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On Controlling a Coevolutionary Model of Actions and Opinions

Roberta Raineri, Giacomo Como, Fabio Fagnani, Mengbin Ye, and Lorenzo Zino

Abstract— We deal with a control problem for a complex so-
cial network in which each agent has an action and an opinion,
evolving according to a coevolutionary model. In particular,
we consider a scenario in which a committed minority —a set
of stubborn nodes— aims to steer a population, initially at a
consensus, to a different consensus state. Our study focuses on
determining the conditions under which such a goal is reached,
and ultimately, how to optimally define a minimal committed
minority. First, we derive a general monotone convergence
result for the controlled coevolutionary model, under mild and
general assumptions on the agents’ revision sequence. Then, we
build on our theoretical result to propose a systematic approach
to investigate the research problem.

I. INTRODUCTION

Mathematical modeling of social dynamics has attracted
increasing interest within the systems and control commu-
nity, enabling the development of novel tools to understand,
predict, and control collective human behavior [1]–[4]. In
particular, a field of growing interest are complex social
phenomena that entail individuals deciding on (binary) ac-
tions —e.g., using a disposable cup vs a reusable cup to
have a coffee— on the basis of several factors, including
their opinions on the considered action. Empirical evidence
and social psychology theories suggest that human decision-
making and opinion formation processes are deeply inter-
twined [5], influencing each other, calling for the develop-
ment of coevolutionary models of actions and opinions.

A key step toward the development of such model
paradigms lies in continuous-opinion discrete-action models,
firstly proposed in [6] and then extended along several
directions [7], [8]. These models rely on the assumption that
the dynamics is driven by the opinion formation process,
while actions are a quantization of opinions, limiting the
possibility to capture critical features of social systems such
as unpopular norms or pluralistic ignorance [9], [10]. Fol-
lowing a different approach, private and expressed opinions
have been assumed to coevolve in [11], [12], but without
any decision-making process. To address these limitations, a
coevolutionary model of actions and opinions was proposed
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in [13], where an opinion formation process is incorporated
within a game-theoretic framework, often used to model
decision-making [14], [15]. In this model, improved upon
and studied in [16], [17], individuals simultaneously revise
their (binary) actions and share their opinions on the support
of the actions, accounting for social pressure and consistency.

Here, we build on these efforts using the model from [17]
to study the problem of unlocking a paradigm shift in a
population. Specifically, we consider a scenario in which a
population starts at a consensus and a set of stubborn nodes
(committed minority) is introduced to control the remaining
ones. Stubborn nodes consistently select the opposite action,
and share opinions supporting it, with the goal of steering
the entire population to consensus on the opposite action. By
studying the behavior of the controlled model, we establish
mathematical tools to understand sufficient conditions for the
stubborn nodes to achieve their goal. This problem, studied
separately for opinion dynamics [2], [18] and game-theoretic
models [14], [19], [20], is still unexplored for the coevolu-
tionary model, and is relevant to many real-life applications,
from incentivizing social change to guaranteeing robustness
of social systems against malicious attacks.

In detail, our main contribution is fourfold. First, we build
on [17] to formulate a control problem for the coevolutionary
dynamics. Second, we prove convergence of the controlled
dynamics under general assumptions on the model param-
eters and on the agents’ revision sequence, extending the
convergence results for the uncontrolled dynamics in [17].
Third, we build on these results to propose a systematic
approach to study the control problems, establishing an
iterative algorithm that is able to determine the final equi-
librium reached by the network. Fourth, we demonstrate our
approach through two case studies.

II. MODEL AND PROBLEM STATEMENT

Notation. We denote a vector x with bold lowercase font,
with xi its ith entry, and a matrix A with bold capital font,
with aij the jth entry of its ith row. The all-1 column vector
is denoted as 1, with appropriate dimension depending on
the context. Given two vectors x,y with same dimension,
we use x ≤ y to denote xi ≤ yi, for all entries i.

A. (Uncontrolled) Coevolutionary Model

We consider a population of n individuals, indexed by the
set V = {1, 2, . . . , n}. Each individual is characterized by a
two-dimensional state variable (xi(t), yi(t)) ∈ {−1,+1} ×
[−1,+1], where t is a discrete time-step. The binary variable
xi(t) ∈ {−1,+1} represents the action of individual i at
time t. The continuous variable yi(t) ∈ [−1,+1] represents



i’s opinion on such action, spanning from yi(t) = −1 (if
i is totally in favor of action −1) to yi(t) = +1 (if i
fully supports action +1). Actions and opinions are gathered
in vectors x(t) ∈ {−1, 1}n and y(t) ∈ [−1, 1]n, and the
joint 2n-dimensional vector z := (x(t),y(t)) ∈ {−1, 1}n ×
[−1, 1]n represents the state of the system at time t.

At each time step t, one or more individuals simultane-
ously revise their state. Specifically, we define a set R(t) ⊆
V , which denotes the individuals who revise their state at
time t, for which we make the following general assumption.

Assumption 1 (Revision sequence). There exists a constant
T <∞ such that ∪T−1

s=0 R(t+ s) = V , for any t ≥ 0.

Remark 1. Assumption 1 generalizes the classical syn-
chronous and asynchronous update rules for dynamics on
networks: for synchronous update rules, R(t) = V for all
t; for asynchronous update rules, R(t) comprises a single
individual, and Assumption 1 is imposed.

At each time step t, each individual i ∈ R(t) updates their
state, aiming to maximize a utility function accounting for
three contributions: i) an individual’s tendency to coordinate
with the actions of others; ii) opinions exchanged with peers;
and iii) an individual’s tendency to act consistently with their
own opinion. Following [17], we define the utility that i
receives for selecting an action and opinion pair, denoted
by ζ = (ζx, ζy), when the system state is z = (x,y), as

ui(ζ,z) =
λi(1−βi)

2

∑
j∈V

aij

[
(1− xj)(1− ζx) + (1 + xj)·

(1 + ζx)
]
−βi(1− λi)

∑
j∈V

wij(ζy − yj)
2−λiβi(ζx − ζy)

2,

(1)
where aij ∈ [0, 1] and wij ∈ [0, 1] are the influence of
individual j’s action and opinion on individual i, respectively,
and λi ∈ (0, 1] and βi ∈ (0, 1] are the weights given
to actions and opinions, respectively. The quantities aij
and wij are gathered into two matrices A and W , which
we assume to be irreducible and stochastic. Hence, social
interactions can be represented by a strongly connected two-
layer network G = (V, EA,A, EW ,W ), where EA are the
edges on the influence layer on which individuals see the
actions of others and EA are the edges on the communication
layer, on which individuals discuss their opinions.

Remark 2. The utility in Eq. (1) is a specialization of the
general case from [17], which contains an additional term to
account for individual prejudices, and a parameter to capture
possible biases to favor one action over the other.

In Eq. (1), we enforce λi > 0 and βi > 0 to guarantee that
the coupling between the two variables is always present. In
the limit case in which one of these parameters is equal to
0, the coevolutionary model reduces to simpler (and well-
known) dynamics, as commented in the following.

Remark 3. The utility in Eq. (1) generalizes classical
network coordination games [14], [15] (obtained in the limit
case βi → 0) and the French-DeGroot opinion dynamics
model [2], [21] (in the limit λi → 0), by coupling the two
corresponding utility functions. See, [17] for more details.

If i ∈ R(t), then i revises their action and opinion, at the
same time, toward maximizing their utility, according to a
joint best-response dynamics, i.e.,

(xi(t+ 1), yi(t+ 1)) ∈ argmaxζ∈{−1,1}×[−1,1]ui(ζ, z) (2)

with the convention that, when multiple elements ζ maximize
ui(ζ, z), we set xi(t+1) = xi(t) and yi(t+1) accordingly;
see [17] for more details. Individuals j /∈ R(t), do not revise
their state, i.e., (xj(t + 1), yj(t + 1)) = (xj(t), yj(t)). In
order to study the dynamics, we use [17] to explicitly derive
the update dynamics for the individuals’ action and opinions
specialized to our scenario, as summarized in the following.

Proposition 1. Individual i ∈ R(t), who follows Eq. (2),
updates their state according to

xi(t+ 1) = s(δi(z(t))) (3)

yi(t+ 1) = (1− λi)
∑

j∈V
wijyj(t) + λis(δi(z(t))) (4)

where

δi(z(t)) = 2βi(1− λi)
∑
j∈V

wijyj(t) + (1− βi)
∑
j∈V

aijxj(t) (5)

and

s(δi(z(t))) =


+1 if δi(z(t)) > 0

−1 if δi(z(t)) < 0

xi(t) if δi(z(t)) = 0.

(6)

From Proposition 1, we derive the following observation.

Proposition 2. The (uncontrolled) coevolutionary dynamics
with utility in Eq. (1) has at least two equilibria: x = y =
−1 and x = y = 1. These are the unique equilibria in which
the action vector is at a consensus, i.e., xi = xj , ∀ i, j ∈ V .

Proof. Without loss of generality, we focus on x = y =
1. First, we show that x = y = 1 is an equilibrium,
by observing that, if x(t) = y(t) = 1, then δi(t) =
2βi(1 − λi) + 1 − βi ≥ 0, implying s(δi(xi(t), yi(t))) =
+1, and thus xi(t + 1) = +1, ∀ i ∈ V . From Eq. (4),
we obtain yi(t + 1) = +1, yielding the claim. Finally,
uniqueness is proved by contradiction. Assume that there
exists a consensus equilibrium (1,y∗), with y∗ ̸= 1. Let
i = argminj∈Vy

∗
j . Clearly, y∗i < 1. Let y(t) = y∗. From

Eq. (4), we get yi(t+ 1) = (1− λi)
∑

j∈V wijyj(t) + λi ≥
(1− λi)y

∗
i + λi > y∗i , which implies that (1,y∗) cannot be

an equilibrium, completing the proof.

B. Controlled dynamics and problem statement

We consider a scenario in which, at time t = 0, the
population is at a consensus equilibrium. Without any loss in
generality, we assume the consensus is on action −1. Based
on Proposition 2, all agents also have initial opinion −1,
being the unique equilibrium with consensus of actions at
−1. Starting from such initial consensus, our goal is to steer
the whole system to the opposite consensus state, i.e., to all
agents playing action +1 (which also implies all opinions
are equal to +1). To achieve such a goal, we assume that
we can control the state of a set of agents C ⊂ V by setting



their opinion and action to +1 at time t = 1 and for all the
following time-instances, yielding the following assumption.

Assumption 2 (Controlled dynamics). Given a two-layer
network G = (V, EA,A, EW ,W ) with A and W stochastic
and irreducible, and a control set C ⊆ V , we assume
that xi(t) = yi(t) = +1, ∀ i ∈ C and ∀ t ≥ 0, while
xi(0) = yi(0) = −1, ∀ i ∈ U := V \ C, and all uncontrolled
agents i ∈ U update their state according to Proposition 1.

Hereafter, we will refer to a controlled evolutionary dy-
namics as a coevolutionary dynamics with utility function
in Eq. (1) and under Assumptions 1 and 2. The goal of the
controller, i.e., to lead all the agents to the desired consensus,
can be formalized by first defining the objective function

ϕ(C) := P[∃T <∞ : xi(t) = +1,∀ t ≥ T, ∀ i ∈ V], (7)

i.e., the probability (over the probability space generated by
the revision sequence) that all individuals eventually switch
definitively their action to +1 in finite time when the control
set is C. The controller’s goal is achieved iff ϕ(C) = 1.
Hence, we formalize the following research problems.

Problem 1 (Effectiveness guarantees). Given a network G,
consider a controlled evolutionary dynamics on the network
under Assumptions 1 and 2 and specified control set C.
Determine whether there holds ϕ(C) = 1.

Problem 2 (Minimal control set). Given a network G,
consider a controlled evolutionary dynamics on the network
under Assumptions 1 and 2 with specified model parameters.
Determine the minimal control set C for which ϕ(C) = 1.

The problem of controlling the coevolutionary dynamics is
inherently complex. In fact, in the limit λi → 0 and βi → 0
the model simplifies to the French-DeGroot dynamics and
network coordination games, respectively. In these cases,
Problem 2 is NP-hard [18]–[20]. In the general scenario, the
higher complexity of the utility function intuitively suggests
that the problem should have at least the same order of
complexity, but rigorous proof is left for future research.

III. MAIN RESULTS

A. Convergence

For the uncontrolled dynamics, a convergence result has
been established in [17]. However, such result only applies to
scenarios of asynchronous revision sequences, homogeneous
parameters (i.e., λi = λ, βi = β, and γi = γ ∀ i ∈ V),
and two coincident, symmetric layers with self-loops (i.e.,
W = A = W⊤ = A⊤ and aii > 0, ∀ i ∈ V).
In the following, instead, we show that such assumptions
are not needed to guarantee convergence for the controlled
evolutionary dynamics. The proof is reported in Appendix A.

Theorem 1. Consider a controlled coevolutionary dynamics
under Assumptions 1 and 2. Then, there exists an equilibrium
(x∗,y∗) such that the action vector x(t) converges to x∗

in finite time, and the opinion vector y(t) converges to
y∗ asymptotically. Moreover, both the opinion and action

vectors are monotonically nondecreasing functions of time,
i.e., x(t+ 1) ≥ x(t) and y(t+ 1) ≥ y(t), for all t ≥ 0.

Theorem 1 not only guarantees that the controlled co-
evolutionary dynamics converges and that actions converge
in finite time, but it also guarantees monotonicity of the
trajectory of the state vector z(t). As a consequence, if
i ∈ U switches to action +1 at a certain time, then i will
never flip back. This observation will be fundamental to build
a systematic approach to study our research problem, as
discussed in the next section. Finally, it is worth noticing that
Assumption 2 is key for obtaining monotonicity (which then
yields convergence). In fact, from a general initial condition,
one may observe non-monotone trajectories (see, e.g., [17]).

B. Systematic approach to solve the research problems

Building on Theorem 1, we construct an algorithm to
determine the equilibrium z∗ reached by the coevolutionary
dynamics with control set C. Our procedure is based on the
following iterative scheme, summarized in Algorithm 1.

At iteration k = 1, we initialize the algorithm by defining
a set A(1) = C. At each step of the algorithm k, we construct
a candidate equilibrium with action vector x̂ with

x̂i =

{
+1 if i ∈ A(k),
−1 if i /∈ A(k), (8)

and opinion vector ŷ, computed by solving the linear system

ŷi =

{
(1− λi)

∑
j∈V wij ŷj + λix̂i if i ∈ U ,

1 if i ∈ C . (9)

To check whether ẑ = (x̂, ŷ) is an actual equilibrium, we
verify if any of the individuals i who would play action −1 at
such candidate equilibrium would switch to +1, computing
the sign of δi(ẑ) for all i /∈ A(k). Indeed, from dynamics
described in Proposition 1, if all δi(ẑ) ≤ 0, then no other
individual would switch. Otherwise, all individuals with
δi(ẑ) > 0 will eventually switch to +1. Thus, increasing
the iteration index k by 1, we consider a new candidate
equilibrium A(k) where also those individuals are included.
This procedure is re-iterated until we get the termination
criterion A(k) = A(k − 1), which implies that no more
individuals would change their action. According to this
procedure, we get a non-decreasing sequence of sets. When
the termination criterion is met (at most in n − |C| steps),
the algorithm returns the final set Af .

The intuition beyond the algorithm and the convergence
result in Theorem 1 leads us to formulate the following
conjecture; a formal proof is left for future research.

Conjecture 1. ϕ(C) = 1 iff Af = V; otherwise, ϕ(C) = 0.

If Conjecture 1 holds true, Algorithm 1 can be used to
solve Problem 1: a set C solves Problem 1 iff the output of
Algorithm 1 is Af = V . Moreover, the algorithm provides
us insights into Problem 2, as we shall discuss in Section IV
through two case studies.



Algorithm 1: Equilibrium computation
Data: A,W , C, λi and βi, for all i ∈ U
Result: Af := A(k), i.e., individuals with x∗ = +1
k ← 1; A(0)← ∅; A(1)← C;
while A(k) ̸= A(k − 1) do

Define x̂ using Eq. (8);
Compute ŷ by solving Eq. (9) given x̂;
k ← k + 1; A(k)← A(k − 1);
check for i ∈ V & i /∈ A(k) do

if δi(x̂, ŷ) > 0 then
A(k)← A(k) ∪ {i};

end
end

end

IV. CASE STUDIES

A. Complete graph

First, we consider a homogeneous complete graph and
assume that m individuals are controlled (whose position
is irrelevant, due to the network structure and symmetry).

Proposition 3. Consider a coevolutionary dynamics that
satisfies Assumptions 1–2 on a complete graph with n nodes
and wij = aij = 1

n−1 for all i ̸= j. Assume that |C| = m,
and define γ = m

n−1 . Then, Af = V iff there holds

2β(1− λ)
(γ − λ+ λγ

γ + λ− λγ

)
+ (1− β)(2γ − 1) > 0. (10)

Proof. We apply Algorithm 1. We start with A(1) = C. The
corresponding candidate equilibrium ẑ has x̂ defined using
Eq. (8), and ŷ with ŷj = 1 for j ∈ C, while, for the network,
all i ∈ U has the same ŷi. Hence, Eq. (9) reduces to ŷi =
(1−λ)(

∑
j∈C

1
n−1+

∑
j∈U\{i}

1
n−1 ŷi)−λ = (1−λ)(γ+(1−

γ)ŷi)−λ, yielding ŷi =
γ−λγ−λ
γ+λ−λγ . Now, for a generic i ∈ U ,

we compute δi(ẑ), obtaining the left-hand side in Eq. (10).
If δi(ẑ) > 0, then A(2) = V . Otherwise, A(2) = A(1) = C.
In both cases, the algorithm terminates.

Remark 4. Subject to Conjecture 1, Proposition 3 solves
both Problems 1 and 2. In fact, given C, Problem 1 is solved
for those values of λ and β that satisfy Eq. (10). On the other
hand, given |C| = m, the choice of the nodes to control is
irrelevant, and re-writing Eq. (10) as a condition on γ, we
can ultimately determine the minimum number of nodes to
be controlled to guarantee ϕ(C) = 1, solving Problem 2.

Figure 1 illustrates our findings and the discussion in
Remark 4. In fact, for each control set (specifically, for a
given value of γ), we associate its corresponding contour
curve. For all values of the parameters (λ, β) above the
curve, we guarantee that ϕ(C) = 1, solving Problem 1.
Alternatively, fixing the parameters (λ, β), the color intensity
identifies the minimum fraction of nodes that we need to
control to obtain ϕ(C) = 1, solving Problem 2. Observe that,
given that Eq. (10) does not depend explicitly on n, but only

Fig. 1: Results for a complete graph. The color intensity represents the
cardinality of the minimal control set γ = |C|/(n−1) that solves Problem 2.

on the fraction of controlled nodes through the parameter γ,
the network size has no direct impact on our findings.

B. Star graph

We consider now a star graph, which is made by a center
node (with label 1) connected to n − 1 leaf nodes, and is
an instance of a hub-and-spoke model, used in telecommu-
nication systems and distribution markets. Also in this case,
the network’s symmetry simplifies the problem: all leaves
are identical to one another thus it only matters how many
of them are controlled. Moreover, if the center is controlled,
then there are no interactions between any two leaves, since
leaves only interact with the center, whose state is fixed.
Hence, two control strategies are relevant for a star: i) to
control the center; or ii) to control m leaves.

First, we consider the case in which we control the center.
Our result is presented as a set of two conditions on λ and β,
which can be used to provide a direct solution to Problem 1.

Proposition 4. Consider a coevolutionary dynamics that
satisfies Assumptions 1 and 2 on a star graph G with n
nodes with w1i = a1i = 1

n−1 and wii = aii = n−2
n−1 for

i ∈ V\{1}. Assume that 1 ∈ C. Then, there holds Af = V
iff{
β > (n−3)(1−2λ+λn)

n2λ(2λ−1)+n(3−6λ2−λ)+(4λ2+4λ−5) ;

n2λ(2λ− 1) + n(3− 6λ2 − λ) + (4λ2 + 4λ− 5) > 0.
(11)

Proof. We start with A(1) = C and compute the correspond-
ing candidate equilibrium ẑ. Due to symmetry, uncontrolled
leaves are indistinguishable and we consider an arbitrary j ∈
U , for which Eq. (9) becomes ŷj = (1−λ)( 1

n−1+
n−2
n−1 ŷj)−λ,

yielding ŷj = 1−λn
1−2λ+λn for all j ∈ U . Then, we impose

δj(ẑ) = 2β(1− λ)[ (n−2)(1−λn)
1−2λ+λn + 1]− (1− β)(n− 3) > 0.

Re-writing it in terms of parameter β, and distinguishing two
cases depending on the sign of the denominator obtained, we
get two sets of conditions: one yields Eq. (11), the second
case (obtained if the denominator is negative) would lead to
a negative (and thus infeasible) bound for β. If δj(ẑ) > 0,
then A(2) = V . Otherwise, A(2) = A(1) = C.

Now, we consider the case in which we control a set C that
does not contain the center. In this case, the problem becomes
more complicated since U comprises not only leaves but also
the center, with different dynamics. For this reason, we will
see that we need to perform two iterations of Algorithm 1.



Proposition 5. Consider a coevolutionary dynamics that
satisfies Assumptions 1–2 on a star graph with n nodes with
w1i = a1i = 1

n−1 and wii = aii = n−2
n−1 for i ∈ V\{1}.

Assume 1 /∈ C and γ = |C|
n−1 . Then, there holds Af = V iff

γ >
λ[2λ2βn+((1−3n)β−1)λ+βn(n−1)+n+4]

(1−λ)2(β(1−n)+2βλ−1)
(12)

2β(n− 1)(1− λ2)(1− λ)γ− 2βλ2(n− 1)(1 + λ−n)
−2βλ(n− 1)(n− 2) + (1− β)(3− n)(1− λ)2γ
+(1− β)(3− n)λ(n− λ) > 0.

(13)

Proof. We set A(1) = C, and compute the candidate equi-
librium ẑ. By symmetry, all uncontrolled leaves will have
the same value ŷj = ŷℓ. Hence, Eq. (9) reduces to

ŷ1 = (1− λ) [γ + (1− γ)ŷℓ]− λ
ŷℓ = (1− λ)

[
1

n−1 ŷ1 +
n−2
n−1 ŷℓ

]
− λ,

(14)

yielding ŷ1 = (1−λ)γ−λ
λ+γ(1−λ) and , ŷℓ = 2λ−λ2−nλ−(1−λ)2γ

λ(λ−n)−γ(1−λ)2 .
Then, we observe that δ1(ẑ) ≥ δℓ(ẑ). Hence, if δ1(ẑ) ≤ 0,
necessarily also δℓ(ẑ) ≤ 0. For this reason, we focus on
computing under which conditions δ1(ẑ) = 2β(1−λ)( 1

n−1+
n−2
n−1 ŷℓ) + (1 − β)( 1

n−1 −
n−2
n−1 ) > 0. Substituting ŷ1 and

ŷℓ, rewriting the inequality in terms of γ, we ultimately get
Eq. (12). If the condition is not satisfied, we get A(2) =
A(1) and the algorithm terminates. Otherwise, 1 ∈ A(2). We
must then check δℓ(ẑ). However, due to the monotonicity of
Eq. (5) with respect to z and given that Theorem 1 guarantees
that an individual i will never flip back, we can postpone this
check to the next iteration.

We re-iterate with A(2) = {1}∪A(1), by solving Eq. (9)
and inserting the solution into the condition δℓ(z̄) > 0. This
ultimately yields Eq. (13), with computations omitted. If the
condition is not satisfied, we get A(3) = A(2) and the
algorithm terminates; otherwise, A(3) = V .

Remark 5. Eq. (13) is always at least as restrictive as
Eq. (11). In fact, both conditions are obtained by imposing
δℓ > 0 for a generic uncontrolled leaf when the center has
action +1. However, in Eq. (11) the center has opinion +1,
while in Eq. (13) the opinion of the center may be smaller.
Monotonicity of δ with respect to z yields the claim.

Subject to Conjecture 1, Propositions 4–5 fully charac-
terize the controlled coevolutionary dynamics on a star.
Specifically, to solve Problem 1, if 1 ∈ C, then we need to
check Eq. (11); if 1 /∈ C, we need to check Eqs. (12)–(13).
For Problem 2, if Eq. (11) is satisfied, then C = {1} is the
minimal control set, otherwise it is not possible to control
the system, as a consequence of Remark 5. An interesting
scenario is where one wants to solve Problem 2, but the
center is not controllable. Here, the minimal number of
leaves to control is determined by m = ⌈γ̄(n − 1)⌉, where
γ̄ is the minimum value of γ that satisfies Eqs. (12)– (13).

Figure 2 shows a numerical representation of our results,
highlighting in green the areas of the parameter space in
which Problem 1 is solved. The upper panels refer to
controlling the center; the lower ones to controlling a single
leaf. In the orange areas, controlling a single leaf is enough

(a) n = 5 (b) n = 20

(c) n = 5 (d) n = 20

Fig. 2: Results for a star graph (a,b) controlled in the center and (c,d) in a
leaf (γ = 1/(n−1)), for different network sizes. The green areas represent
the parameters for which Problem 1 is solved.

to switch the center, but not other leaves. The darker areas
depict the difference between the conditions in Proposition
4 for 1 ∈ C and those in Proposition 5 for 1 /∈ C, illustrating
Remark 5: controlling the center is always more effective.

V. CONCLUSION

We proposed and studied a control problem for social
networks by incorporating a committed minority in a coevo-
lutionary model of actions and opinions [17]. We established
a general convergence result and, leveraging it, we designed
an algorithm to determine whether the committed minority is
able to steer the population to the desired state. Our results
outline several research directions. First, we assumed that
both action and opinion of the individuals can be controlled.
Our results should be extended to scenarios with partial abil-
ity to control nodes. Second, a formal proof for Conjecture 1
is missing, as well as a method to solve Problem 2 for
general networks. A promising approach could be to extend
the algorithms developed for similar problems in [20], [22].
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APPENDIX

A. Proof of Theorem 1

The proof deploys over three steps: i) prove that y(t) is
monotonically non-decreasing subject to the monotonicity of
x(t) ; ii) prove that x(t) is non-decreasing; and iii) combine
the two results, yielding the claim. For the sake of readability,
we denote δi(t) := δi(z(t)).

Lemma 1. Consider a controlled coevolutionary dynamics
under Assumptions 1 and 2. Assume that x(t) ≥ x(t − 1),
∀ t ≤ τ . Then, y(t) ≥ y(t− 1), ∀ t ≤ τ .

Proof. We prove the inequality component-wisely. The state-
ment holds trivially for all i ∈ C. For individuals in U ,
we prove the statement by induction. Consider an arbitrary
i ∈ U . At t = 1, the inequality holds true. In fact, if i ∈
R(0), then yi(1) = (1−λi)

∑
j∈V wijyj(0)+λis(δi(t))) ≥

−(1−λi)−λi = −1 = yi(0), where we bound yj(0) ≥ −1
∀ j ∈ V . If i /∈ R(0), then yi(1) = yi(0).

We prove now the induction step, by demonstrating that,
if y(t) ≥ y(t − 1) for a generic t < τ , then y(t + 1) ≥
y(t). If i /∈ R(t), then yi(t + 1) = yi(t), yielding the
claim. If i ∈ R(t), we distinguish two cases. If i does not

change action at time t, then s(δi(t)) = s(δi(t− 1)). Using
the inductive hypothesis it follows that yi(t + 1) = (1 −
λi)

∑
j∈V wijyj(t) + λis(δi(t)) ≥ (1−λi)

∑
j∈V wijyj(t−

1)+λis(δi(t−1)) = yi(t), where in the first term we bound
yj(t) ≥ yj(t − 1), using the assumption that the inequality
holds at time t. On the other hand, if i at time t changes
action, then the change is necessarily from xi(t−1) = −1 to
xi(t) = +1 (because of the monotonicity assumption on x).
Then, +1 = s(δi(t)) ≥ s(δi(t− 1)). Under this hypothesis,
and with λi > 0, the inequality may become strict. In both
cases yi(t+1) ≥ yi(t), ∀ i ∈ U . Finally, combining the base
case t = 1 and the induction step, yields the claim.

Lemma 2. Consider a controlled coevolutionary dynamics
under Assumptions 1 and 2. Then, x(t+1) ≥ x(t), ∀ t ≥ 0.

Proof. We prove the inequality component-wisely. Since the
statement holds trivially for all i ∈ C, we focus on i ∈ U
and we proceed by contradiction. Assume that x(t) is not
monotonically nondecreasing. Then, there exists a finite time
t̂ := inf{t : ∃ i ∈ U such that xi(t) < xi(t − 1)}. By
definition, at time t̂ there is necessarily i ∈ U for which
xi(t̂ − 1) = +1 and xi(t̂) = −1. The model definition
indicates that δi(t̂ − 1) < 0. Moreover, since xi(t̂ − 1) =
+1, there must be a time t̃ ∈ {t̂ − 1 − T, . . . , t̂ − 2} in
which i ∈ R(t̃) and δi(t̃) ≥ 0. Hence, δi(t̂ − 1) < δi(t̃).
Let us use the definition of δi(t) to rewrite the condition
δi(t̂− 1) < δi(t̃) and prove that such relation is impossible.
In fact, we get

2βi(1− λi)
∑

j∈V wijyj(t̃)+(1− βi)
∑

j∈Vaijxj(t̃) >

2βi(1− λi)
∑
j∈V

wijyj(t̂− 1)+(1− βi)
∑
j∈V

aijxj(t̂− 1).

(15)
Given that Eq. (15) involves only the values of x and y
up to time t̂ − 1 and being t̂ the first time instant in which
x(t) has decreased, then for any t ≤ t̂− 1, the action vector
x(t) is monotonically non-decreasing. Hence by Lemma 1,
y(t̃) ≤ y(t̂ − 1), and so βi(1 − λi)

∑
j∈V wijyj(t̃) ≤

2βi(1−λi)
∑

j∈V wijyj(t̂−1). In other words, the first term
on the LHS of Eq. (15) is not larger than the corresponding
term on the right-hand side (RHS). Hence, a necessary
condition for Eq. (15) to hold is that the second term on
the LHS is larger than the corresponding one on the RHS,
i.e.,

∑
j∈V aijxj(t̃) >

∑
j∈V aijxj(t̂ − 1). However, this

inequality would be satisfied iff it exists at least an individual
j who has changed action from +1 to −1 at some time
between t̃+1 and t̂−1, which is impossible by the definition
of t̂. Hence, Eq. (15) cannot hold and so t̂ cannot exist,
yielding the contraddiction and thus the claim.

Finally, by combining Lemmas 1 and 2, we conclude that
the whole state vector z(t) = (x(t),y(t)) is a monotonically
non-decreasing function of t. Moreover, both vectors x(t)
and y(t) are bounded by Proposition 1. Hence, by the mono-
tone convergence theorem [23], both sequences y(t) and
x(t) admit a limit. Finally, being x(t) a discrete (and finite)
sequence, its convergence should necessary occur in finite
time, while convergence of the vector y(t) is asymptotic.


