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Abstract—This paper presents a broadband dielectric char-
acterization method based on a Complex-Valued Deep Neural
Network (CVNN) that allows the retrieval of permittivity and
conductivity of dispersive lossy materials using ad-hoc setups. To
validate the method, we numerically tested it employing a par-
tially filled custom-made double-ridge waveguide setup, working
from 0.95 to 4.2 GHz. Moreover, we include a feature importance
analysis using agnostic explainable-AI (XAI) techniques. The
results demonstrate the flexibility and the retrieval capabilities
of the method, as well as the advantages and drawbacks in
comparison with traditional techniques. We publicly release the
dataset and codes to support further research.

Index Terms—Complex-valued neural networks, dielectric
characterization, explainable artificial intelligence

I. INTRODUCTION

Dielectric properties (DP), i.e., permittivity (ϵr) and con-
ductivity (σ), are essential in several fields, such as electron-
ics and electromagnetic compatibility, food and agriculture,
and biomedical, where they can act as sensing parameters,
degree of design freedom, and performance boosters, among
other uses [1]. So, over the years, different characterization
methods have been developed adapting to the diverse appli-
cation requirements and material under test (MUT) features
like frequency operation band, losses, dispersiveness, and the
sample’s form and size. For instance, the open coaxial method
is ideal for characterizing liquids. It uses the measures of at
least three calibration standards, e.g., open, short, and known
material, to determine the MUT’s DP [1]. Another example
is the resonant cavity method. It determines the DP of solid
and semi-solid materials employing the cavity physical model
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and the resonant frequency shifting occurring when the cavity
is filled with a MUT sample. Thus, it is highly accurate for
low-loss materials but is narrowband [1].

This work introduces and exploits a complex-valued deep
neural network (CVNN) to determine DP. Specifically, we
train and validate the method using synthetic data obtained
via full-wave simulations of a custom-made double-ridge
waveguide setup [2], working from 0.95 to 4.2 GHz, partially
filled with a sample of lossy dispersive material that for the
sake of the test takes DP values ranging those of human tissues
[3]. The CVNN approach allows a broadband characterization
using a single measurement and a non-trivial physical modeled
configuration with a smaller sample, which is essential in many
applications. The network uses as input a set of S-parameters
(SP) and outputs the first order Debye parameters [4], i.e.,
static permittivity, ϵs, and the relaxation time, τ , which are
used to determine ϵr and σ. Moreover, it is worth noticing the
network is physically informed, including physical limitations
such as the low influence, for the training dataset, of the
infinite permittivity, ϵ∞, of the Debye parameter at the interest
frequencies [4].

II. METHODOLOGY

Since the dielectric characterization from SP is a nonlin-
ear inverse problem that demands a rigorous mathematical
formulation of the measurement fixture, deep neural net-
works (DNNs) are found to be effective [5]–[7] in mod-
eling the nature of the problem due to their strengths in
approximating non-linearity while reaching convergence. To
this end, multi-layer perceptron (MLP) is a widely utilized
DNN method which is based on the universal approximation
theorem. However, despite SP being in the complex domain,
i.e., ∀{p, q} ∈ N : Sp,q = sp,q,R + isp,q,I ∈ C, the



existing works either consider (1) real and imaginary com-
ponents separately (sp,q,R, sp,q,I ) [5], (2) only the magnitude
(|sp,q,R+ isp,q,I |) [7] or (3) only the real component (sp,q,R),
and thereby inherently lack the potential to fully-harness the
entire available information in complex SP. To this end, we
propose a CVNN that has the ability to process complex-
valued SP to predict DP. Furthermore, unlike the typical
practice of heuristically-designed architectures [5], [6], we
design our CVNN architecture via an automated pipeline
empowered by neural architecture search (NAS). The target
of NAS process is to systematically determine the number
of neurons per hidden layer in the neural network while
objectively experimenting with network hyperparameters. The
final CVNN configuration is subsequently selected from the
search space such that it has the least cost in DP prediction.
As illustrated in Fig. 1a, our NAS-designed CVNN model
primarily comprises an autoencoder-like architecture followed
by regressing fully connected (FC) layers in the high-level
overview. It accepts a 3-D tensor of scattering parameters
Sp,q,fn where p, q, n ∈ N ∩ {p, q, n|p, q ≤ 2;n ≤ 1001}, and
p and q indicates the receiving and transmitting index, and fn
the frequency dimension, and outputs a 1-D vector of {ϵs, τ}.
Moreover, we include a feature importance analysis employing
a set of model-agnostic explainable-AI (XAI) techniques,
namely (1) model (f [.]) weights analysis: 1

L |f [W [0]]| where
W [0] is the aggregated weight matrix between the input and
first hidden layers while L is the linear normalization factor,
and (2) permutation response where the difference between
baseline error: ζ{y, f [x]}, and permuted error: ζ{y, f [xp]} is
utilized to assess feature significance [8].

III. EXPERIMENTS AND RESULTS

We use a dataset with 145 simulations which is randomly
split into training and test sets with a 3 : 1 ratio, respectively.
Due to the regression nature of the task, we evaluate our
CVNN method using five related metrics: (1) mean squared
error, MSE = 1

N

∑N
i=1{yi − ŷi}2, (2) mean absolute error,

MAE = 1
N

∑N
i=1 |yi − ŷi|, (3) mean percentage error,

MPE = 100%
N

∑N
i=1

1
yi
|yi− ŷi|, (4) Pearson correlation coef-

ficient, r, and (5) Spearman’s rank correlation coefficient, ρ,
where y, ŷ, and N refer to ground truths, predictions, and the
number of samples in the test set, which is not used in model

(a) (b)

Fig. 1: Illustration of CVNN model and its performance. (a)
High-level CVNN architecture and (b) DP retrieval test.

TABLE I: DP estimation metrics⋆

Method MSE↓ MAE↓ MPE (%)↓ r ↑ ρ ↑
static permittivity (ϵs)

[5] 6.87±2.23 1.61±0.33 9.30±0.76 0.98 0.97

[7] 5.45±0.14 1.34±0.11 8.87±0.31 0.99 0.97

[6] 12.64±8.22 2.48±0.82 14.25±4.93 0.97 0.96

DNN-1 3.81±0.26 0.89±0.04 7.35±0.20 0.99 0.98

DNN-2 4.59±0.33 1.06±0.06 8.09±0.16 0.99 0.98

CVNN 3.39±0.14 0.92±0.04 6.25±0.27 0.99 0.98

relaxation time (τ )

[5] 3.00±2.79 1.05±0.55 32.02±56.18 0.87 0.85

[7] 0.95±0.10 0.63±0.04 27.48±2.49 0.96 0.95

[6] 5.29±3.70 1.64±0.80 44.30±75.93 0.76 0.75

DNN-1 0.87±0.02 0.54±0.02 15.94±2.25 0.97 0.95

DNN-2 0.99±0.03 0.60±0.02 17.77±4.52 0.96 0.95

CVNN 0.81±0.01 0.52±0.02 14.59±0.58 0.97 0.96
⋆Metric-wise, best performance is made bold while second best is underlined.

training, respectively. Exact details of the hyperparameters for
the proposed method are reported in the repository1.

As presented in Table I, our CVNN method consistently
and significantly outperformed the existing works across all
metrics, validating the superiority of the designed DNN ar-
chitecture through NAS. Further, it is observable that even
with the same architecture, having SP as complex numbers
gives an edge in performance over transforming them to
real representations, as shown against DNN-1 (sp,q,R, sp,q,I )
and DNN-2 (|sp,q,R + isp,q,I |). Figure 1b exemplifies the DP
retrieval of cerebrospinal fluid [3] which was not included
in the training data. In addition, we also employed XAI
techniques to validate the physical consistency of the model’s
predictions, using network with optimized hyperparameters.

IV. CONCLUSION

This study introduced and validated a broadband method
for the dielectric characterization of dispersive and lossy ma-
terials using a complex-valued neural network, outperforming
traditional methods in accuracy and prediction capabilities.
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