−1𝝎̃, (28)
̇̃𝝎 = 𝐉𝝎̇𝑑∕𝑖 − 𝐉𝝎∧

𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧
𝑏∕𝑖𝐉𝝎𝑏∕𝑖 − 𝝉 , (29)

where 𝐉𝑙(⋅)−1 is the inverse of the left Jacobian as in (15).

Proof. The attitude error dynamics can be derived from (9) by using
the time derivative of matrix exponential

̇ 𝑏
𝑑 = 𝑑

𝑑 𝑡 exp(𝐫̃
∧) = ∫

1

0
exp(𝛼𝐫̃∧) ̇̃𝐫∧ exp((1 − 𝛼)𝐫̃∧)𝑑 𝛼

=
(

∫

1

0
(𝐑𝑏𝑑 )

𝛼 ̇̃𝐫∧(𝐑𝑏𝑑 )
−𝛼𝑑 𝛼

)

𝐑𝑏𝑑 .

Using the definition of left Jacobian of 𝖲𝖮(3) as given in (13) and the
fact that (𝐑𝝓)∧ = 𝐑𝝓∧𝐑⊤ [24], we can rearrange the above equation as

̇ 𝑏
𝑑 (𝐑

𝑏
𝑑 )
⊤ = ∫

1

0

(

(𝐑𝑏𝑑 )
𝛼 ̇̃𝐫
)∧

=
(

𝐉𝑙(𝐫̃) ̇̃𝐫
)∧
. (30)

Meanwhile, we have
̇ 𝑏
𝑑 = 𝐑𝑏𝑑

𝝎∧
𝑑∕𝑏 = 𝐑𝑏𝑑 (𝐑

𝑑
𝑏
𝝎𝑑∕𝑏)∧

= 𝐑𝑏𝑑
(

𝐑𝑑𝑏
𝝎∧

𝑑∕𝑏(𝐑
𝑑
𝑏 )
⊤
)

= 𝝎∧
𝑑∕𝑏(𝐑

𝑑
𝑏 )
⊤ = 𝝎̃∧𝐑𝑏𝑑 .

(31)

Combining (30) and (31) yields the attitude error dynamics (28).
The angular velocity error dynamics can be derived by taking the

ime derivative of (27) as
̇̃𝝎 = 𝑑

𝑑 𝑡 (𝐑
𝑏
𝑑
𝝎𝑑∕𝑖) − 𝝎̇𝑏∕𝑖

= 𝐑̇𝑏𝑑
𝝎𝑑∕𝑖 + 𝐑𝑏𝑑

𝝎̇𝑑∕𝑖 − 𝝎̇𝑏∕𝑖
(27),(31)

= (𝐑𝑏𝑑
𝝎𝑑∕𝑖 − 𝝎𝑏∕𝑖)∧𝐑𝑏𝑑

𝝎𝑑∕𝑖 + 𝐑𝑏𝑑
𝝎̇𝑑∕𝑖 − 𝝎̇𝑏∕𝑖

= − 𝝎∧
𝑏∕𝑖𝐑

𝑏
𝑑
𝝎𝑑∕𝑖 + 𝐑𝑏𝑑

𝝎̇𝑑∕𝑖 − 𝝎̇𝑏∕𝑖.

Multiplying both sides of the equation above by 𝐉 and substituting
𝐉 𝝎̇𝑏∕𝑖 with rotational dynamics (4) yields the angular velocity error
ynamics (29). □

In the sequel, we present the main results of adaptive tracking
ontrol for rotational dynamics and we require the following lemma
or proving asymptotic stability.

Lemma 1 (A Special Case of Barbalat’s Lemma [29]). Let 𝑓 ∶ [0,∞) → R.
If 𝑓 , ̇𝑓 ∈ ∞ and 𝑓 ∈ 𝑝 for some 𝑝 ∈ [1,∞), then 𝑓 (𝑡) → 0 as 𝑡 → ∞.

Theorem 2 (Adaptive Tracking Control for Rotational Dynamics). Con-
sider the attitude and angular velocity error dynamics given by (28) and
(29), we define the desired control input (32) and an adaptive law for inertia
matrix estimation as
𝝉 = 𝐉̄𝝎̇𝑑∕𝑖 − 𝐉̄𝝎∧

𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧
𝑏∕𝑖𝐉̄𝝎𝑏∕𝑖 + 𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ +𝐊𝑤𝝎̃, (32)

̇̄𝐉 = 𝛾𝐽 (𝐞̃𝝎̇⊤𝑑∕𝑖 − 𝐞̃𝝎⊤𝑑∕𝑖𝝎
∧
𝑏∕𝑖 − 𝝎∧

𝑏∕𝑖𝐞̃𝝎
⊤
𝑏∕𝑖), (33)

where 𝛾𝐽 ∈ R is a positive constant, and 𝐊𝑟,𝐊𝑤 ∈ R3×3 are positive definite
gain matrices. The estimate of 𝐉 is given by 𝐉̄, with the estimation error
6 
defined as 𝐉̃ ∶= 𝐉 − 𝐉̄. Let 𝐞̃ ∶= 𝝎̃ + 𝑐𝐫̃ ∈ R3 be a composite error, then
he zero equilibrium of rotational tracking errors (𝐫̃, 𝝎̃) = (𝟎, 𝟎) is almost
lobally asymptotically stable, and furthermore the inertia matrix estimation
rror 𝐉̃ is uniformly bounded if the control parameter 𝑐 ∈ R is selected such
hat

𝑐 ∈

(

0,min
{

√

√

√

√

𝜆𝑟𝜆𝑚
𝜆2𝑀

,
4𝜆𝑟𝜆𝑤𝜚𝑚

4𝜆𝑟𝜆𝑀𝜚𝑚𝜚𝑀 + 𝜆2
𝑤

}

)

, (34)

where 𝜆𝑟 ∶= 𝜆min(𝐊𝑟)r 𝜆𝑤 ∶= 𝜆min(𝐊𝑤) 𝜆𝑤 ∶= 𝜆max(𝐊𝑤), 𝜆𝑚 ∶= 𝜆min(𝐉),
𝜆𝑀 ∶= 𝜆max(𝐉), and 𝜚𝑚, 𝜚𝑀 are the lower and upper bounds of ‖𝐉𝑙(𝐫̃)−⊤‖𝐹 ,
respectively.

Proof. Similar to the proof of Theorem 1, we first derive the certainty-
equivalent control law by assuming perfect knowledge on 𝐉, followed
by the relaxation of such assumption and the adaptive control synthesis.
Let (𝐫̃, 𝝎̃) ∈  × R3, where  = {𝜙𝐚 ∶ |𝜙| < 𝜋 , 𝐚 ∈ S2}, and consider the
yapunov candidate function

𝑉4(𝐫̃, 𝝎̃) = 1
2
𝐫̃⊤𝐊𝑟𝐫̃ +

1
2
𝝎̃⊤𝐉𝝎̃.

By taking the time derivative and plugging it in the attitude and angular
velocity error dynamics (28) and (29), we obtain

𝑉̇4(𝐫̃, 𝝎̃) = 𝐫̃⊤𝐊𝑟 ̇̃𝐫 + 𝝎̃⊤𝐉 ̇̃𝝎
= 𝐫̃⊤𝐊𝑟𝐉𝑙(𝐫̃)−1𝝎̃ + 𝝎̃⊤

(

𝐉𝝎̇𝑑∕𝑖 − 𝐉𝝎∧
𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧

𝑏∕𝑖𝐉𝝎𝑏∕𝑖 − 𝝉
)

= 𝝎̃⊤
(

𝐉𝑙(𝐫̃)−
⊤𝐊𝑟𝐫̃ + 𝐉𝝎̇𝑑∕𝑖 − 𝐉𝝎∧

𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧
𝑏∕𝑖𝐉𝝎𝑏∕𝑖 − 𝝉

)

.

Hence, 𝑉̇4(𝐫̃, 𝝎̃) = −𝝎̃⊤𝐊𝑤𝝎̃ ≤ 0 if the desired (nominal) torque control
input is designed as3

𝝉 = 𝐉𝝎̇𝑑∕𝑖 − 𝐉𝝎∧
𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧

𝑏∕𝑖𝐉𝝎𝑏∕𝑖 + 𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ +𝐊𝑤𝝎̃. (35)

Furthermore, from 𝑉̇4(𝐫̃, 𝝎̃) = 0, we have 𝝎̃ = 𝟎, which implies ̇̃𝝎 = 𝟎.
sing (29) we can further deduce that 𝐉𝝎̇𝑑∕𝑖−𝐉𝝎∧

𝑏∕𝑖𝝎𝑑∕𝑖+𝝎∧
𝑏∕𝑖𝐉𝝎𝑏∕𝑖−𝝉 =

𝟎. Lastly, using the fact that 𝐉𝑙(𝐫̃)−⊤𝐊𝑟 is full-rank and from (35), we
conclude that 𝐫̃ = 𝟎, hence showing that the largest invariant set in
 × R3 is the origin. By LaSalle’s invariance principle, we can draw
conclusions on asymptotic stability.

Then, we consider 𝐉 to be uncertain and therefore we replace it by
ts estimate 𝐉̄ in the certainty-equivalent controller (35), yielding (32).
o derive the adaptive law for 𝐉̄, we consider a composite Lyapunov

candidate function as

𝑉5(𝐫̃, 𝝎̃, 𝐉̃) = 𝑉4(𝐫̃, 𝝎̃) + (𝑐𝐉𝝎̃)⊤𝐫̃ + 1
2𝛾𝐽

‖𝐉̃‖2𝐹

≥ 1
2
𝜆𝑚‖𝝎̃‖2 +

1
2
𝜆𝑟‖𝐫̃‖2 − 𝑐 𝜆𝑀‖𝝎̃‖‖𝐫̃‖ + 1

2𝛾𝐽
‖𝐉̃‖2𝐹

= 𝜻⊤1𝐖1𝜻1,

where
𝜻1 ∶= [‖𝐫̃‖, ‖𝝎̃‖, ‖𝐉̃‖𝐹 ]⊤ ∈ R3 and

𝐖1 ∶=

⎡

⎢

⎢

⎢

⎣

1
2𝜆𝑟 − 1

2 𝑐 𝜆𝑀 0

− 1
2 𝑐 𝜆𝑀

1
2𝜆𝑚 0

0 0 1
2𝛾𝐽

⎤

⎥

⎥

⎥

⎦

∈ R3×3.

Therefore, ensuring 𝑉5(𝐫̃, 𝝎̃, 𝐉̃) > 0 is equivalent to having 𝐖1 ≻ 0, or
ore precisely by Sylvester’s criterion,

|𝑐| <

√

√

√

√

𝜆𝑟𝜆𝑚
𝜆2𝑀

. (36)

3 Accurately determining 𝝎̇𝑑∕𝑖 is challenging. In the simulation, we compute
his value through numerical differentiation, specifically applying the Euler

method to approximate the derivative. Moreover, a low-pass filter is applied
to smooth the signal and mitigate the impact of undesired high-frequency
oscillations induced by measurement noise.
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Taking the time derivative of 𝑉5(𝐫̃, 𝝎̃, 𝐉̃) and using trace properties
as well as the fact that 𝐱⊤(𝐲∧𝐳) = 𝐲⊤(𝐳∧𝐱) = 𝐳⊤(𝐱∧𝐲) holds for arbitrary
vectors 𝐱, 𝐲, 𝐳 with same dimension, we have

𝑉̇5(𝐫̃, 𝝎̃, 𝐉̃) = 𝝎̃⊤𝐉 ̇̃𝝎 + 𝐫̃⊤𝐊𝑟 ̇̃𝐫 + (𝑐𝐉 ̇̃𝝎)⊤𝐫̃ + (𝑐𝐉𝝎̃)⊤ ̇̃𝐫 + 1
𝛾𝐽

t r (𝐉̃⊤ ̇̃𝐉)
(28),(29),(32)

= 𝝎̃⊤
(

𝐉̃𝝎̇𝑑∕𝑖 − 𝐉̃𝝎∧
𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧

𝑏∕𝑖𝐉𝝎𝑏∕𝑖 − 𝝎∧
𝑏∕𝑖𝐉̄𝝎𝑏∕𝑖

−𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ −𝐊𝑤𝝎̃
)

+ 𝐫̃⊤𝐊𝑟𝐉𝑙(𝐫̃)−1𝝎̃
+𝑐𝐫̃⊤

(

𝐉̃𝝎̇𝑑∕𝑖 − 𝐉̃𝝎∧
𝑏∕𝑖𝝎𝑑∕𝑖 + 𝝎∧

𝑏∕𝑖𝐉𝝎𝑏∕𝑖
−𝝎∧

𝑏∕𝑖𝐉̄𝝎𝑏∕𝑖 − 𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ −𝐊𝑤𝝎̃
)

+(𝑐𝐉𝝎̃)⊤𝐉𝑙(𝐫̃)−1𝝎̃ + 1
𝛾𝐽

t r (𝐉̃⊤ ̇̃𝐉)

= (𝝎̃⊤ + 𝑐𝐫̃⊤)𝐉̃ ̇̃𝝎𝑑∕𝑖 − (𝝎̃⊤ + 𝑐𝐫̃⊤)𝐉̃𝝎∧
𝑏∕𝑖𝝎𝑑∕𝑖

+(𝐉̃𝝎𝑏∕𝑖)⊤(𝝎̃∧𝝎𝑏∕𝑖 + 𝑐𝐫̃∧𝝎𝑏∕𝑖)
−(𝝎̃⊤ + 𝑐𝐫̃⊤)𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ − (𝝎̃⊤ + 𝑐𝐫̃⊤)𝐊𝑤𝝎̃

+𝐫̃⊤𝐊𝑟𝐉𝑙(𝐫̃)−1𝝎̃ + (𝑐𝐉𝝎̃)⊤𝐉𝑙(𝐫̃)−1𝝎̃ + 1
𝛾𝐽

t r (𝐉̃⊤ ̇̃𝐉)

= t r
{

𝐉̃⊤
[

− 1
𝛾𝐽

̇̄𝐉 + 𝐞̃𝝎̇⊤𝑑∕𝑖 + 𝐞̃𝝎⊤𝑑∕𝑖𝝎
∧
𝑏∕𝑖 − 𝝎∧

𝑏∕𝑖𝐞̃𝝎
⊤
𝑏∕𝑖

]

}

+𝝎̃⊤
(

𝑐𝐉𝐉𝑙(𝐫̃)−1 −𝐊𝑤
)

𝝎̃ − 𝑐𝐫̃⊤𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ − 𝑐𝐫̃⊤𝐊𝑤𝝎̃.

By selecting the adaptive law for inertia matrix estimation as given
in (33), we can show that
𝑉̇5(𝐫̃, 𝝎̃, 𝐉̃) = −𝑐𝐫̃⊤𝐉𝑙(𝐫̃)−⊤𝐊𝑟𝐫̃ + 𝝎̃⊤

(

𝑐𝐉𝐉𝑙(𝐫̃)−1 −𝐊𝑤
)

𝝎̃ − 𝑐𝐫̃⊤𝐊𝑤𝝎̃

≤ −𝑐 𝜆𝑟𝜚𝑚‖𝐫̃‖2 + (𝑐 𝜆𝑀𝜚𝑀 − 𝜆𝑤)‖𝝎̃‖2 + 𝑐 𝜆𝑤‖𝐫̃‖‖𝝎̃‖
= −𝜻⊤2𝐖2𝜻2,

where
𝜻2 ∶= [‖𝐫̃‖, ‖𝝎̃‖]⊤ ∈ R2 and

𝐖2 ∶=

[

𝑐 𝜆𝑟𝜚𝑚 − 1
2 𝑐 𝜆𝑤

− 1
2 𝑐 𝜆𝑤 𝜆𝑤 − 𝑐 𝜆𝑀𝜚𝑀

]

∈ R2×2.

That being said, 𝑉̇5(𝐫̃, 𝝎̃, 𝐉̃) is bounded from above, being semi-negative
definite when 𝐖2 ≻ 0, or equivalently

0 < 𝑐 <
4𝜆𝑟𝜆𝑤𝜚𝑚

4𝜆𝑟𝜆𝑀𝜚𝑚𝜚𝑀 + 𝜆2
𝑤

, (37)

which, together with the inequality given in (36), yields the sufficient
condition (34). Hence, by far, we have shown that lim𝑡→∞ 𝑉5(𝑡) = 𝑉5,∞
and 𝐫̃, 𝝎̃, 𝐉̃ ∈ ∞. Furthermore, from Eqs. (28) and (29), we can deduce
that ̇̃𝐫, ̇̃𝝎 ∈ ∞. Since 𝐫̃, 𝝎̃ ∈ 2 (by having ∫ ∞

0 𝜻2(𝜏)⊤𝐖2𝜻2(𝜏)𝑑 𝜏 ≤
𝑉5(0) −𝑉5,∞ < ∞), it can be then concluded using Lemma 1 that 𝐫̃, 𝝎̃ → 0
for 𝑡 → ∞. □

Remark 4. No assumptions were made about the symmetry of the
estimated inertia matrix 𝐉̃ (i.e., 𝐉̃ = 𝐉̃⊤) throughout the proof of
Theorem 2. This is due to the fact that the (direct) adaptive law (33)
does not guarantee convergence to the ground truth 𝐉; it only ensures
the boundedness of the estimation error. Recognizing that the sym-
metric property of an inertia matrix is grounded in physics, one could
explore alternative forms of adaptive laws (e.g., via indirect methods)
or learning rules (e.g., neural networks) to incorporate this structural
information.

Moreover, the inequality condition (37) can be obtained due to the
fact that 𝜆𝑟, 𝜆𝑀 , 𝜚𝑚, 𝜚𝑀 are positive. Observing the first two conditions
is straightforward: 𝐊𝑟 ≻ 0 is ensured by design, as stated in Theorem 2;
rigid body inertia matrices are known to be positive semidefinite, and
for quadrotors, it is positive definite, i.e., 𝐉 ≻ 0. For 𝜚𝑚, 𝜚𝑀 , they are
the lower and upper bounds for ‖𝐉𝑙(𝐫̃)−⊤‖𝐹 , hence being functions of
𝐫̃ ∈  = {𝜙𝐚 ∶ |𝜙| < 𝜋 , 𝐚 ∈ S2}. We show their positiveness in Fig. 2,
through numerical analysis in MATLAB. □

Similarly to the robustification of the adaptive law of mass estima-
tion (17), we apply 𝛤 -projection to (33) with the slight difference of
using its matrix extension as stated in the sequel.
7 
Fig. 2. Numerical analysis of the bounds of ‖𝐉𝑙(𝐫̃)−⊤‖𝐹 over  = {𝜙𝐚 ∶ |𝜙| < 𝜋 , 𝐚 ∈ S2}.

Proposition 3 (Robustification of Adaptive Law Using Projection Op-
erator). The adaptive law of inertia matrix estimation (33) is adjusted
as
̇̄𝐉 = Pr oj𝛾𝐽 (𝐉̄, 𝐞̃𝝎̇⊤𝑑∕𝑖 − 𝐞̃𝝎⊤𝑑∕𝑖𝝎

∧
𝑏∕𝑖 − 𝝎∧

𝑏∕𝑖𝐞̃𝝎
⊤
𝑏∕𝑖, 𝐻),

where 𝐻 consists of three continuously differentiable convex functions,
specifically 𝐻 = [ℎ1, ℎ2, ℎ3]⊤ ∈ R3, with
ℎ𝑖(𝐉̄(∶, 𝑖), 𝐣0(𝑖), 𝝐𝐽 (𝑖)) =

‖𝐉̄(∶, 𝑖)‖2 − 𝐣0(𝑖)2

2𝝐𝐽 (𝑖)𝐣0(𝑖) + 𝝐𝐽 (𝑖)2
,

𝑖 = {1, 2, 3},
and 𝐣0, 𝝐𝐽 ∈ R3 are two constant vector quantities.

6. Simulation results

In this section, we present the simulation results of our proposed
controller for aggressive trajectory tracking. We start with showing
the simulation environment and the corresponding settings adopted in
our work, followed by presenting the tracking performance of three
distinct maneuvers and the parameter estimation under uncertainties.
In particular, we conduct a comparative analysis of our proposed
approach against three prior studies. One of these methods utilizes the
logarithmic map of 𝖲𝖮(3) [22], while the other two rely on alternative
formulations of rotational error [16,17]. Through this comparison, we
demonstrate that our controller outperforms the existing approaches,
particularly in effectively addressing parameter uncertainties.

6.1. Simulator

The simulation environment for evaluating our proposed controller
is the Quadcopter Project4 by MathWorks, which is based on the
Parrot® series of mini-drones in MATLAB/Simulink. It consists of a
nonlinear quadrotor model that includes sensors and actuators dynam-
ics as well as dynamical environmental modeling, thereby serving as
a medium-fidelity simulator for the verification of the control algo-
rithm comparable to other simulator alternatives such as Gazebo5 and
AirSim.6 The nominal parameters of the quadrotor are 𝑚 = 0.063 k g,
𝐉 = 1e−4 ⋅ diag(0.5829, 0.7169, 1) k g m2, 𝑔 = 9.8 m/s−2.

6.2. 360◦ flip maneuver

We first demonstrate the results of the proposed controller for
performing an aggressive 360◦ flip maneuver. This is achieved by con-
catenating three control phases, as shown in Fig. 3(a). The quadrotor
is commanded to first take off and stop at a hovering condition: 𝐩 =
(0, 0 − 4)⊤, 𝐯 = 𝝎 = (0, 0, 0)⊤,𝐑 = 𝐈3. Then, at 15 s, it is commanded to
follow the desired trajectory:

𝐑𝑖𝑑 (𝑡) = 𝐈3 + sin(4𝜋 𝑡)𝝓∧
𝑑 + (1 − cos(4𝜋 𝑡))(𝝓𝑑𝝓⊤𝑑 − 𝐈3),

4 MathWorks Quadcopter Project: https://www.mathworks.com/help/
aeroblks/quadcopter-project.html.

5 Gazebo: https://staging.gazebosim.org/home.
6 Microsoft AirSim: https://microsoft.github.io/AirSim/.

https://www.mathworks.com/help/aeroblks/quadcopter-project.html
https://www.mathworks.com/help/aeroblks/quadcopter-project.html
https://staging.gazebosim.org/home
https://microsoft.github.io/AirSim/
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Fig. 3. 360◦ flip maneuver. (a) Flip illustration in X-Z plane. (b) Quadrotor position 𝐩. (c) Euler angles 𝜙, 𝜃 , 𝜓 . (d) Attitude error ‖𝐫̃‖2 and control inputs 𝑓 , 𝝉.
𝝓𝑑 = [0, 1, 0]⊤,
which is a flipping maneuver where the quadrotor rotates about 𝝓𝑑 by
360◦. During the execution of such a trajectory, the backstepping con-
troller is disabled since the control objective is to rotate the quadrotor
instead of driving it to a desired position. Consequently, the desired
rotation matrix is directly fed to the geometric controller as a reference
signal to generate appropriate torques for attitude tracking, yielding a
so-called attitude controlled flight mode [20]. Lastly, the backstepping
controller is again enabled to stabilize the quadrotor at a hovering
condition: 𝐩 = (0, 0 − 2)⊤,𝐑 = 𝐈3. For this maneuver, no uncertainties
are considered since the quadrotor completes the flip in under 0.1 s.
Any uncertainties in the mass or inertia matrix prior to the flip will be
addressed in advance.

Fig. 3(b) and (c) show the position and Euler angles, respectively,
during the 360◦ flip. The latter illustrates the pitch angle 𝜃 that transi-
tions from 0 to 180 deg and then from −180 deg back to 0, completing the
360◦ flip. Notably, during the flip around 𝝓𝑑 , the quadrotor deviates
from its original position in 𝑥-axis, due to the temporary deactivation
of the backstepping controller. The corresponding attitude error and
control inputs are shown in Fig. 3(d).

6.3. Elliptical helix trajectory

Next, we demonstrate the ability of the quadrotor to track an
elliptical helix trajectory (see Fig. 4(a)) in the presence of imprecise
knowledge of the mass and inertia matrix. The quadrotor is commanded
to first take off and fly to the initial position: [𝐩⊤(𝑡) 𝜓(𝑡)] = [0, 0 − 5, 0],
then follow the desired trajectory starting at 10 s:
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[𝐩⊤ref(𝑡) 𝜓r ef (𝑡)] = [𝑡, sin(𝜋
7
𝑡),−4 − cos(𝜋

7
𝑡), sin(0.3𝑡)].

As indicated in Fig. 4(b), we introduce an increase of the inertia matrix
to diag(0.0030, 0.0037, 0.0051) k g m2 at 10 s and an increase of mass to
0.093 k g at 20 s.

To highlight the importance of our adaptive designs, we conduct
a comparative analysis of the tracking performance between our pro-
posed controller and the one in [22]. From Fig. 4(b), it can be observed
that our controller successfully tracks the reference trajectory under
uncertainty conditions in both mass and inertia matrix (see orange
curve), whereas the controller in [22] fails for either single uncertainty
(see yellow curve when only uncertain mass exists and light red curve
when only uncertain inertia matrix exists), even resulting in instability.
The bounded mass estimate and the estimation error of the inertia
matrix are further noted for our adaptive designs in Fig. 4(c), validating
Theorems 1 and 2. Moreover, the attitude error and the control inputs
are presented in Fig. 4(d), from which we observe that the controller
in [22] (yellow curve) is incapable of reducing the attitude error in the
presence of uncertainties, thus stressing the importance as well as the
effectiveness of the adaptive design in our proposed controller.

In addition, we compare our adaptive geometric controller with
two prior studies that do not utilize the logarithmic map of 𝖲𝖮(3),
but instead adopt different formulations of rotational error [16,17].
As summarized in Table 1, [17] is capable of stabilizing the attitude
of a rigid body with an unknown inertia matrix. Consequently, it
is compared with our adaptive controller in the presence of both
unknown mass and inertia matrices. In contrast, [16] only accounts
for nominal conditions and fails to maintain stability when uncer-
tainties are present. We present a numerical comparison of all four
methods, including ours, in Table 2, where we report the uncertainties
encountered and the Mean Square Error (MSE) of position tracking.
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Fig. 4. Elliptical helix trajectory tracking. (a) 3-D visualization † . (b) Comparisons under nominal and uncertain scenarios. (c) Mass estimation 𝑚̄ and inertia matrix estimation
error ‖𝐉̃‖2. (d) Attitude error ‖𝐫̃‖2 and control inputs 𝑓 , 𝝉.
† Note that the nominal tracking subject to uncertain inertia matrix only is not shown in the 3-D visualization due to its unstable behavior, thereby resulting in a cluttered and
confusing plot. For the sake of completeness, however, we put it in X-Z plane visualization in Fig. 4(b).
Table 2
Numerical comparison of elliptical helix trajectory tracking performance.

Method Uncertainty Position tracking MSE

X Y Z

[16] – 0.0007 0.0019 0.0009
[17] – 0.0008 0.0018 0.0009
Ours – 0.0009 0.0018 0.0009

[17] 𝑚, 𝐉 0.0122 0.0322 0.0035
[22] 𝑚 0.0027 0.0137 4.1671
[22] 𝐉 190.6881 100.2325 11.6748
Ours 𝑚, 𝐉 0.0043 0.0099 0.0237

The results indicate that, under nominal conditions (indicated by ‘‘-
’’ in the uncertainty column), the performance of our controller is
comparable to that of [16,17]. However, when non-parametric uncer-
tainties are introduced, our controller outperforms the others, with [17]
achieving second place. Both [16,22] suffer from instability under these
conditions.

6.4. Figure-8 trajectory

Lastly, we demonstrate the effectiveness of the proposed controller
in successfully executing a variety of aggressive maneuvers by tracking
a high-speed Figure-8 trajectory (see Fig. 5(a)). Similar to Section 6.3,
the quadrotor is first commanded to reach the starting position and then
begins to track the following desired trajectory at 10 s:
⊤
[𝐩ref(𝑡) 𝜓r ef (𝑡)] = [8 cos(0.35𝑡), 8 sin(0.7𝑡),−4, 0].
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In addition to the parametric uncertainties in 𝑚 and 𝐉, we also include
sensor noises7 and actuator dynamics8 in the simulation.

From Fig. 5(b) and (d), we observe satisfactory tracking perfor-
mance, particularly in horizontal coordinates, along with the corre-
sponding motor speeds reported in RPM, respectively. The aggressive
nature of the commanded maneuvers can be elucidated in Fig. 5(a)
and (c), showcasing both high linear velocity with a maximum absolute
value exceeding 9 m/s and large roll angles exceeding 30 deg at their
maximum. It is important to emphasize that there exists potential
for improvement in altitude tracking performance, which is currently
compromised due to rapid alterations in both linear velocities and
Euler angles. While the simulation results are omitted, it is suggested
that less aggressive maneuvers can notably enhance altitude tracking
performance.

7. Conclusions

In this paper, we introduced a novel adaptive geometric tracking
controller tailored for quadrotor aggressive maneuvers. The control

7 The 3-axis Inertial Measurement Unit (IMU) used in the simulator
sets accelerometer measurement bias to (0.0900,−0.0600, 0.3370)⊤ m s2,
gyro measurement bias to (−0.0095,−0.0075, 0.0015)⊤ rad/s, and
noise power (or the height of the power spectral density of the
white noise) for each axis of the accelerometer and gyroscope to
1.0 × 10−3 ⋅(0.2183, 0.1864, 0.3725, 0.0000, 0.0000, 0.0000)⊤ m/s2/Hz.

8 This includes rotor dynamics, which is a nonlinear function of air density,
body velocity of rotor, angular velocity, and rotor speed [41].
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Fig. 5. Figure-8 trajectory tracking. (a) 3-D visualization with the colorbar indicating the absolute value of linear velocity. (b) Quadrotor position 𝐩. (c) Linear velocity 𝐯 and
Euler angles 𝜙, 𝜃 , 𝜓 . (d) Motor speeds.
synthesis is inherently nonlinear, leveraging BSC for position tracking
and the logarithmic map of 𝖲𝖮(3) for attitude tracking, backed by rig-
orous proofs using Lyapunov analysis. The advantages of our proposed
approach lie in its ability to effectively handle uncertainties, making it
robust against variations in mass and inertia matrices as well as non-
parametric uncertainties such as sensor noises. This is achieved through
two specifically designed adaptive laws, complemented by projection
operators that enhance robustness to sensor noise.

Through extensive simulations, we demonstrated the effectiveness
of our proposed controller in executing various aggressive maneuvers,
including a 360◦ flip, an elliptical helix, and a figure-8 trajectory.
Notably, our controller exhibits superior performance in comparison
to a recent study analogous to our approach, as well as two other
methods based on alternative formulations of rotational error, thereby
showcasing its applicability beyond uncertainty-free scenarios.

However, our study identified opportunities for improvement in
altitude tracking during Figure-8 maneuvers, potentially influenced
by rapid changes in linear velocities and Euler angles during aggres-
sive maneuvers. Future work will focus on validating the proposed
controller through real-world experimental tests, providing a practical
assessment of its performance. Additionally, ongoing research aims to
extend the controller to explicitly address unmodeled dynamics and
disturbances, thereby broadening its applicability across a wider range
of operational scenarios.
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