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On a Susceptible-Infected-Susceptible Epidemic Model with Reactive
Behavioral Response on Higher-Order Temporal Networks

Lorenzo Zino and Alessando Rizzo

Abstract— We characterize the spread of epidemic diseases
on higher-order temporal networks to shed light on the impact
of large gatherings, where superspreading events occur and
pairwise interactions are not sufficient to model the dynamics of
infection. We propose a novel analytically-tractable continuous-
time formalism for higher-order temporal networks based on
the paradigm of activity-driven networks and we study a
susceptible–infected–susceptible model spreading on top of it.
By using a mean-field approach, we compute the epidemic
threshold, characterizing a phase transition between a regime
where the system converges to a disease-free equilibrium and
one in which all trajectories converge to an endemic equilib-
rium. Using such a threshold, we quantify the role of higher-
order interactions in favoring the spread of epidemic diseases,
providing analytical support to restricting large gatherings
during an epidemic outbreak. Finally, we incorporate a reactive
behavioral response in the network formation process.

I. INTRODUCTION

Epidemic modeling has become an important branch of
research in the systems and control community [1]–[4]. The
COVID-19 health crisis has brought further attention on
this research direction, demonstrating how systems-theoretic
approaches can offer useful tools to predict the evolution of
an outbreak and inform interventions [5]–[9]. In particular,
many diseases are transmitted through continuously-evolving
pattern of contacts between individuals. Epidemic models on
temporal networks have proved to be effective in capturing
such transmission mechanism [4], [10]. One of the key
drivers of epidemic diseases are large gatherings, which may
become superspreading events [11]. Hence, during 2020–21,
many public authorities banned such events, enforcing limita-
tions on the maximum group size allowed to meet. Classical
epidemic models on temporal networks, which are based on
dynamical pairwise interactions between individuals, cannot
capture and reproduce these group interactions, calling for
the development of new mathematical approaches.

Higher-order networks have emerged as a powerful
paradigm to study social interactions involving more than
two individuals [12], [13]. Such paradigm, which has become
increasingly popular in the physics community [14], [15], is
still scarcely adopted in the systems and control community
due to its limited analytical tractability. In fact, while the
spread of epidemic diseases has been studied analytically
on static higher-order networks [16], [17], the research on
temporal higher-order networks mostly rely on Monte Carlo
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numerical simulations [15], [18]–[20]. Here, we aim at
filling this gap by proposing a novel analytically-tractable
framework for dynamics on higher-order temporal networks.

We propose a continuous-time model to describe higher-
order temporal networks based on the paradigm of activity-
driven networks (ADNs) [21], [22], motivated by the ability
of ADNs to reproduce real-world interaction patterns [21]
and their amenability to analytical treatment [23]–[25]. Then,
we study a susceptible–infected–susceptible (SIS) model
spreading on top of this temporal higher-order network.
After deriving the exact dynamics of the Markov process
that governs the epidemic spreading, we leverage a mean-
field relaxation to obtain an analytically-tractable system of
coupled nonlinear ordinary differential equations (ODEs) that
approximate the emergent behavior of the epidemics [26].
Through the analysis of the asymptotic behavior of such
system, we characterize a phase transition between two
regimes: either the disease-free equilibrium (DFE) is globally
asymptotically stable and the epidemic outbreak is quickly
eradicated; or the DFE is unstable and trajectories converge
to an endemic equilibrium (EE). Interestingly, we observe
that the higher-order nature of social interactions seems to
favor the spread of the epidemic disease, providing analytical
support to the ban of large gatherings during an epidemic
outbreak. Finally, we study the impact of human behavior,
by incorporating a behavioral response in the model.

II. MODEL

Notation. We denote by R, R≥0, R>0, and Z>0 the real,
real nonnegative, strictly positive real, and strictly positive
integer numbers, respectively. Given a function x(t), we
define x(t−) := lims↗t x(s) and x(t+) := lims↘t x(s).
A Poisson clock with rate ρ ∈ R>0 is a continuous-
time stochastic process that clicks once in [t, t + ∆t] with
probability equal to ρ∆t + o(∆t), independent of the past,
where o(∆t) is the Landau little-O with respect to ∆t ↘ 0.

A. Continuous-time higher-order activity-driven networks

We consider a population of n ∈ Z>0 individuals, V =
{1, . . . , n}. Each individual is identified by a node in an
undirected higher-order temporal network (V,K(t)), ∈ R≥0,
where K(t) is the set of simplicial complexes present in the
network at time t. A simplicial complex is a graph-theoretic
entity used to model interactions between two or multiple
nodes, as illustrated in Fig. 1a. Specifically, a simplicial
complex of order m ∈ Z>0 is a subset of m+1 distinct nodes
κ = {v1, v2, . . . , vm+1} ⊂ V that represents an interaction
involving all the m+ 1 members of κ. In the simplest case
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Fig. 1: (a) Higher-order network with simplicial complexes of different
order; (b) Transitions of an SIS model.

m = 1, a simplicial complex is just a pair of nodes, as a
standard link in a network, representing pairwise interactions.

To generate the higher-order temporal network, inspired
by [22], we define a continuous-time implementation of the
simplicial activity-driven model proposed in [18], which we
shall refer to as the continuous-time higher-order activity-
driven network (hADN). Specifically, each individual is char-
acterized by an activity rate ai ∈ R>0, which captures the
individual’s tendency to initiate social interactions. Hence,
such a higher-order network is generated as follows: i) at
time t = 0, the we initialize K(t) = ∅. Each node i ∈ V
is associated with a Poisson clock with rate equal to ai,
each one independent of the others; ii) time progresses
until any of the n Poisson clocks involved in the process
clicks; iii) if the clock associated with node i ∈ V clicks
at time t, individual i is activated and selects a m-uple of
fellow individuals j1, . . . jm, selected uniformly at random
among all possible m-uples of individuals; iv) the simplicial
complex κ = {i, j1, . . . , jm} is added to K(t); and v) the
simplicial complex κ is immediately removed from the set,
the Poisson process associated with node i is reinitialized,
and the process is resumed from item ii).

B. Susceptible–infected–susceptible model

We consider an SIS epidemic process that spreads on the
hADN. Each individual i ∈ V is associated with a state
xi(t) ∈ {0, 1}, t ∈ R≥0, and characterizes the individual’s
health state. Individuals can be either susceptible to the
disease (xi(t) = 0) or infected with the disease (xi(t) = 1).
States are gathered into the vector x(t) = [x1(t) . . . xn(t)],
representing the state of the network at time t.

The state of each individual i ∈ V , xi(t), evolves accord-
ing to two contrasting mechanisms: contagion and recovery.
If a susceptible individual i (xi(t

−) = 0) has a contact with
an infected individual at time t (i.e., if ∃κ ∈ K(t) such that
i, j ∈ κ and xj(t

−) = 1), then i becomes infected (xi(t
+) =

1) with probability λ ∈ [0, 1], independent of the others.
An infected individual (xi(t

−) = 1) spontaneously recovers
and becomes susceptible again (xi(t

+) = 0) according to a
Poisson clock with rate µ ∈ R>0, independent of the others.
A schematic of the SIS model is shown in Fig. 1b.

III. DYNAMICS

A. Markov process

Both the hADN formation process and the epidemic model
are governed by independent Poisson processes. Hence,

the state of the network x(t) evolves according to an n-
dimensional continuous-time Markov process [27]. Accord-
ingly, we can write the probability that a node i ∈ V switches
its state in a time-interval of duration ∆t ∈ R>0 as

P[xi(t+∆t) = b |xi(t) = a] = qabi (x(t))∆t+ o(∆t), (1)

with a, b ∈ {0, 1} and b ̸= a. The coefficients q01i (·) and
q10i (·) are the transition rates associated with the contagion
and recovery of individual i, respectively, and their values,
which may depend on time through the state of the system
x(t), are computed in the following.

Proposition 1. Consider an SIS model on a continuous-time
hADN, the transition rates for a generic individual i ∈ V
when x(t) = x are equal to

q01i (x) = λai
m

n− 1

∑
j∈V

xj + λ
m

n− 1

∑
j∈V

ajxj

+λ
m(m− 1)

(n− 1)(n− 2)

∑
j∈V

xj

∑
ℓ∈V\{i,j}

aℓ,
(2a)

q10i (x) = µ. (2b)

Proof. The quantity q01i (x) is the rate at which the sus-
ceptible individual i becomes infected, when x(t) = x.
Individual i becomes infected if i has a contact with an
infected individual and the disease is transmitted. We start
by computing the rate at which i interacts with a generic
individual j who is infected and the disease is transmitted,
which we shall term αij(x). Then, since any infected in-
dividual j ∈ V can transmit the disease to i upon contact
independently of the others, the total rate associated with
contagion is simply obtained by summing all the rates [28],
i.e., q01i (x) =

∑
j∈V αij(x).

To compute αij(x), we observe that i is infected by j if
one of the following chains of events occurs: i) i activates,
selects j among the m nodes selected in the simplicial
complex, j is infected, and the disease is transmitted through
the contact; ii) j is infected, j activates, selects i among
the m nodes selected in the simplicial complex, and the
disease is transmitted through the contact; iii) an individual
ℓ ∈ V \ {i, j} activates, ℓ selects both i and j among the m
nodes selected in the simplicial complex, j is infected, and
the disease is transmitted through the contact.

Using the properties of Poisson processes [28], we com-
pute the rate at which each one of these chains of events
occurs. For chain i) to occur, we need j to be infected. Then,
the chain of events occurs according to the Poisson clock
that regulates the activation of i, and by a sequence of two
Bernoulli random variables, to account for the probability
that j is selected and the probability that the disease is
transmitted, respectively. Using the splitting property of
Poisson processes [28], we compute its rate as the product
between the activation rate ai, the probability of selecting j
when forming the simplicial complex (which is equal to m

n−1 ,
since m individuals are sampled with no repetition) and the
infection probability λ, yielding λai

m
n−1xj , where the term

xj is an indicator function of the event “j is infected.”



Similar, for ii), we multiply the activation rate of j (aj)
by the two probabilities m

n−1 and λ, and by the indicator
function that j is infected, obtaining λaj

m
n−1xj .

Since the activation of each individual is independent
of the others, iii) occurs with rate equal to the sum over
all ℓ ∈ V \ {i, j} of the product between the activation
rate aℓ, the probability of selecting both i and j in a
random m-uple, which is equal to m(m−1)

(n−1)(n−2) , the infection
probability λ, and the usual indicator function, yielding∑

ℓ∈V\{i,j} λ
m(m−1)

(n−1)(n−2)aℓxj .
Since all these events are independent and their occur-

rences are regulated by Poisson processes, the total rate at
which j transmits the disease to i is computed by summing
these three contributions [28], obtaining

αij(x) = λai
m

n− 1
xj + λ

m

n− 1
ajxj

+λ
m(m− 1)

(n− 1)(n− 2)
xj

∑
ℓ∈V\{i,j}

aℓ,
(3)

whose summation over all j ∈ V , ultimately yields (2a).
Finally, (2b) is obtained by observing that recovery for

individual i is spontaneously triggered by a Poisson process
with rate µ, independent of all the others.

B. Derivation of the mean-field equations

Despite we are able to write the transition rates of the
Markov process x(t) in Proposition 1, its analysis is hindered
by the dimension of the state space {0, 1}n, which grows
exponentially in the network size, and by the complexity of
the transition rates. Hence, we follow the methodology pro-
posed in [26] —already successfully applied to continuous-
time ADNs [22], [23]— and we derive a continuous-state
deterministic mean-field relaxation of the system’s dynamics.
The key idea is that, instead of tracking the evolution of the
health state of each individual, we track the probability for
each individual to be infected, i.e., the mean dynamics:

yi(t) := P[xi(t) = 1] = E[xi(t)]. (4)

Following [26], the dynamics of the variable vector y(t) =
[y1(t), . . . yn(t)] from (4) is derived by approximating the
expected value of the transition rates with the transition rates
for the mean dynamics, i.e., approximating E[q01i (x(t))] ≈
q01i (E[x(t)]) = q01i (y(t)). Following this approach, the mean
dynamics is approximated by a system of n ODEs.

Proposition 2. The mean-field relaxation of the SIS model
on an hADN is given by the solution of the following system
of ODEs, with i ∈ V ,

ẏi = (1− yi)λm
[
ai

1

n− 1

∑
j∈V

yj +
1

n− 1

∑
j∈V

ajyj

+
m− 1

(n− 1)(n− 2)

∑
j∈V

yj
∑

ℓ∈V\{i,j}

aℓ

]
− µyi.

(5)

Proof. According to (4), and using (1) and the mean-field
approximation E[q01i (x)] ≈ q01i (y(t)), we compute ẏi(t) =

lim∆t↘0
P[xi(t+∆t)=1]−P[xi(t)=1]

∆t = (1 − yi(t))q
01
i (y) −

yi(t)q
10
i (y), from which (5) is obtained by inserting (2).

Before presenting our main results, we define the first
and second moment of the activity distribution as α1 :=
1
n

∑
i∈V ai and α2 := 1

n

∑
i∈V a2i . Using α2, we define the

coefficient of variation as cv :=
√
α2

α1
, which has minimal

value cv = 1 when the population is homogeneous (ai = α1

for all i ∈ V), and increases with the heterogeneity. Similarly,
we define a macroscopic variable representing the average
probability for a generic node to be infected as

z1(t) :=
1

n

∑
i∈V

yi(t). (6)

For n → ∞, the epidemic prevalence for the stochastic
model I(t) := 1

n |{i ∈ V : xi(t) = 1}| can be approximated
for any finite time-horizon within an arbitrary precision [26]
as I(t) ≈ z1. Hence, for sufficiently large networks, we can
study the behavior of the epidemics at the population level
by means of the mean-field equations in (5).

IV. RESULTS

We start the analysis of the mean-field dynamics by
establishing two preliminary results. First, we prove that the
ODEs derived in Proposition 2 are well defined. Second, we
prove that its trajectories always converge to an equilibrium.

Lemma 1. D = [0, 1]n is positive invariant under (5).

Proof. D is compact and convex and (5) is Lipschitz-
continuous; at yi = 0, ẏi ≥ 0 and at yi = 1, ẏi = −µ < 0.
Hence, Nagumo’s Theorem yields the claim [29].

Lemma 2. The dynamics in (5) converges to an equilibrium.

Proof. The Jacobian of (5) is Metzler, since its generic off-
diagonal entry Jij = (1−yi)

λm
n−1 (ai+aj+

m−1
n−2

∑
ℓ̸=i,j aℓ) ≥

0. Hence, (5) is a monotone dynamical system [30] over the
compact invariant domain D (Lemma 1). Therefore, all its
trajectories converge to an equilibrium [30].

Lemma 2 guarantees that (5) always converges to an
equilibrium. By observing (5), we can further make the
following observation that characterizes possible equilibria.

Proposition 3. The state ŷ = 0 is always an equilibrium
of (5). Moreover, any other equilibrium, if present, has
necessarily ŷi > 0 for all i ∈ V .

Proof. To show that ŷ = 0 is an equilibrium is straightfor-
ward. The second claim is proved by contradiction. Assume
that there exists an equilibrium ŷ with ŷi = 0 and ŷj > 0
for some i ̸= j ∈ V . Then, from (5), we get ẏi ≥
1

n−1λm(ai+aj +
m−1
n−2

∑
ℓ̸=i,j aℓ)ŷj > 0, which contradicts

the hypothesis that ŷ is an equilibrium.

Based on Proposition 3, we can classify the equilibria of
(5) into two main classes.

Definition 1. Given an equilibrium ŷ ∈ [0, 1]n of (5), we
say that it is the disease-free equilibrium (DFE) iff ŷi = 0,
∀i ∈ V , and an endemic equilibrium (EE) iff ŷi > 0, ∀i ∈ V .

Proposition 3 guarantees that the system has always a
DFE. Moreover, other equilibria (viz., one or multiple EEs)



can be present. In the following, we focus our analysis
on studying the epidemic threshold of the SIS model, i.e.,
the analytical condition under which the dynamical system
undergoes a transition between a regime in which the DFE
is globally asymptotically stable to a regime in which the
DFE is unstable and trajectories converge to an EE, where
each individual has a strictly positive probability of being
infected. Such condition is derived in the following for large-
scale networks, i.e., when I(t) ≈ z1(t).

Theorem 1. In the thermodynamic limit of n → ∞, the
epidemic threshold for (5) is

σ =
2

m[(m+ 1)α1 +
√

(m− 1)(m+ 3)α2
1 + 4α2]

. (7)

If λ
µ < σ, then the DFE is the unique globally asymptot-

ically stable equilibrium of the system and all trajectories
converges to it. If λ

µ > σ, then the DFE is unstable and all
trajectories with initial conditions different from the DFE
converge to an EE.

Proof. To study the stability of the DFE, we observe that
there is a one-to-one mapping between the DFE and the state
z1 = 0, i.e., z1 = 0 ⇐⇒ y = 0. Hence, we can study the
local stability of the DFE by studying the local stability of
z1 = 0. We follow a technique similar to the one used in
[23] by defining the auxiliary variable

z2 =
1

n

∑
i∈V

aiyi, (8)

and considering the planar system (z1, z2). To derive such
system, we use the fact that, in the limit of large networks,

lim
n→∞

1

n− 1

∑
i∈V

yi = lim
n→∞

1

n

∑
i∈V

yi = z1 (9a)

lim
n→∞

1

n− 1

∑
i∈V

aiyi = lim
n→∞

1

n

∑
i∈V

aiyi = z2, (9b)

lim
n→∞

1

n− 2

∑
ℓ∈V\{i,j}

aℓ = lim
n→∞

1

n

∑
ℓ∈V

aℓ = α1, (9c)

for any i, j ∈ V . Using (9), we write (5) as

ẏi=(1− yi)λm
[
aiz1+z2+(m− 1)α1z1

]
−µyi, (10)

and we compute

ż1 =
1

n

∑
i∈V

ẏi = −µz1 + λm
[
α1z1 − z1z2

+z2(1− z1) + (m− 1)α1z1(1− z1)
]
,

(11a)

ż2=
1

n

∑
i∈V

aiẏi=−µz2+λm
[
α2z1−z1

1

n

∑
i∈V

a2i yi

+z2(α1 − z2) + (m− 1)α1z1(α1 − z2)
]
.

(11b)

Finally, by linearizing these two equations about the origin,
we obtain the following autonomous system:

ż1 = −µz1 + λm2α1z1 + λmz2
ż2 = −µz2 + λm((m− 1)α2

1 + α2)z1 + λmα1z2.
(12)
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Fig. 2: Ratio between the threshold of an hADN and the one of an equivalent
ADN from (14), for different values of m and cv , with α1 = 0.5 and ρ = 1.

Then, we study local stability of the origin for (12), which
is determined by the largest eigenvalue of its Jacobian matrix

J0,0 =

[
λm2α1 − µ λm

λm((m− 1)α2
1 + α2) λmα1 − µ

]
, (13)

yielding the condition in (7). Finally, we observe that the
nonlinear terms in (10) are nonpositive. This, combined with
the monotonicity of the system (Lemma 2) guarantees that
a trajectory of the linearized system (which converge to
the DFE) acts as upper-bound for the one of the nonlinear
system, which then converges to the DFE.

Remark 1. For m = 1, (7) reduces to σ = (α1 +
√
α2)

−1,
as for the standard SIS model on ADNs [21], [22].

The computation of the epidemic threshold in (7) allows
us to to elucidate the nontrivial impact of higher-order
interactions on the epidemic spreading by comparing (7)
to the threshold for standard SIS model on ADNs, i.e.,
σ̃ = (M(α1+

√
α2))

−1, where M is the number of contacts
established by an active individual. It is worth noticing
that, each simplicial complex of order m generates exactly
m(m + 1)/2 pairwise contacts. Hence, to fairly compare
standard networks and higher-order networks, we should
consider a (standard) ADN with M = m(m + 1)/2. By
comparing the two thresholds, we obtain the ratio

σ

σ̃
=

α1 +
√

(m2+2m−3)α2
1+4α2

m2+2m+1

α1 +
√
α2

=
1 +

√
1 + 4

c2v−1
(m+1)2

1 + cv
.

(14)
From (14), we observe that the numerator cannot be larger

than the denominator, being cv ≥ 1, with equality attained
when m = 1 or cv = 1. Therefore, we conclude that, for
heterogeneous higher-order networks, the epidemic threshold
is always strictly lower than the one on an ADN with the
same average number of contacts. Figure 2 supports these
analytical findings, illustrating how the higher-order nature of
the network seems to favor the spread of epidemic diseases.
In other words, if people are allowed to meet in larger groups,
it becomes more difficult to keep an epidemic outbreak under
control, since the DFE becomes unstable for lower values
of the infection probability λ. This effect becomes more
pronounced as the order of the network and the heterogeneity
of the population increases.

A possible reason for this phenomenon lies in the fact
that hADNs may exacerbate a phenomenon already seen in
heterogeneous networks, whereby individuals who are more
socially active are more likely to become infected and act as



superspreaders. In higher-order networks, such individuals
not only are more likely to interact with others, but also
to gather with multiple people, thereby giving rise to those
superspreading events that are often indicated as key drivers
of an epidemic outbreak [11].

V. SIS ON HADNS WITH BEHAVIORAL RESPONSE

A. SIS model on adaptive hADNs

To capture the behavioral response to the epidemic spread-
ing, we assume that infected individuals reduce their ten-
dency to initiate social interactions, by temporarily reducing
their activity. To capture this phenomenon, we introduce a
parameter ρ ∈ [0, 1], inspired by [23], [31], and we define
an adaptive version of the hADN defined in Section II-A by
changing the rate of the Poisson clocks associated with each
node i to the state-dependent value

âi(xi(t)) := (1− xi(t)(1− ρ))ai. (15)

In other words, when susceptible (xi(t) = 0), individual
i has rate âi = ai; when infected (xi(t) = 1), the rate
is reduced to âi = ρai, where ρ = 1 means that infected
individuals do not reduce their social activity, whereas the
extreme case ρ = 0 captures the scenario in which infected
nodes do not actively have social interactions. Note that, due
to the memoryless property of Poisson processes, one can re-
initialize the clock associated with an individual’s activation
each time the individual changes health state, without im-
pacting the distribution of the stochastic process [27].

B. Dynamics

Similar to the standard SIS model on hADNs, also here
all processes involved are independent Poisson processes,
yielding a Markov chain, whose rates can be computed,
similar to Proposition 1, as follows.

Proposition 4. Consider an SIS model on a continuous-time
hADN with behavioral response, the transition rates for a
generic individual i ∈ V when x(t) = x are equal to

q01i (x) = λai
m

n− 1

∑
j∈V

xj + λρ
m

n− 1

∑
j∈V

ajxj

+λ
m(m− 1)

(n− 1)(n− 2)

∑
j∈V

xj

∑
ℓ∈V\{i,j}

aℓ

−λ(1− ρ)
m(m− 1)

(n− 1)(n− 2)

∑
j∈V

xj

∑
ℓ∈V\{i,j}

aℓxℓ,

(16)

and q10i (x) = µ.

Proof. The proof follows the same arguments used for
Proposition 1. The main difference is that the activity rate of
a generic individual ℓ ∈ V is now state-dependent and equal
to âℓ(xℓ) = aℓ(1− xℓ(1− ρ)). This should be considered
when deriving the three contributions to αij(x): in the first
contribution, the node who initiates the interaction is i,
who is susceptible (âi(xi) = ai). In the second term, the
interaction is initiated by j, who is infected (âj(xj) = ρaj).
Finally, in the third term, we have no information on the
health state of ℓ, so we need to use its general expression,

which can be re-written as âℓ(xℓ) = aℓ−(1−ρ)aℓxℓ, thereby
splitting the last contribution into two distinct terms, one
always positive and one always negative (and not larger than
the first one) obtaining

αij(x) = λai
m

n− 1
xj + λρ

m

n− 1
ajxj

+λ
m(m− 1)

(n− 1)(n− 2)
xj

∑
ℓ∈V\{i,j}

aℓ

−λ(1− ρ)
m(m− 1)

(n− 1)(n− 2)
xj

∑
ℓ∈V\{i,j}

aℓxℓ.

(17)

Finally, (19) is obtained by summing (17) over all j ∈ V .

Following the mean-field approach described in Sec-
tion III-B, the mean dynamics yi(t) in the presence of
behavioral response is approximated by the following system
of ODEs, whose derivation follows the same procedure of
Proposition 2 using (16) instead of (2a), and is omitted.

Proposition 5. The mean-field relaxation of the SIS model
with behavioral response on hADN is given by the solution
of the following system of ODEs, for i ∈ V:

ẏi = (1− yi)λm
[ ai
n− 1

∑
j∈V

yj +
ρ

n− 1

∑
j∈V

ajyj

+
m− 1

(n− 1)(n− 2)

∑
j∈V

yj
∑

ℓ∈V\{i,j}

aℓ

− (1− ρ)(m− 1)

(n− 1)(n− 2)

∑
j∈V

yj
∑

ℓ∈V\{i,j}

aℓyℓ

]
− µyi.

(18)

C. Results

First, we observe that it is straightforward to prove that
Lemmas 1 and 2 are still valid for (18), and thus the
dynamics is well defined and all trajectories converge to
an equilibrium. Moreover, the same classification of the
equilibria into a DFE (always present) and one or multiple
EEs in Definition 1 is possible by generalizing Proposition 3.
Therefore, we study the behavior of the epidemics on hADNs
with behavioral response by establishing the following result,
whose proof (which follows the same line of arguments used
to prove Theorem 1) is omitted due to space constraints.

Theorem 2. In the thermodynamic limit of n → ∞, the
epidemic threshold for (18) is

σ :=
2

m[(m+ 1)α1 +
√
(m2 + 2ρm+ ρ2 − 4ρ)α2

1 + 4α2]
(19)

If λ
µ < σ, then the DFE is the unique globally asymptot-

ically stable equilibrium of the system and all trajectories
converges to it. If λ

µ > σ, then the DFE is unstable and all
trajectories with initial conditions different from the DFE
converge to an EE.

Remark 2. When m = 1, (19) reduces to the one of an SIS
model on standard ADNs with behavioral response [31].

Using Theorem 2, we investigate the impact of the inter-
actions (m), the behavioral response (ρ), and the population
heterogeneity (cv) on the epidemic spreading. First, we
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Fig. 3: Threshold in (7) evaluated for different values of the parameters. In
(a-b), different m and ρ for (a) a homogeneous population with α1 = 0.5
(cv = 1) and (b) a heterogeneous population with α1 = 0.5 and α2 = 5
(cv ≈ 4.47); in (c-d), different cv and ρ for (c) m = 2 and (d) m = 8.

observe that the impact of the order m is dominant (Figs. 3a
and 3b). This provides further support for banning large
gatherings to contain epidemic outbreaks. Second, when
m is fixed, the impact of the behavioral response and
heterogeneity depend on the order of the network: for small
m, heterogeneity has a key impact and the response is very
marginal (Fig. 3c); as m increases, the impact of ρ becomes
larger (Fig. 3d), highlighting the importance of testing before
joining large events during an epidemic outbreak.

VI. CONCLUSION

We proposed and studied a novel continuous-time frame-
work to model epidemics on complex networks, character-
ized by time-varying higher-order interactions. Extending the
paradigm of ADNs and employing a mean-field approach, we
gained analytical insights into how the presence of higher-
order interactions —which capture superspreading events—
shapes the epidemic outbreak. In particular, our results
provided evidence that large gatherings can favor contagion,
supporting their ban during epidemic outbreaks.

Our results pave the way for many lines of future research.
First, further efforts should be placed into characterizing EEs.
Second, Section V has shown how hADNs are amenable
to extensions. We aim to consider more realistic decision-
making processes (e.g., using game-theoretic models or
opinion dynamics), as well as incorporate explicit control
actions (e.g., lock-downs or vaccination campaigns). Third,
the success of hADNs in obtaining an analytically-tractable
framework to study epidemic spreading suggests that other
phenomena driven by interactions that involve more than just
two entities at a time can be studied using hADNs.
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