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Generalized Nash equilibrium problems under partial-decision information
with biased agents

Barbara Franci, Filippo Fabiani and Lorenzo Zino

Abstract— We consider generalized Nash equilibrium (GNE)
problems under a partial-decision information regime, in which
each agent typically reconstructs the opponents’ strategies
through a linear averaging dynamics. In contrast, we consider
a state-dependent, nonlinear susceptibility term within the
communication mechanism, thereby modelling possible biases
on the part of agents in processing information. By including
such a term in a relaxed forward-backward iteration scheme,
we design a distributed algorithm possessing convergence
guarantees to a GNE. Simulation results illustrate how the
susceptibility term affects the GNE computation.

I. INTRODUCTION

In the realm of multi-agent decision-making, generalized
Nash equilibrium problems (GNEPs) [1], [2] denote a well-
established paradigm able to model self-interested agents
with mutually coupled decisions. Several research efforts
have concentrated on the design of distributed algorithms
for generalized Nash equilibrium (GNE) seeking, which
consist on iterative procedures alternating computation and
communication steps among the agents, ultimately leading
to a scenario in which none of the agents can further
decrease its cost function, given what the other participants
are currently doing [3]–[5].

To devise the underlying GNE seeking schemes, a widely
employed assumption requires agents to have access to all
the decision variables of their peers, i.e., a full-decision
information setup [3], [4]. Such a requirement is however
strong in many real-world applications where agents have
little information on the others. This limitation has been over-
come with the introduction of a partial-decision information
setup [6]–[8], where agents communicate with few peers to
reconstruct the strategies of the whole population.

A key aspect characterizing partial-decision information
regimes is the possibility to reach consensus on the esti-
mates across the agents in a distributed fashion. Inspired by
standard linear averaging algorithms [9], a Laplacian-type
constraint is usually imposed within the distributed algorithm
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to reach a GNE [8]. Such a Laplacian constraint implicitly
induces a DeGroot-like opinion dynamics [10], [11], in
which the agents average on the estimates of their neighbours
to update their own, ultimately yielding consensus under
reasonable connectivity assumptions. On the other hand, such
a mechanism tacitly assumes that the agents’ trust in each
other is unbiased, and the way they process information does
not depend on their current opinion. This could however be a
stretch in several real-world applications of GNEPs involving
humans-in-the-loop, such as charging electric vehicles and
the energy market [7], [12]. In fact, it has been empirically
observed in many different scenarios —spanning from risk
perception to information sharing on social media [13],
[14]— that the way humans process information is indeed
not uniform and unbiased, but it is strongly dependent on
their current opinions and the information already gathered.

More realistic extensions of the DeGroot dynamics have
been proposed in, e.g., [15]. In [16], the agents’ susceptibility
has been included as a state-dependent diagonal matrix that
pre-multiplies the Laplacian, yielding a nonlinear dynamic.
This approach allows for capturing different behavioural at-
titudes, consistent with the social psychology literature [17],
whereby an agent can be more or less susceptible to the
information received from others —and consequently prone
to change opinion— depending on their current opinion.
Interestingly, [16] shows how including such a susceptibility
term can still (under reasonable assumptions) lead the system
to a consensus, which may however differ from the one
reached through an unbiased dynamic.

Motivated by the approach and observations in [16], we
bring such a susceptibility to persuasion term in the domain
of GNEPs. Specifically, our contribution is four-fold. First,
based on [16], we propose a discrete-time opinion dynamics
that includes the agents’ susceptibility, and we establish
conditions under which such a dynamic is well-defined and
converges to a consensus. Second, we encapsulate such an
opinion dynamic in a distributed GNE seeking algorithm
based on relaxed forward-backward (rFB) iterations [18],
[19]. In this framework, the novel dynamics is used to
estimate the decision variables of the other participants in
a partial-decision information regime, and thus supporting
the GNE seeking mechanism. Third, we prove that our
distributed GNE seeking algorithm converges to a GNE.
Finally, we consider a case study based on a Nash-Cournot
game [7], [8] to illustrate our theoretical findings and discuss
how susceptibility shapes the GNE reached by the algorithm.

Notation: The definitions are taken from [1], [20], [21].



Operator theory: For a closed set Ω ⊆ Rn, projΩ :
Rn → Ω denotes the standard projection onto Ω. The
mapping NΩ : Rn ⇒ Rn denotes the normal cone
operator for the set Ω , i.e., NΩ(x) = ∅ if x /∈
Ω, NΩ(x) =

{
v ∈ Rn | supz∈Ω v⊤(z − x) ≤ 0

}
otherwise.

Id is the identity operator. A mapping F : domF ⊆
Rn → Rn is ℓ-Lipschitz continuous if, for some ℓ > 0,
∥F (x)− F (y)∥ ≤ ℓ ∥x− y∥ ∀x, y ∈ dom(F ); η-strongly
monotone if, for some η > 0, ⟨F (x) − F (y), x − y⟩ ≥
η∥x − y∥2 ∀x, y ∈ dom(F ); (restricted) monotone if
∀x ∈ dom(F ), y ∈ Fix(F ), ⟨F (x) − F (y), x − y⟩ ≥
0; β-(restricted) cocoercive if, for some β > 0, ∀x ∈
dom(F ), y ∈ Fix(F ), ⟨F (x) − F (y), x − y⟩ ≥ β∥F (x) −
F (y)∥2; maximally monotone if ∄ monotone operator G :
C → Rn so that the graph of G contains that of F . The set
of fixed points of F is fix(F ) := {x ∈ Rn | x ∈ F (x)}.
F is nonexpansive if it is 1-Lipschitz continuous. F is α-
averaged for some α > 0, if there exists a nonexpansive
operator H : domF → Rn such that F = (1−α)Id+αH .

Graph theory: A graph G = (I, E) is defined by a node
set I and an edge set E = {(i, j) | i, j ∈ I}. Pair (i, j) ∈ E
if agent i communicates with j. The set of neighbors of
agent i is indicated with Ni = {j ∈ I | (i, j) ∈ E}. We
call W ∈ RN×N the weighted adjacency matrix of G, with
entry wij > 0 if (i, j) ∈ E , wij = 0 otherwise, and wii =

0 ∀i ∈ I. Let di =
∑N

j=1 wij be the degree of node i,
D = diag{d1, . . . , dN}, and dmax = maxi∈I di. The graph
Laplacian is L = D−W . Graph G = (I, E) is undirected if
(i, j) ∈ E and (j, i) ∈ E , and it is connected if there is a path
between every pair of vertices. We indicate the consensus
subspace of dimension N as KN = {κ1N | κ ∈ R}. If the
graph is connected, null(L) = KN . Moreover, 0 is a simple
eigenvalue of L, while all other eigenvalues are positive and
can be ordered as 0 < s2(L) ≤ · · · ≤ sN (L) ≤ 2dmax.

II. PROBLEM FORMULATION

We consider a GNEP involving a set of N agents, indexed
by I := {1, . . . , N}, where each agent controls a decision
variable xi ∈ Rni , and aims at minimizing a cost function
Ji(xi,x−i) subject to both local and coupling constraints,
thus resulting in a collection of optimization problems:

∀i ∈ I :

{
minxi∈Ωi

Ji(xi,x−i)

s.t. Cx ≤ d.
(1)

Each cost function Ji : Rn → R, n :=
∑

i∈I ni, depends
on the i-th agent’s decision variable xi ∈ Ωi ⊆ Rni and on
the decisions of the other agents x−i = col((xj)j∈I\{i}),
collectively stacked into x = col((xi)i∈I) ∈ Ω :=

∏
i∈I Ωi.

Standing Assumption 1: For all i ∈ I and x−i ∈∏
j∈I\{i} Ωj , Ji(·,x−i) is convex and of class C1. □
The agents are subject to both local, i.e., xi ∈ Ωi, and

coupling constraints Cx ≤ d, for C ∈ Rm×n and d ∈ Rm.
The collective feasible set of the GNEP in (1) is then given
by X := {y ∈ Ω | Cy − d ≤ 0}, and the feasible decision
set for agent i ∈ I, parametric in x−i, is Xi(x−i) = {yi ∈
Ωi | Ciyi ≤ d−

∑
j∈I\{i} Cjxj} where Ci ∈ Rm×ni .

Standing Assumption 2: For all i ∈ I, Ωi = [ai, bi]
ni .

Moreover, the set X is nonempty, compact and convex, and
it satisfies the Slater’s constraint qualification. □

A widely employed solution concept for the GNEP in (1)
refers to a GNE, which is formally defined as follows.

Definition 1: A collective decision vector x∗ ∈ X is a
GNE of the GNEP in (1) if, for all i ∈ I, Ji(x∗

i ,x
∗
−i) ≤

minyi∈Xi(x∗
−i)

Ji(yi,x
∗
−i). □

As established in [2], the problem of finding a GNE can
be equivalently recast as an inclusion problem:

0 ∈ T (x, λ) :=

[
NΩ(x) + F (x) + C⊤λ
NRm

≥0
(λ)− (Cx− d)

]
, (2)

where F (x) := col((∇xiJi(xi,x−i))i∈I) is the pseudo-
gradient mapping, λ ∈ Rm

≥0 represents the dual variables
associated to the coupling constraints, while the normal cone
NΩ(x) guarantees the satisfaction of the local constraints.
Note that the constraint qualification in Standing Assump-
tion 2 ensures bounded dual variables λ [22, §5.2.3].

Standing Assumption 3: The pseudogradient mapping F :
Rn → Rn is η-strongly monotone and ℓF -Lipschitz contin-
uous, for some constants η, ℓF > 0. □

Remark 1: Standing Assumption 3 is standard in the
partial-decision information regime [7], [8] as it guarantees
some monotonicity properties of the operators needed for
the analysis (see §III-B and Lemma 3). It also certifies the
existence and uniqueness of a solution [1, Th. 2.3.3]. The
work in [6] considers a weaker assumption, although the
coupling constraints as in our GNEP are not included. □

The reformulation in (2) concerns the problem of finding
a zero of the set-valued mapping T : X ×Rm

≥0 ⇒ Rn×Rm,
and can be obtained via a primal-dual characterization of the
equilibria. In fact, it holds that a collective decision x∗ is a
so-called variational generalized Nash equilibrium (v-GNE)
of the GNEP in (1) if and only if the Karush-Kuhn-Tucker
(KKT) conditions associated to the collection of optimization
problems in (1) are satisfied with consensus on the dual
variables, i.e., λi = λ for all i ∈ I [23, Th. 3.1]. Here,
λi ∈ Rm

≥0 is the local vector of dual variables associated to
the coupling constraints, for each agent i ∈ I.

Throughout this paper we assume to work in a partial-
decision information regime. Given a communication net-
work describing the interconnections among the agents,
mathematically captured by a graph G = (I, E), we thus
suppose that the agents cannot access the decision variables
of the others, but they keep an estimate of them [7], [8]. In
particular, x̂i,j is the estimate that agent i has of the opponent
j, collected in x̂i = col((x̂i,j)j∈I) ∈ Rn for each i ∈ I with
x̂i,i = xi and, collectively, in x̂ = col((x̂i)i∈I) ∈ RnN .

Standing Assumption 4: The communication graph G =
(I, E) is undirected and connected. □

To achieve a GNE, the agents then need to learn the
decision variables of their opponents, and therefore the goal
under a partial-decision information regime is to exploit
several communication rounds to reach consensus on the
estimates, i.e., eventually x̂i = x̂j , for all pairs (i, j) ∈ I2.



III. GNE SEEKING WITH AGENTS’ SUSCEPTIBILITY

We now discuss how to design a distributed GNE seeking
algorithm for the GNEP described in §II, under a partial-
decision information regime, by incorporating agents’ sus-
ceptibility in the information communication mechanism.

To reach consensus on the primal and dual variables
with partial-decision information, available works [5], [8]
usually impose Laplacian-type constraints of the form 0 =
(L ⊗ In)x̂ =: Lnx̂ and 0 = (L ⊗ Im)λ =: Lmλ, where
λ = col((λi)i∈I) and L ∈ RN×N denotes the Laplacian
matrix associated to G, and implicitly assume a DeGroot-
like mechanism [10]. In this paper, we propose a different
approach, in which we drop the simplistic assumption that
agents have a uniform and constant trust in their neighbors.
We therefore consider a different nonlinear dynamics to
reproduce the behavior of the agents involved in the GNEP.

A. Discrete-time opinion dynamics with susceptibility

Inspired by [16], we consider a dynamics in which differ-
ent levels of agents’ stubbornness are introduced thorough
a state-dependent diagonal matrix A(x̂) ∈ diag([0, 1]nN ).
Here, the generic n-dimensional diagonal block Ai(x̂i) de-
notes the susceptibility to persuasion of agent i, which
depends on the local estimate only, with entry aij(·) :=
[Ai(·)]jj referring to the j-th entry of the estimate vector.
Specifically, this model assumes that susceptibility is not
(necessarily) a constant property of an agent, but rather a
state-dependent property that may change with their opin-
ion. This assumption captures different agents’ behavioral
attitudes [17], e.g., agents with more extreme opinions can
be more stubborn or more prone to conform with others,
depending on the considered application.

The inclusion of such state-dependent multiplicative term
ultimately leads to a nonlinear dynamics for the estimates,
which are updated according to the following iterative rule:

x̂k+1 = (InN − κA(x̂k)Ln)x̂
k, (3)

where κ > 0 is the discretization step of the dynamics.
The model in (3) consists of two main terms: the averaging

component Ln, which steers the agents toward consensus,
and the susceptibility term A(·) that modulates such process.
In particular, [16] considered few examples for A(x̂): (InN−
diag(x̂)2), 1

2 (InN − diag(x̂)) or diag(x̂)2, which are able
to model different scenarios of behavioral attitudes, such as
stubborn extremist (SE), stubborn positive (SP), and stubborn
neutral (SN) agents, respectively (see also §V).

Under some reasonable assumptions on the matrix func-
tion A and the discretization step κ, we can prove that the
dynamics in (3) is well-defined and converges to a consensus.

Standing Assumption 5: The matrix function A : RnN →
RnN×nN is so that σ = mini,j,x̂∈ΩN aij(x̂i) > 0,
maxi,j,x̂∈ΩNaij(x̂i) < ∞, κ < maxi,j,x̂∈ΩN

1
aij(x̂i)dmax

. □

Lemma 1: The domain ΩN is invariant under dynamics in
(3), and the sequence {x̂k}k∈N, generated by (3) from initial
condition x̂0 ∈ ΩN , converges to some x̄ ∈ null(Ln). □

Proof: According to (3), the i-th update reads as:

x̂k+1
i = (In − κdiAi(x̂

k
i ))x̂

k
i +

∑
j∈I\{j}κAi(x̂

k
i )wij x̂

k
j .
(4)

Then, in view of Standing Assumptions 2 and 5 it holds
that i) (In−κdiAi(x̂

k
i )) is diagonal and nonnegative and ii)∑

j∈I\{j}κAi(x̂
k
i )wij ≤ I . Therefore, the updated state of

each node at iteration k+1 is in the convex hull of the states
of the nodes at iteration k [24]. Hence, if the dynamics in (3)
is initialized within ΩN , i.e., x̂0 ∈ ΩN , then x̂k ∈ ΩN for
any k ≥ 0. Finally, to prove that (4) converges to a consensus
state, we note that (4) amounts to a weighted averaging
process with time-varying weights, where all nonzero off-
diagonal entries are greater than κσmin(i,j)wij > 0, while
diagonal entries are strictly larger than 0 and bounded away
from it, being κdiAi(x̂

k
i ) < 1n. Hence, all entries of W̃ k,

if positive, are greater than some constant, which guarantees
that opinions converge to a consensus by [25, Lemma 4].

Remark 2: With the current definition of A : RnN →
RnN×nN we assume that the agent’s stubbornness depends
on each single estimate x̂i,j , while one could redefine A :
RnN → RN×N to obtain an agent-wise stubbornness, thus
turning (3) into x̂k+1 = (InN − κ(A(x̂k)L⊗ In))x̂

k. □

B. Including susceptibility in the zero-finding problem

To show how the communication dynamic affects the GNE
seeking problem, we introduce some notation first. Since the
agents use the estimates to compute a GNE of the game in
(1), the pseudogradient mapping is modified to:

Fp(x̂) = col((∇xi
Ji(xi, x̂i,−i))i∈I). (5)

The latter is called extended pseudogradient, and we note
that, in view of Standing Assumption 3, it is ℓp-Lipschitz
continuous with constant 0 < ℓp ≤ ℓF [26, Lemma 3].

In the spirit of [8], for all i ∈ I we define matrices:

Ri :=
[
0ni×n<i Ini 0ni×n>i

]
,

Si :=

[
In<i

0n<i×ni
0n<i×n>i

0n>i×n<i
0n>i×ni

In>i

]
,

(6)

with n<i :=
∑

j<i,j∈I nj , n>i :=
∑

j>i,j∈I nj . In par-
ticular, Ri allows one to select the i-th ni-dimensional
component from a vector in Rn, while Si to remove it [8].

Following classic operator splitting results [5], [8], [19]
and including the consensus constraints, the inclusion (2) can
be reformulated by considering the sum of two operators:

A :

x̂z
λ

7→
R⊤Fp(x̂) + cA(x̂)Lnx̂

0
Lmλ+ d

+
 R⊤C⊤λ

−Lmλ
−CRx̂+ Lmz


B :

x̂z
λ

7→
R⊤NΩ(Rx̂)

0
NRmN

≥0
(λ)


(7)

where C = diag{C1, . . . , CN} ∈ RmN×n, and d = 1N ⊗
d ∈ RmN split the coupling constraints in X between the
agents. In (7) we are actually considering the estimates x̂
as decision variables, and we use R = diag((Ri)i∈I) to
select the variables corresponding to each agent. In particular,



Algorithm 1: Relaxed Forward-Backward (rFB)

Initialization: For all i ∈ I, set x̂0
i , ȳ

−1
i ∈ ΩN ,

x0
i ∈ Ωi, λ

0
i , λ̄

−1
i ∈ Rm

≥0, and z0i , z̄
−1
i ∈ Rm.

Iteration k ∈ N0: For all i ∈ I, do
(1) Update variables:

ȳki = (1− δ)x̂k
i + δȳk−1

i

z̄ki = (1− δ)zki + δz̄k−1
i

λ̄k
i = (1− δ)λk

i + δλ̄k−1
i

(2) Receive x̂k
j , zkj , and λk

j from all j ∈ Ni, update:

xk+1
i = projΩi

[ȳki − αi(Fp(x
k
i , x̂

k
i,−i) + C⊤

i λk
i

+c
∑

j∈Ni
aii(xi)wij(x

k
i − x̂k

j,i))]

x̂k+1
i,−i = ȳki,−i−αic

∑
j∈Ni

ai,−i(x̂i)wij(x̂
k
i,−i−x̂k

j,−i)

zk+1
i = z̄ki + νi

∑
j∈Ni

wi,j(λ
k
i − λk

j )

λk+1
i = projRm

≥0
{λ̄k

i +τiCix
k
i −τi

∑
j∈Ni

wi,j(z
k
i −zkj )

−τi
∑

j∈Ni
wi,j(λ

k
i − λk

j )− τidi}

NΩ(Rx̂) = NΩ(x) =
∏

i∈I NΩi(xi), and NRmN
≥0

(λ) =∏
i∈I NRmN

≥0
(λi), while z ∈ RmN is an auxiliary variable.

The scaling constant c is properly in the proof of Lemma 3.
The term A(x̂)Lnx̂ is the communication dynamics for

the agents to share their estimates with (some of) the other
participants. By taking into account their susceptibility, these
terms drive the agents towards consensus of the estimates
(Lemma 1) while the (extended) pseudogradient serves to
minimize the agents’ costs (via the first line of the operators);
the second and third lines enforce the coupling constraints.

Note that the consensus constraints on the dual variables is
not affected by the susceptibility matrix. The reason for this
choice is that, while the agents might want to be stubborn
on the estimates and primal variables that directly affect
their cost function, they still need to satisfy the coupling
constraints and be more lenient with the other participants.

Next, we establish the equivalence between the zeros of
the operator T in (2) and those of A+ B in (7) :

Proposition 1: Let col(x̂∗, z∗,λ∗) ∈ zer(A + B). Then,
x̂∗ = 1N ⊗ x∗ and λ∗ = 1N ⊗ λ∗, where col(x∗, λ∗) ∈
zer(T ), and x∗ is a v-GNE of the game in (1). □

Proof: The proof follows the same steps as the ones
for the proof of [8, Th. 1], [19, Lemma 1], which allow us
to conclude that, in view of Lemma 1, x̂∗ ∈ null(Ln) and
λ∗ ∈ null(Lm), i.e., x̂∗ = 1N ⊗x∗ and λ∗ = 1N ⊗λ∗, with
col(x∗, λ∗) ∈ zer(T ), thus satisfying the KKT equivalent
conditions characterizing a v-GNE for (2).

C. Algorithm design with susceptibility to persuasion

Once shown that a zero of the sum of the two operators
in (7) coincides with a solution to (1), we can now leverage
their structure to design an iterative GNE seeking scheme
accounting for agents’ susceptibility in the communication.

We use an rFB scheme, whose sequence of instructions
is reported in Algorithm 1 [18], [19]. Note that, however, as
long as the required monotonicity properties on the operators

in (7) are satisfied, other algorithms can be considered, such
as forward-backward, extragradient, or forward-backward-
forward iterations [3], [8], [27]. More details on the proper-
ties our operators should possess are discussed in §IV.

By letting ω := col(x̂, z,λ) and ω̄ := col(ȳ, z̄, λ̄), the
rFB algorithm in compact form reads as follows:{

ω̄k = (1− δ)ωk + δω̄k−1

ωk+1 = (Id + Φ−1B)−1 ◦ (ω̄k − Φ−1A(ωk)),
(8)

where A and B are defined in (7) and the diagonal matrix
Φ = diag(α−1, ν−1, τ−1), where α := diag((αiIni)i∈I) ∈
Rn×n (similarly ν and τ ), is a block-diagonal matrix col-
lecting the step-sizes of the scheme, yielding the following
expanded form for (8):

xk+1 = projΩ[Rȳk − α(Fp(x̂
k) +C⊤λk

+cRA(x̂k)Lnx̂)],

Sx̂k+1 = Sȳk − αcSA(x̂k)Lnx̂

zk+1 = z̄k + νLmλk,

λk+1 = λ̄
k
+τ(−Lmλk − d+CRx̂k − Lmzk).

(9)

In particular, the first two lines of (9) are obtained by premul-
tiplying the first line of the equation obtained expanding (8)
by R and by S, respectively [8, Lemma 1]. The relaxation
parameter δ is properly defined in Standing Assumption 6.

IV. CONVERGENCE ANALYSIS

To show convergence of Algorithm 1 to a GNE, we need
to ensure that A and B in (7) satisfy some monotonicity
properties. Specifically, we need to show that A is monotone
and Lipschitz-continuous and that B is maximally monotone.

To this end, we introduce a number of results on the
properties of the operators composing A and B.

Lemma 2: Let G(x̂) = A(x̂)Lnx̂, where A is the suscep-
tibility matrix and L is the Laplacian matrix. Then, G(·) is
an 1

2dmax
-cocoercive operator. □

Proof: From the Baillon-Haddad theorem [20,
Cor. 18.16], the L is a 1

2dmax
-cocoercive operator, which is

equivalent to the 1
2 -averagedness of operator 1

2dmax
L [20,

Rem. 4.24.(iv)]. From [28, Lemma 4], the latter coincides
with the following conditions on the spectrum of 1

2dmax
L:{

Λ
(

1
2dmax

L
)
⊂ D1/2,

∀λ ∈ Λ
(

1
2dmax

L
)
∩ bdry

(
D1/2

)
, λ semi-simple,

(10)

where D1/2 :=
{
z ∈ C

∣∣ |z − 1
2 | ≤

1
2

}
denotes the disk

of radius 1
2 centered in ( 12 , 0). Since A(x̂) is diagonal

with entries in [0, 1], it performs a positive scaling on the
eigenvalues of 1

2dmax
L that does alter neither their inclusion

in Λ( 1
2dmax

L), i.e., if λ ∈ Λ( 1
2dmax

L) then λ̄ ∈ Λ( 1
2dmax

L) with
λ̄ obtained through scaling, nor their geometric multiplicity.
Thus, also matrix 1

2dmax
A(x̂)L meets the conditions in (10)

for all x, and in view of the equivalences above, 1
2dmax

A(x̂)L

is an 1
2 -averaged operator, i.e., G is 1

2dmax
-cocoercive.

As a consequence of Lemma 2, note that G is ℓG-Lipschitz
continuous [20]. Next, we prove monotonicity of A and B:

Lemma 3: Let A and B be defined as in (7). We have: i)
A is restricted monotone on Z = Kn×RmN×RmN ; ii) A is
ℓA-Lipschitz continuous; and iii) B is maximally monotone.



Proof: Let A = A1 + A2 according to (7) and
let us introduce some quantities, adjusted from [8, Lem-
mas 3, 4]. First, we show that A1 is β-restricted co-
coercive, hence restricted monotone, with constant β ∈
(0,min

{
µ/θ2, 1/2dmax

}
), where µ = smin(Υ), θ = ℓp +

2κcd and Υ =

[
η
N −

ℓp+ℓF

2
√
N

−
ℓp+ℓF

2
√
N

cσκs2(L)−ℓp

]
, κ and σ chosen

as in Standing Assumption 5. The constant c is such that
c > cmin and cminσκs2(L) =

(ℓp+ℓF )2

4η + ℓp. The proof
follows [8, Lemma 3-4] by showing that ∥R⊤Fp(x̂) +
cA(x̂)Lnx̂ − (R⊤Fp(x̂

′) + cA(x̂′)Lnx̂
′)∥ ≤ θ∥x̂ − x̂′∥

which leads to ⟨R⊤Fp(x̂) + cA(x̂)Lnx̂ − (R⊤Fp(x̂
′) +

cA(x̂′)Lnx̂
′), x̂ − x̂′⟩ ≥ µ

θ2 ∥R⊤Fp(x̂) + cA(x̂)Lnx̂ −
R⊤Fp(x̂

′)+cA(x̂′)Lnx̂
′∥, which together with cocoercivity

of G(x̂) (Lemma 2) contribute to ⟨A1(ω) − A1(ω
′),ω −

ω′⟩ ≥ β∥A1(ω) − A1(ω
′)∥. The operator A2 is skew

symmetric, hence monotone, yielding i).
Concerning ii), we use the fact that Fp is ℓp-Lipschitz, G

is ℓG-Lipschitz continuous, L is ℓL-Lipschitz continous and
∥R∥ = 1. Then, it follows that A1 is ℓA1

= ℓp + ℓG + ℓL
and A2 is ℓA2

= 2∥C∥+ 2ℓL. Then, A is ℓA = ℓA1
+ ℓA2

-
Lipschitz continuous.

Finally, iii) holds true by [20, Ex. 20.26] because the
normal cone is maximally monotone.

By relying on Lemma 3, we finally show that Algorithm
1 converges to a v-GNE. Next, we postulate bounds on the
step-sizes and then state the convergence results [18], [19].

Standing Assumption 6: The averaging parameter δ in (8)
is such that 1

φ ≤ δ ≤ 1 where φ = (1+
√
5)/2 is the golden

ratio. The step-size is such that 0 <
∥∥Φ−1

∥∥ ≤ 1
2δ(2ℓA+1)

where ℓA is the Lipschitz constant of A as in Lemma 3, and
such that Standing Assumption 5 is satisfied. □

Theorem 1: The sequence {ωk}k∈N generated by (8) con-
verges to ω∗ ∈ zer(A+B). In particular,

{
xk

}
k∈N converges

to the v-GNE of the game in (1). □
Proof: Given the properties of A and B established in

Lemma 3, we can follow the steps of the convergence proofs
in [18], [19], where [19, Eq. (37)] holds when ω∗ ∈ Z.

V. ILLUSTRATIVE EXAMPLE

We now test our algorithm on a standard Nash–Cournot
game under a partial-decision information regime, as also
considered, e.g., in [7], [8]. Specifically, we aim at empha-
sizing two aspects here: i) confirm our theoretical findings
numerically, and ii) investigate the effects the susceptibility
to persuasion term may have on the GNE seeking dynamics.

A Nash–Cournot game considers N agents that are in-
volved in the production of a homogeneous commodity,
and compete over m markets with capacity constraints,
thereby resulting in shared constraints coupling the agents’
strategies. Each agent i ∈ I decides to produce and deliver
xi ∈ [ai, bi]

ni ⊂ Rni amount of products to the markets
it connects with. Each i has a local matrix Ci ∈ Rm×ni ,
with 0/1 entries specifying which markets it participates
in, i.e., the k-th entry of the j-th column of Ci is 1 if
i delivers the amount of production associated to the j-th
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SE
-S
N
-S
N

SP
-S
N
-S
N

SE
-S
E-
SN

SE
-S
P-
SP

SE
-S
E-
SP

SE
-S
E-
SE

SP
-S
P-
SN

-20

-10

0

10

20

30

1
00
"
(J

i(
7x
$
)
!

J
i(
x
$
))

=j
J

i(
7x
$
)j Agent 1 Agent 2 Agent 3

Fig. 2. Average cost variation at equilibrium, for each agent, w.r.t. the
“nominal” one, i.e., x̄∗, obtained by setting the matrix function A(·) = I .

component of xi to market k. Then, each market k has
capacity dk > 0, so that

∑
i∈I Cixi ≤ d, with d ∈ Rm

>0. For
the cost function in (1), we use the form in [8]: Ji(xi,x−i) =
x⊤
i Qixi+q⊤i xi−(p̄−ΞCx)⊤Cixi involving a linear inverse

demand with p̄ ∈ Rm
>0 and diagonal Ξ ∈ Rm×m

>0 .
For illustrative purposes, we set N = 3, m = 3, with ni =

3, Ci = I3, ai = 0, and bi = 1, for all i ∈ I. The maximal
capacity of the markets d ∈ R3

>0 are uniformly drawn
from (0.85, 1.5). To define each Ji, we have preliminary set
Qi = 4 · I3, while each qi is uniformly drawn from (1, 2),
whereas p̄ from (10, 20), and the diagonal entries of Ξ from
(1, 3). To consider a monotone instance featuring multiple
equilibria, in view of the quadratic structure characterizing
the game mapping F (x) = Qx + h, where Q ∈ Rn×n

and h ∈ Rn are obtained by rearranging the terms of the
stack of the pseudogradients, we have successively subtracted
λmin(Q)I9 to Q, and then re-adjusted the parameters of each
cost function Ji, accordingly. This example shows that Algo-
rithm 1 returns a v-GNE (verified ex-post through a round of
best-responses) despite lacking of strong monotonicity. The



latter assumption, however, cannot be weakened [7].
Once chosen δ = 0.75, c = 1, αi = 0.03, νi = 0.5,

and τi = 0.25, for all i ∈ I, Algorithm 1 has been tested
by considering several combinations for the matrix function
A(·) as in §III-A, i.e.,

(
I − diag(·)2

)
models SE agents,

1
2 (I − diag(·)) SP, and diag(·)2 SN ones. For instance, the
first combination “SE-SN-SN” in Fig. 1 (or Fig. 2) means
that agent 1 is an SE, while agents 2 and 3 are SNs. The
numerical results have then been obtained by averaging over
20 runs of Algorithm 1 with random initial conditions.

In Fig. 1 we show convergence of Algorithm 1 in all
the combinations considered for the matrix function A(·).
In particular, it seems that the presence of SE agents allows
one to achieve a faster convergence to a v-GNE of the game.

In Fig. 2, instead, we illustrate the effect the agents’
attitude has on the computed GNE. Here, we compare the
cost at equilibrium obtained in a specific configuration with
the “nominal” one, x̄∗, computed by considering the same
(random) initial condition with A(·) = I . Our simulations
confirm what one would intuitively expect: when SE agents
are mixed with other type of behaviours, they can strongly
drive the v-GNE computation, thereby achieving noticeable
performance improvements (in term of cost minimization).
When all the agents are SEs, instead, the cost variation is
negligible for anyone. While SN agents appear irrelevant to
the v-GNE computation, and thus always obtain a perfor-
mance deterioration, SP agents can finally experience mixed
results, depending on the configuration considered.

VI. CONCLUSION

We have proposed a novel, distributed GNE seeking al-
gorithm for GNEPs in a partial-decision information regime,
which is typically addressed by incorporating a linear av-
eraging term in the iterative scheme. In contrast, we have
considered a scenario in which biases affect the way the
agents process information, and we modelled them by
incorporating a state-dependent susceptibility term in the
averaging process. As a main result, we have proven that the
proposed GNE seeking scheme converges to a v-GNE, even
in case one considers such a nonlinear averaging process.

Our results offer several insights for future investigations.
From our numerical results, indeed, it seems that the ob-
tained equilibrium can be “shaped” by the state-dependent
susceptibility term. Providing an explicit characterization of
such a dependence is a key objective for future research. Be-
sides considering different available GNE seeking schemes
attached to the nonlinear dynamics for the estimates of x, one
could also investigate how the susceptibility to persuasion
terms affect the estimate of the dual variable λ, thereby
complicating the analysis of the operator A in (7). Finally,
testing the proposed methodology on real-world applications
would definitely shed further light on the results achievable
through the flexibility offered by our technique.
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