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Abstract—We demonstrate interconnected meshed optical net-
works as sensing-localization grid for earthquake early detection.
We integrate noisy polarization evolution data induced by seven
earthquakes, into a Waveplate model to enhance a machine-
learning algorithm that accurately detects primary waves, im-
proves urban safety and mimic real case scenarios.
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I. INTRODUCTION

Earthquakes often precede variations in strain rates at which
the Earth’s crust either stretches or compresses [1]. These
changes, primarily induced by the arrival of primary waves,
tens of seconds before the destructive surface waves struck,
serve as significant indicators for upcoming seismic events
[2]. Buried underground, optical fibers experience alteration
in both mechanical and optical properties. Therefore, we have
witnessed a recent emergence of Distributed Fiber Optic Sen-
sors. Unlike Distributed Acoustic Sensing [3] and interfero-
metric techniques [4], our polarization sensing-based approach
[5] requires no dedicated dark fibers or adding expensive
equipment to the network. State-of-Polarization (SOP) based
techniques monitor polarization changes of the modulated
light propagating through traffic-carrying optical fibers [6].
These changes could be induced by anthropic activities [7],
or environmental events, such as earthquakes [8]. In [5], and
as shown in Fig. 1, we utilized 3 sensing fibers (positioned
at exact geographical coordinates as three seismic stations)
in 3 interconnected mesh optical networks in T0821 Area (∼
20 km far from the epicenter), MNTV (∼ 40 km far) and
ZCCA (∼ 60 km far) in the Modena region of Italy focusing
on the whole network as a sensing grid. By triangulating over
these areas, we managed to localize the epicenter coordinates
and determine the epicenter-fibers distance to generate early
warning to municipalities close to the epicenter and progress
to those further away. This approach was developed to detect
primary wave’s arrival, leveraging a Machine Learning (ML)
model that was trained on polarization evolution data induced
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by recorded real ground displacement data from seven local
earthquakes, magnitudes ranging from 4 to 6, on different
seismic stations. In this manuscript, we extend the use of our

Fig. 1. Interconnected Mesh Optical Sensing-Localization Network

model to closely describe real case scenarios by integrating
noise level into the extracted polarization evolution data and
enhance ML model’s resilience and generalization capability,
presented in [5]. This approach is crucial because in real
case scenarios various factors, not just earthquakes, affect the
polarization. In Section II, we describe the methodology and
present the case scenario. Section III demonstrates ML model
testing results. Lastly, Section IV concludes the discussion.

II. METHODOLOGY AND CASE SCENARIO

A. State of Polarization Evolution Data Extraction

The purpose is to segment the fiber into small sections
(plates) to define the effect of internal birefringence, stemming
from fiber’s construction imperfections, on the change of
light’s SOP. This approach is known as the Waveplate model
[9]. We extended the use of this model to convert earthquake
displacement values recorded by seismic stations at INGV [10]
to strain-time matrices along the fiber [11]. Large set of SOP
evolution is extracted from Waveplate model simulations for
each earthquake strain values, due to the fact that in each simu-
lation the plates are inherently assigned to random orientations.
To minimize computational time, we calculate from each SOP



file the State of Polarization Angular Speed (SOPAS) [12].
Additive Gaussian noise is added to the resulting SOPAS data,
which is then utilized to train an ML algorithm capable of
detecting primary wave’s arrival for each seismic event. The
trained ML algorithm is then tested on an earthquake among
the same range of magnitudes (M4.3), highlighting the use of
the whole interconnected optical networks as a sensing grid.

B. Case Scenario

The main idea of our approach is to add Gaussian noise
to the original SOPAS values. We computed signals’ standard
deviations and used the desired signal-to-noise-ratio (SNR) of
0.1 to calculate the noise level. Subsequently, this noise was
integrated over all data to generate a more reliable dataset that
mimics the variability present in real-world case scenarios.
The ML model utilized combines the Temporal Convolution
Network (TCN) [13], Long Short - Term Memory (LSTM)
[14] and attension mechanism. Referring to Fig. 2, the model

Fig. 2. Training and Validation Loss of the Machine Learning Model

training and validation accuracy curves increase rapidly and
stabilize around 95%, indicating that the model learns quickly
and generalizes well. As for the model loss, both curves
stabilize near zero, indicating effective learning and minimal
over-fitting. Fig. 3 shows detection precision for our model.

Fig. 3. Confusion Matrix for Three Stations/Fibers

For instance, for T0281/Fiber, 1730 correct detection out of
1760. The model shows 98% overall accuracy for primary
wave detection and one second detection time. This indicates
that refining our model against noise level comparing to what
we present in [5], leads to the same results, where the optical
network controller overseeing all interconnected networks can

still inform all municipalities about an upcoming seismic event
after the third confirmation from ZCCA fiber and is able to
detect primary waves in noisy environment. Consequently, and
similarly to [5], the T0821 area is the first to be notified with
a 21 s time lag for an emergency response before the surface
wave strikes, followed by the MNTV area with a 35 s time
lag and then the ZCCA area with a 57 s time lag.

III. CONCLUSION

We investigated the use of interconnected fiber optic mesh
networks as a sensing-localization grid for accurate ML-based
earthquake early warning approach in a noisy environment.
Data were extrapolated from real earthquakes of different
magnitudes recorded by INGV in the region of Modena, Italy.

ACKNOWLEDGMENT

The presented work was supported by the Italian Na-
tional Recovery and Resilience Plan (NRRP) of NextGenera-
tionEU, a partnership on “Telecommunications of the Future”
(PE00000001—program “RESTART”) and by the project
FAAS funded by OpenFiber.

REFERENCES

[1] T. Jordan, Y. Chen, P. Gasparini, R. Madariaga, I. G. Main, W.
Marzocchi et al., ”Operational earthquake forecasting: state of knowl-
edge and guidelines for utilization,” Istituto Nazionale di Geofisica e
Vulcanologia, Rome, Italy, 2011.
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