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Abstract—In this study, we introduce a novel approach for
early earthquake detection in urban environments with high
ambient noise. By using machine learning techniques to analyze
the polarization alterations of light traveling along an existing
traffic-carrying optical network, we demonstrate a cost-effective,
secure, and efficient solution for detecting primary earthquake
wave in noisy conditions. Detecting the primary wave preceding a
destructive surface earthquake wave enables the rapid initiation
of emergency plans, ensuring timely implementation of earth-
quake countermeasures. Our methodology involves collecting
large dataset of polarization angular speed evolution along a fiber
cable to conduct a Monte Carlo analysis, after integrating the
strains induced by car passages over those induced by real earth-
quake ground displacement values. This dataset trains a machine
learning model that leverages a deep learning architecture based
on Long Short - Term Memory layers and attention mechanism.
The model’s training and validation show high accuracy rates,
implying that additional training is unlikely to yield significant
improvements, resulting in a 99% correct detection rate for
multi-class classification of all events. The model demonstrates
high accuracy in distinguishing between various environmental
events, providing accurate early warning signals upon primary
wave detection.

Index Terms—earthquakes, polarization, machine-learning,
early-warnings, optical-networks, sensing, waveplate-model,
ambient-noise

I. INTRODUCTION

The global Distributed Fiber Optic Sensor (DFOS) market
size was valued at USD 1.60 billion in 2023 and expected
to grow at a Compound Annual Growth Rate of 6.5% from
2024 to 2030. DFOS is driving increased investments and de-
velopment efforts by enterprises world-wide due to their broad
applications across various industries, including Energy, Oil &
Gas, Civil, Aerospace, Seismology and others, enabling real-
time data-driven monitoring [1] [2]. These sensing techniques
can measure slow-varying environmental variables influenced
by external events, at any point along the fiber’s length with
high spatial resolution. DFOS generally operates based on the
linear and non-linear back-scattering phenomena within an
optical fiber such as Rayleigh scattering and Raman/Brillouin
scattering, respectively [3] [4]. Unlike Brillouin and Rayleigh
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scattering, Raman scattering is only temperature dependent,
which enables Distributed Temperature Sensing (DTS) that
has been successfully employed in several scenarios such
as detecting pipeline leaks [5]. Rayleigh scattering, when
combined with Optical Time Domain Reflectometry (OTDR)
or Optical Frequency Domain Reflectometry (OFDR) has
allowed the development of Distributed Acoustic Sensing
(DAS). DAS utilizes an optoelectronic interrogator to transmit
short light pulses into the fiber cable and then measures
the optical perturbations in the back-scattered light, thereby
deriving strain-rate signals that are proportional to the amount
of external stress impacting the fiber [6]. Recently we have
witnessed an increasing interest in DAS within the field of
Geophysics, particularly in Seismology and earthquake early
detection [7]. In [8], the authors show that a submarine
fiber optic DAS system can reduce alert time by 3 seconds
compared to land-based stations. However, DAS systems re-
quire dedicated dark fibers, limiting the overall data-carrying
capacity. These systems are also incompatible with inline
optical amplifiers because the optical isolators inside the am-
plifiers block the back-scattered DAS signal. Although these
amplifications could be removed along dark fibers, however,
this would lead to significant signal attenuation. Furthermore,
the usable range of DAS systems is less than 100 km [6].
Interferometric techniques came to overcome the issue of DAS
usable range. These techniques can measure femto-seconds
delay experienced by the light propagating along the fiber at
a micrometer scale and over several thousands of kilometers
[9]. But still, Interferometric techniques require dedicated and
expensive ultra-stable low-phase lasers. Unlike DAS and In-
terferometric techniques, State-of-Polarization (SOP) sensing
approach requires no dedicated fibers or expensive equipment,
but rather exploits the extensively deployed traffic-carrying
optical network with no data security issues [10] [11] [12],
and by utilizing a simple Polarimeter or a simpler Polarization
Beam Splitter as a polarization sensing device [13]. This
approach is empowered by Machine Learning (ML) to analyze
the integrated polarization alterations, induced by external
events, in the modulated light traveling along the fiber. In [14]
and [15], we leveraged this approach for anthropic activity
sensing, particularly for car passage/traffic, using Intensity



Modulated-Direct Detected (IM-DD) optical signals in terres-
trial telecommunication networks, exploiting a single sensing
fiber cable. The experiment showed capability to detect and
localize events with an accuracy of less than 100 meters. While
in [16], we examine the same approach, utilizing two sensing
fibers for early earthquake detection by identifying the pattern
of SOP changes induced by a primary earthquake wave. A
Primary wave usually precedes an earthquake’s destructive
surface wave by tens of seconds, allowing for early warning
generation and swift initiations for emergency response. We
extend the scope of the work in [10] to exploit the use of
interconnected optical mesh network across three different
municipalities as a unified sensing and epicenter localization
grid. By utilizing real ground displacement data from seven
earthquakes of magnitudes ranging from 4 to 6, along with
a Waveplate simulator, we collected large dataset of SOP
evolution to train an ML model. Upon testing the model,
we achieve 98% accuracy in detecting primary wave arrival.
This system provides a time lag of 21 seconds for nearby
municipalities and 57 seconds for more distant areas before
the arrival of destructive surface wave, surpassing the early
warning time of DAS and covering larger areas than interfer-
ometric techniques, without the need for additional dedicated
or expensive equipment. Our previous studies assume no other
events occurring simultaneously with the earthquake, which
does not reflect actual scenarios where multiple factors can
influence the polarization of light along the fiber such as civil
works, car passage, heavy machinery operations and others.

Fig. 1. Real-World Noisy Environment - The fiber cable is stressed by an
earthquake occurring simultaneously with an environmental event

Therefore, to mimic real world-conditions as shown in Fig. 1,
this manuscript will consider incorporating the strain induced
by a car passage recorded by DAS over strain induced by real
ground displacement data from an M4.3 earthquake that struck
in Modena, Italy on the 23rd of May 2012, as recorded by the
National Institute of Geophysics and Volcanology (INGV).
In Section II, we present the methodology employed for
SOP data collection and the concept behind SOP Angular
Speed (SOPAS), while Section III describes the case scenario,
including additive strain concept. Section IV introduce the ML
model’s training, validation and testing results. Finally, Section
V, concludes the discussion.

II. METHODOLOGY

A long optical fiber cable is, to a good approximation,
equivalent to a concatenation of small sections, referred to as
plates. Segmenting the fiber into these sections helps define the
effect of internal birefringence caused by fiber’s construction
imperfections on the change in light’s SOP. This is because, in
a fiber section small enough, the internal birefringence can be
considered uniform. Consequently, any deviation observed in
SOP, diverging from the anticipated uniform internal behavior
effect, indicates an external stressor. This approach is referred
to as the Waveplate model [17], depicted in Fig. 2.

Fig. 2. Waveplate Model Concept

Simulation splits the fiber of Ls km into N waveplates
of length dz. Each waveplate is assigned with two random
angles: ellipse of polarization or the major axis angle, and the
eccentricity of the ellipse. In our modeling, we only consider
the major axis angle as it refers to the internal birefringence
axes. Each major axis angle is randomly rotated by θ, while
the external fiber strain induces a phase shift ∆i between the
orthogonal components:

∆i = f(strain) (1)

The Jones output state of polarization Jout(t) is obtained by
multiplying the input SOP Jin by the sequence of waveplates’
Jones rotation matrices.

Jout =

N∏
k=1

Jk(θk,∆k) · Jin (2)

We extend the use of this model to integrate the conventional
i-DAS conversion in order to convert earthquake ground dis-
placement values to strain-time matrix, where each 116 nm of
displacement is equivalent to 11.6 nanostrain, and multiplying
by 1 × 109 to obtain the strain [18]. Additionally, using
Frequency Domain Integration (FDI) technique, we convert the
strain rate of a car passage to strain. FDI technique consists of
dividing the data by −2jπn in the frequency domain, where
n is the temporal frequency, and then transformed back into
the time domain [19].

Strain(t) = F−1

{
F{Strain Rate(t)}

−2jπn

}
(3)

Large set of SOP evolution could be extracted from Waveplate
simulations for any induced strain values, as in each simulation
the plates are assigned to different set of random angles. This
set of SOP evolution should hold an invariant parameter linked
to a specific strain. A sample of three SOP evolution induced
by a car passage strain shown in Fig. 3.



Fig. 3. Three SOP Evolution for Strain Induced by Car Passage - Where in
each simulation, random angle is inherently assigned to each plate

To minimize the computational time, and due to the fact that
the SOP is represented by the vector k with components
(S1[k], S2[k], S3[k]), the discrete State of Polarization An-
gular Speed (SOPAS) denoted by ω[k] is calculated for each
SOP file [20], where ω[k] is:

ω[k] = arccos

(
(Sk · Sk−1)

∥Sk∥∥Sk−1∥

)
· 1

Ts
(4)

and Ts representing the sampling period [20]. Thus, consid-
ering one parameter instead of three. This computation is
analogous to the discrete-time derivative of an angle. A Monte
Carlo analysis is carried out from the resulting SOPAS data
to train an ML algorithm capable of detecting primary wave’s
arrival in a noisy environment and distinguishing between the
polarization changes induced by a seismic event and those
induced by a car passage.

III. CASE SCENARIO

Like any other stress affecting the fiber buried underground,
car vehicles pressing down on the road may affect the physical
configuration of the light wave propagating along the cable
due to the subsurface deformation induced from the weight ap-
plied. This deformation leads to a strain measurable amplitude.
When the car is moving, the changes in the strain field as the
car passes by are recorded as a strain rate. The deformation at
a point in the subsurface is described by Flamant-Boussinesq
approximation [21]:

ux(x, y, z) =
F x

4πGr2

(
z

r
+

2ν − 1

1 + z
r

)
(5)

The particle displacement in the x-direction, denoted as ux,
is defined parallel to the road and the fiber at a point (x, y, z)
relative to a point load located at the origin, with y being
the distance perpendicular to the road/fiber and z the depth
beneath the surface. The distance from the origin is given by

r =
√
x2 + y2 + z2. The point load applies a total force F

into an infinite half-space characterized by a uniform shear
modulus G and Poisson’s ratio ν. The particle velocity u̇x is
obtained by differentiating ux with respect to time, and noting
that ẋ is the velocity of the car traveling in the x-direction.
There are two types of deformations induced by a car passage,
the quasi-static deformation that is controlled by the distance
between the fiber and the road, and the dynamic deformation
that is determined by the interactions between the car tyres and
the road. Dynamic deformation generate surface waves that
travel away at seismic speed and are better to be integrated
over earthquake strain, as the quasi-static deformation is a
very simple impulse response that lack wave propagation
information present in the dynamic wave. DAS systems do not
measure particle motions, but rather the average longitudinal
strain rate between two sensing points. Fig. 4 refers to strain
rates induced by a car passage and recorded by DAS in
the dynamic frequency band (5-20 Hz) [19]. Exploiting the
aforementioned FDI technique, we managed to get the strain
values over almost 4 seconds of time period.

Fig. 4. Strain Rate Induced by a Car Passage - The Strain is induced by
the dynamic deformation of the vehicles’ weight. Strain rate was recorded by
DAS over 80 meters fiber length

We then extracted the samples corresponding to the strain
induced by the car passage over a one-second interval, specif-
ically from 40.5 to 41.5 seconds. These samples were then
added to the strain values induced by the M4.3 earthquake
shown in Fig. 5. Earthquake ground displacement values are

Fig. 5. Strain Induced by Earthquake Ground Displacement Values Recorded
by INGV over 80 meters Fiber Length - Slicing time interval 0 to 1.5 out of
0 to 4 seconds for better visualization

recorded by INGV [22] and converted into strain by the



conventional i-DAS conversion employed in our Waveplate
model. To add the two strains, fiber cables should have the
same characteristics. In previous study [10], we collected data
from the ZCCA seismic station located in Zocca municipality
in Modena, which is tens of kilometers far from the Modena
earthquake epicenter. Then, we integrated the strain induced
along a 10 km fiber positioned at the exact geographical
coordinates as the station. Since the extracted DAS data from
[19] used an 80 meter fiber cable, we selected an equivalent
section length from ZCCA fiber. This ensures the same spatial
resolution (3.2 meters) and the same sampling rate (400
Hz) are maintained. Selecting a small section of the fiber,
compared to the original 10 km length, will affect the time
lag between the surface and primary waves arrivals. However,
our focus in this paper is not on early warning generation but
instead to detect primary wave in a noisy environment and
to demonstrate our model’s capability to distinguish between
various environmental events. For this reason, we started by
integrating each of the two strains separately in the Waveplate
model in order to visualize a sample of the SOPAS induced
by each strain at the output of the fiber as shown in Fig. 6.

Fig. 6. Red - SOPAS induced by Earthquake Strain; Green - SOPAS induced
by Car Passage Strain

Fig. 6 shows an ascending pattern in the red curve (SOPAS
induced by the earthquake), and this is because the magnitude
increases from the primary wave to the surface wave. The
green curve (SOPAS induced by the car passage) shows almost
a peak at around 2 seconds, indicating a car passage. To
distinguish between the strains and look up for the resulting
SOPAS, we add up the one second time window [40.5s -
41.5s], which is equivalent to [1.5s - 2.5s] of the car passage
strain, into the earthquake strain starting from 0.2 seconds.
Referring to Fig. 5, we have chosen 0.2 seconds to have A
= [0.17s - 0.2s], a time interval holding information about
primary wave with no car passage and B = [0.2s - 0.24s],
a time interval holding noisy information about the primary
wave disturbed by a car passage. The one second integrated
strain of car passage will end at 1.2 seconds, while the
earthquake wave dissipates at almost 1 second. This introduces
another class with time interval C = [1s - 1.2s], where only
car passage strain is present without any overlapping seismic
wave. This additive approach will facilitates the detection
of the primary wave in a noisy environment (A), allowing
to distinguish between both events (B) and (C). For that

purpose, we ran numerous simulations for the additive strain.
An example of SOPAS induced by that strain is shown in
Fig. 7. This large set of SOPAS data is divided into portions
for training and validation with the remainder used for testing
before being utilized in a machine learning model to detect all
events.

Fig. 7. SOPAS Induced by Additive Strain - Car passage strain over the strain
induced by the earthquake

ML MODEL’S VALIDATION AND TESTING RESULTS

The proposed ML model leverages a deep learning architec-
ture designed to capture temporal dependencies and important
features within sequential data for a multi-class classification
task. The model begins with an input layer to collect sequences
of time steps length corresponding to the number of features in
input data (SOPAS). To ensure all features are treated equally,
we employ the Min-Max Scaler to normalize the input data
to a fixed range, typically [0, 1], which stabilizes the training
process. This input is analyzed by four Long Short - Term
Memory (LSTM) layers [23]. The first LSTM layer consists of
64 units that returns back the full sequence of outputs to allow
subsequent layers to further process temporal dependency
information. The second LSTM layer increases the units to
128, improving the model’s ability to identify complex patterns
in the data, while still returning back the full sequence of
outputs. The third and fourth LSTM layers consist of 64
units each, utilized for refining the sequence representations.
Moreover, the model integrates an attention mechanism [24].
This mechanism begins with a time distributed dense layer
with ReLU activation applied at each time step. Attention
probabilities are then generated by a softmax activation. These
probabilities are used to compute a weighted sum of the LSTM
outputs through a dot product operation, highlighting the most
informative parts of the sequence. The attention layer refines
the model’s focus, enhancing performance and interpretability
in distinguishing seismic waves. The result is then passed to a
fully connected layer of 6 units and softmax activation, which
outputs the probability of each class: Primary Wave and Car
Passage (P wave-CP), Secondary Wave and Car Passage (S
wave-CP), Surface Wave and Car Passage (Surface Wave-CP),
Primary Wave and No Car Passage (P wave-NoCP) and No
Earthquake but Car Passage (No EQ-CP). Early detection of
earthquake in a noisy environment correspond to (P wave-
CP), while distinguishing between both events corresponds



to two classes (No EQ-CP to identify car passage event and
P wave-NoCP to identify the arrival of earthquake primary
wave). The model is compiled with the Adam optimizer and
sparse categorical cross-entropy loss. This compilation makes
it suitable for integer labeling for the multi-class classification
tasks (0 as No Earthquake, 1 as Primary wave, 2 as Secondary
Wave, 3 as Surface Wave, 4 as Car Passage and 5 as No Car
Passage). Thus, combining two classes of events will hold two
integer labels (for example, P wave-CP is equivalent to 14). To
enhance generalization and prevent over-fitting, early stopping
is implemented to monitor the validation loss and stop training
if no improvement is observed over three consecutive epochs,
while also to restore the best weights observed during training.
This architecture efficiently combines the effectiveness of
Long Short - Term Memory networks along with attention
mechanisms, make it well-suited for complex sequential data
tasks. The model is trained for 100 epochs. Almost 60% of
the SOPAS data is used for training, 20% for validation and
20% for testing. Exploiting the Waveplate model, we ran 300
simulations induced by the additive strain, assigning different
plates’ orientations in each simulation. Fig. 8 shows the model
training and validation accuracy.

Fig. 8. ML Model Training and Validation Accuracy

Fig. 8 displays the accuracy of the ML model over a sequence
of epochs. The model’s training accuracy curve shown in
blue increases rapidly, indicating effective initial training.
The validation accuracy curve shown in orange evaluates the
model’s ability to predict new unseen data. The proximity of
the two curves indicates that the model has been generalized
well with a minimal risk of over-fitting. As the number of
epochs increases, both curves reach noticeable accuracy rates,
implying that additional training is unlikely to yield significant
improvements. The model shows a promising level of accuracy
for both training and validation datasets, exceeding 95%, with
precision, recall, and F1-score all demonstrating similarly high
values, indicating strong predictive capability and balance.
As for the model training and validation loss shown in Fig. 9,
both curves stabilize near zero, indicating effective learning
and minimal over-fitting. Due to the early stopping employed,

Fig. 9. ML Model Training and Validation Loss

the model stopped at 12 epochs for both model’s accuracy and
loss. ML testing results for classes’ classification is presented
by the confusion matrix shown in Fig. 10. The confusion
matrix shows the correct and wrong detection by the model.
For instance, for P wave-CP class, the model shows 4186
out of 4186 correct detection. For P Wave-NoCP, the model
shows 4146 correct detection, 17 wrong detected as Pwave-
CP, 4 wrong detected as Surface Wave-CP and 19 wrong
detected as No EQ-CP. As for No EQ-CP, 24408 correct
detection made by the ML model, 125 wrong detected as
P Wave-NoCP, 67 wrong detected as Surface Wave-CP and
zeros for other classes. The model shows 99% of accuracy
rate in distinguishing between both events (P Wave-NoCP and
No EQ-CP) and in detecting the primary wave in a noisy
environment (Pwave-CP), giving the opportunity for an early
warning before the destructive surface wave strikes.

Fig. 10. Confusion Matrix

Furthermore, Fig. 11 shows the performance of our model
in detecting all events. The blue lines represent SOPAS data
samples generated after incorporating the additive strain of



car passage and seismic activity, while the red dashed lines
show the model’s detection for all events i.e. P Wave-CP, S
wave-CP, Surface Wave-CP, P wave-No CP, and No EQ-CP.
The red dashed lines align with the SOPAS data’s fluctuations,
indicating where the model has identify each class of events.
This visual representation is consistent with the findings from
the confusion matrix in Fig. 10.

Fig. 11. ML Model’s Detection on SOPAS Data Sample

CONCLUSION

This paper presents an accurate method for early earthquake
detection in real-world conditions using a State-of-Polarization
sensing mechanism. The promising results of our machine
learning approach indicate the potential to exploit the entire
existing traffic-carrying optical networks for the simultaneous
sensing of various environmental events. This approach repre-
sents a cost-effective and efficient solution for early warning
systems through early earthquake detection. It enables the
implementation of earthquake countermeasures and the rapid
initiation of emergency plans. Notably, this technique does not
require the addition of dedicated fibers or expensive equipment
to the existing network.
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