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We explore the capabilities of Large Language Models (LLMs) to assist or substitute devices (i.e., firewalls) and
humans (i.e., security experts) respectively in the detection and analysis of security incidents. We leverage
transformer-based technologies, from relatively small to foundational sizes, to address the problem of correctly
identifying the attack severity (and accessorily identifying and explaining the attack type). We contrast a broad
range of LLM techniques (prompting, retrieval augmented generation, and fine-tuning of several models) using
state-of-the-art machine learning models as a baseline. Using proprietary data from commercial deployment,
our study provides an unbiased picture of the strengths and weaknesses of LLM for intrusion detection.

Additional Key Words and Phrases: Intrusion Detection; Large Language Model;

1 Introduction
Current security products like Intrusion Detection System (IDS) and End Point Detection and
Response (EDR) systems largely rely on manually curated rules and Cyber Threat Intelligence (CTI)
data for analyzing raw logs. However, this approach is continuously challenged by the dynamic
nature of cyber threats, necessitating constant updates and manual interventions. It would be
thus desirable to reduce as much as possible the current dependence on manual processes and
rule-based systems and to assist the expert in analyzing a vast amount of heterogeneous data –
for which Machine Learning (ML) and, especially, Natural Language Processing (NLP) techniques
are a promising tool. While several known problems [10] plague the deployment of ML in the
production system, breakthrough in NLP modeling offers a promising avenue worth exploring,
given the generic reasoning abilities of Large Language Models (LLMs) [16], whose application to
security recently encountered an increasing interest. In this paper, we investigate whether LLMs
can detect malicious patterns directly within raw packets.

From a mile-high viewpoint, there are two main ways LLMs can be exploited for cybersecurity
defense. The first one is to use (i) general-purpose polymath LLMs [16] to reason about security
events: this is, for instance, the case of products like Microsoft Security Copilot [3], which employs
OpenAI’s GPT-4 to produce security incident reports. At the same time, such a cloud-centric
deployment model faces significant hurdles in terms of data privacy and high bandwidth and
computational costs. The alternative path is to rely on (ii) lean task-specific LLM models, that have
*These authors contributed equally to this work.
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been retrained/fine-tuned in a supervised manner to solve specific tasks, such as identification of
an attack’s class and severity. While the scale of such models allows them to be run on-premise, it
is unclear if such models are sufficiently accurate to replace, or even assist, current IDS.
This paper sets out to assess the value of the above LLMs alternatives by comparing several

design strategies, including classic ML and LLM models that, given raw data as input, compete
(or complement) a commercial IDS solution to generate security alarms and incident reports. In
particular, we consider: (i) an end-to-end approach where the LLM provides the full solution in a
single step with classic few-shot prompting; (ii) a Retrieval Augmented Generation (RAG) strategy
where the LLM has access to a database of exemplary raw payloads of previous attacks; (iii) a
decoupled solution where a small, task-specific fine-tuned LLM classifies the attack class and
severity, whereas a foundational LLM produces the ultimate natural language incident report,
aggregating the task-specific output with additional information, such as CTI data. We summarize
our main findings as follows:

• First, prompt-based end-to-end LLM solutions are not satisfactory; in particular, cloud-based
solutions constitute a privacy risk without readily solving the problem (OpenAI GPT 3.5
and 4), while on-premise solutions with smaller models achieve below-par performance
(Mistral-7B, LLama2-13B).

• Second, RAG improves the on-premise end-to-end solution by a sizeable amount, and
additionally helps improve the attack explanation and grounding, but performance is still
far from replacing an IDS.

• Third, task-specific LLMs can be fine-tuned to achieve satisfactory performance, over 95%
accuracy for in-distribution attacks, outperforming state-of-the-art ML baselines.

• At the same time, performance on zero-day attacks (i.e., out-of-distribution from a machine
learning perspective) is significantly lower, which calls for more investigation into the
generalization abilities of LLMs.

In the rest of this paper, we first overview related literature (Sec. 2) and next detail the different
system designs we contrast (Sec. 3). We describe our research questions, proprietary dataset,
and methodology (Sec. 4), and report extensive experimental results (Sec. 5). Finally, we discuss
limitations and future work (Sec. 6).

2 State of the art
2.1 NLP for Cyber Defense
Various NLP techniques have been used for the detection of malicious patterns in textual data from
diverse cybersecurity sources (such as emails, transaction logs, software code, and online social
media). As summarized in the top portion of Table 1, these techniques can be categorized into four
main approaches, which we overview in the following.

2.1.1 Traditional NLP Methods. Traditional NLP methods, such as Bag of Words (BoW), Term-
Document Matrices (TDMs), and Term Frequency-Inverse Document Frequency (TF-IDF) [52],
have been employed to represent text in a digital form, usually in combination with ML for various
cybersecurity tasks. For instance, [11] use BoW with a Decision Tree for detecting intrusion attacks
in in-vehicle networks, specifically focusing on the Controller Area Network (CAN) bus traffic and
considering different combinations of data including the arbitration field (CAN-ID) and payload.
Leveraging honeypot logs, [13] uses frequency-based embedding (Counter Vectorizer, TF-IDF)
to identify classes of attack patterns and explain attackers’ objectives. In this work, we leverage
state-of-the-art ML and TF-IDF as a baseline for LLM.
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Table 1. State-of-the-art methods for cybersecurity using NLP, Word Embedding, Transformer, and LLM.

Application Sec Approach [Ref] Year Model Task

Defense

2.1.1 Traditional NLP [11] 2021 BOW + Decision Tree Intrusion detection
Traditional NLP [13] 2022 Counter Vectorizer, TF-IDF, Word2Vec + Clustering Shell attacks analysis

2.1.2 Word Embedding [33] 2021 DeepAMD (MLP) Android malware detection
Word Embedding [36] 2021 PetaDroid (CNN Ensemble) Android malware detection
Word Embedding [27] 2021 DarkVec (MLP) Malaware traffic detection

2.1.3

Transformer [50] 2021 MalBERT (BERT-based) Malware identification
Transformer [51] 2023 MalBERTv2 (BERT-based) Malware identification
Transformer [7] 2022 SecureBERT (BERT-based) Foundation model for security
Transformer [9] 2022 CAN-BERT (BERT-based) Intrusion detection
Transformer [18] 2022 BERT-Log (BERT-based) System logs Anomaly detection
Transformer [14] 2023 LogPrecis (BERT-based) Honeypot shell log analysis
Transformer [54] 2024 Dom-BERT (BERT-based) Malicious domain detection

2.1.4

LLM [3] 2023 SecurityCopilot (GPT-4) Incident response
LLM [23] 2023 SecureLLM (BERT, Falcon-40B) Threat detection and mitigation
LLM [22] 2023 SecureFalcon (Falcon-40B) VC code vulnerability detection
LLM [39] 2023 CAN-SecureBERT (RoBERTa), CAN-LLAMA2 (Llama2-7B) Intrusion detection and classification
LLM [35] 2023 ChatIDS (ChatGPT) Explaining IDS alerts
LLM [31] 2023 netFound (Hierarchical transformer) Foundation model for network security

Attack 2.2.1
LLM [21] 2024 GPT-4 Website hacking
LLM [47] 2023 AutoGPT, GPT-3 Malware creation
LLM [32] 2023 GPT-3.5 GPT-4 Spear-phishing attacks

LLM Security 2.2.2

LLM [28] 2024 GPT-3.5, GPT-4 LLM apps manipulation
LLM [17] 2020 GPT-2 Training data extraction
LLM [44] 2023 Pythia, GPT-Neo, LLaMA, Falcon, ChatGPT Training data extraction
LLM [43] 2023 Small check Leak of LLM internal design
LLM [40] 2023 Bart, mBart LLM “intellectual property" protection

2.1.2 Neural Word Embeddings. Neural word embeddings, such as Neural-Bag-of-words, FastText
and Word2Vec [42], are more modern word representations that capture language semantics and
word inter-relationships. These embeddings are generally used in conjunction with Deep Learning
(DL) architectures for malware detection tasks. For instance, [33] proposed the DeepAMD frame-
work based on a simple Multi-layer Perceptron (MLP) architecture for detecting and identifying
Android malware. PetaDroid[36] employs an ensemble of Convolutional Neural Networks (CNNs)
on top of Inst2Vec features for Android malware detection, and uses DBScan for clustering malware
families. DarkVec [27] learns embeddings of IP traffic patterns to detect malicious network activities.
As word embeddings have been superseded by more recent neural architectures, we disregard them in
this paper.

2.1.3 Transformer-based Language Modeling. Transformer-based language models, particularly
encoder-based models like Bidirectional Encoder Representations from Transformers (BERT) [20],
have gained popularity in cybersecurity applications due to their ability to learn good, contextualized
representations from words and entire sentences. Several studies have applied BERT to various
security tasks, such as intrusion detection [9], anomaly detection in system logs [18], malware
identification [50, 51] and malicious DNS domain detection [54]. Domain-specific language models
like SecureBERT [7] have been developed to learn representations from the unique characteristics
of cybersecurity text data. Given the rising popularity of BERT-based security models, in this paper
we perform a thorough ablation study of BERT models for threat detection and classification.

2.1.4 LLM for Cyber Defense. The emergence of LLMs has opened new possibilities for automating
cybersecurity tasks. While the application of LLMs in this domain is still in the early stages, recent
works have started exploring its potential. Ferrag et al. [23] introduced SecurityLLM combining
a smaller BERT model for threat detection in IoT systems with a larger instruction-tuned LLM
for incident response and recovery, acting as an assistant to network security analysts. To detect
vulnerabilities in the specific case of C code, [22] utilize a tailored version of FalconLLM, achieving
good accuracy. Other efforts include using LLMs for explaining IDS alerts to non-experts [35]
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and building foundation models for network security [31] to incorporate hierarchical and multi-
modal attributes of network traffic inside the model, to be able to learn hidden contexts and favor
generalization. To the best of our knowledge, despite RAG being a very popular technique [24], it
has never been tested so far in the field of cybersecurity. In this work, we are the first to directly
compare transformer-based vs LLM-based and RAG-based classification performance (and defer a
qualitative assessment of LLM explanation abilities to Appendix C).

2.2 Other LLM-related Security Studies
As reported in the bottom of Table 1, LLMs have also been used for complementary cybersecurity
tasks: these are still relevant as close in terms of approach, yet far from an application perspective.

2.2.1 LLM for Cyber Attacks. Researchers have studied the offensive capabilities of LLMs such as
AutoGPT and GPT-3, to create malware [47] or spear-phishing attacks [32]. More recently, Fang
et al. [21] assessed the ability of LLM agents to autonomously hack websites, revealing that GPT-4
demonstrates the required capabilities without explicit prior knowledge of specific vulnerabilities
(succeeding 2/3 of the time w.r.t. much lower success rates for other models, including GPT-3.5).

2.2.2 Security of LLMs. A complementary viewpoint of the work on LLMs and security is instead
concerned with the security and privacy of LLM-based systems themselves. Greshake et al. [28]
notoriously revealed a new attack vector called Indirect Prompt Injection, where adversaries
remotely exploit LLM-augmented applications by injecting prompts into the data these applications
access during inference.
Other work instead focuses on attacks to steal training data from LLMs [17, 44], attacks to

reverse-engineer some of their internal design choices [43], methods to protect their “intellectual
property” through watermarks [40], or methods that prove that a model was trained according to a
given specification without revealing details about training data or model details [26].

2.3 Our Contributions
In a nutshell, this study is the first to provide a systematic comparison of a very wide range of
state-of-the-art LLM and ML techniques for the purpose of cyberdefense, using payload as input. To
provide fair, unbiased, and statistically significant results, we take care of avoiding methodological
flaws that, while well known, are still common in ML studies for security [10].

3 Solutions overview
The goal of an AI firewall is, shortly, to (i) correctly detect a security incident and (ii) generate a
description in natural language: Fig. 1 depicts the high-level solutions we contrast in this work
to achieve the above goal. For the reason of space, this paper mostly discusses the quantitative
aspects related to classification abilities and defers to the appendix qualitative examples of textual
description. Without loss of generality, we refer to the categorical class labels (e.g., benign/malicious,
or more involved class definition) as ℓ in the following.

3.1 Prompt engineering
As a baseline, we employ a frozen pre-trained LLM with prompt engineering as in Fig. 1-(a). We
opt for open-weight LLM models (such as Mistral [34] and LLama2 [55]) that can be deployed
on-premise in a private cloud (for data privacy reasons), or on the public cloud (with access to
GPT-3.5 [12] and GPT-4 [46]). The input of a model is raw packets 𝑃 payload, and the output of the
model is the class label ℓ (and a natural language explanationℰ).
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Fig. 1. Synoptic of AI firewall solutions: (a) end-to-end solution through frozen LLM prompting; (b) RAG and
frozen LLM; (c) decoupled classification with fine-tuned LLM (or ML) and incident reporting with frozen LLM.

Aim. The aim is to assess whether frozen LLM models alone can readily act as an AI firewall
with minimal investment. As such, while we do experiment with several prompts, we do not aim at
over-engineering the prompting part [57]. We further detail the frozen LLM baseline in Sec.4.4.1
and report results in Sec.5.1.1

3.2 Retrieval Augmented Generation (RAG)
As a second solution, we complement the frozen LLM with firewall data, accessible through a
RAG [25] as in Fig.1-(b).

Offline phase. We leverage ChromaDB and Langchain frameworks [2] to augment frozen LLMs
with specific examples of malicious packet payloads 𝑃 and associated classes ℓ , denoted as AttackDB
in the picture. During an offline phase, the AttackDB is populated with a set of representative attacks
by using embeddings of the payloads 𝑒 (𝑃𝑖 ) (essentially, a high dimensional vectorial representation
of the payload), along with metadata such as ∀ℓ𝑖 class label, and other useful information (such as a
textual description eventName𝑖 , eventID𝑖 ).

Inference phase. At inference time, when presented with a new raw packet payload 𝑃 𝑗 , using
𝑒 (𝑃 𝑗 ) as the search key, RAG retrieves the top-𝑘 relevant payloads embeddings to 𝑒 (𝑃 𝑗 ) and the
associated values (i.e., class ℓ , eventName descriptions). In practice, the top-𝑘 packets are those
closest according to the cosine similarity metric in the embedding space. The metadata (class
ℓ , eventName description) associated with these top-𝑘 embedded payload representations are
then passed as additional input to a frozen LLM model for textual explanation. We expect this
domain-specific knowledge to assist a fine-tuned LLM or a frozen LLM for the classification (ℓ) or
textual explanation of security events.

Aim. Setting up a RAG pipeline is marginally more involved than prompting: the aim of this
baseline is thus to assess whether, by carefully engineering a sanitized task-specific AttackDB
exploited with a RAG approach is sufficient to let frozen LLM models act as an AI firewall. Further
details on the RAG strategy are provided in Sec. 4.4.2 and associated results are reported in Sec. 5.1.2.

3.3 Fine-tuned LLMs + Frozen LLMs
We finally consider a decoupled solution where a (i) specialized LLM (or ML) model provides
accurate classification ℓ , whereas a (ii) foundational frozen LLM model is solely in charge of
providing the natural language explanation E.
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Offline phase. Task-specific LLM (or classic ML model) needs to be fine-tuned during the offline
phase. We consider both (i) transformer-based models e.g., BERT [20] and variations thereof (such
as UnixCoder, BigBird) of alternatives (such as models of GPT-2, Mistral-7B) as well as (ii) state-of-
the-art ML models based on classic TF-IDF payload representation as a baseline. To provide a fair
comparison, we fine-tune LLM and train ML models on the same (𝑃, ℓ) class pairs (cfr Sec.4.4.3–4.4.4
and Appendix B.1–B.3).

Inference phase. During the inference phase, specialized LLM (or ML) models can feed to the
foundational frozen LLM model more than just the class label ℓ (e.g., additional meta-information
such as eventName, attention, extracted keywords, etc.). Additionally, the foundational frozen
LLM model can access and summarize all available information (such as the AttackDB through
RAG, CTI information about IP of the alleged attackers, as well as raw packet payload 𝑃 as in the
previous solutions) to present human operators with a clear explanation of the event in natural
language – which instead specialized task-specific models are unapt for.

Aim. The intuition of this decoupled solution is to leverage a lean lightweight model for the
classification task of large volumes of traffic and exploit the expressive power of LLM only for the
rare cases that require human intervention. We introduce the state-of-the-art ML approaches in
Sec.4.4.3, the set of LLM models we fine-tune in Sec.4.4.4, and report results in Sec.5.2.

4 Methodology
In this section, we formalize our methodology and key research questions (RQs) we aim to address
(Sec. 4.1), introduce our dataset (Sec. 4.2) and evaluation scenarios (Sec. 4.3). We then detail our
classification models (Sec. 4.4). Due to lack of space, we defer the explanation generation to
Appendix C.

4.1 Problem statement
We frame the task of detecting security incidents from raw network traffic as a sequence classification
problem in the context of NLP. Given an input text sequence representing parsed network traffic (e.g.,
a packet header and payload), the goal is to predict the correct label ℓ as either a binary classification
(malicious/benign) or as a 5 category (fine-grained risk level, cfr Sec.4.2 and Appendix A.2). For the
sake of readability, and to gather conservative results, we mostly report results of the 5-category
classification (which is harder than the binary problem).

At high level, our experiments are designed to address the following key RQs, that we phrase to
provide insights and best practices for designing effective LLM-based network security incident
detection systems.

RQ1 Ease of adoption: Are simple techniques such as prompting/RAG sufficient, or is fine-tuning
LLM models necessary, for accurate classification of security events?

RQ2 LLM performance: Do fine-tuned LLMs offer advantages over traditional ML baselines, such
as TF-IDF with state-of-the-art ML models? Are they capable of generalization? what is the
expected performance in practice?

RQ3 Best LLM practices: Concerning fine-tuned LLMs, what are the best choices in terms of
LLM model sizes (from 110M to 7B weights), context window (from 512 to 4096 tokens) and
pre-training (language-only vs domain-specific)?
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4.2 Dataset
For this paper, we use a proprietary* collection of security events, corresponding to incidents
detected by firewall rules from our on-premise as well as from customer deployments, collected
across five months (from May 26th to October 10th, 2023). By design, the provenance of the data
avoids the Lab-only evaluation pitfall, identified in [10] as the 3rd most frequent problem, common
to 47% of the surveyed ML security studies.

4.2.1 Data sources. Each event is described by two data types: an (i) Alarm Log, a single JSON file
giving the basic details of the type of attack identified (e.g., event ID, 5-tuple, application protocol,
event name assigned by IDS, timestamps, etc.) and (ii) Alarm Evidence, a collection of JSON files
containing plaintext payload dumped from Packet Capture (PCAP) associated with the event in
the Alarm Log. As our goal is to apply ML directly to traffic captures, we restrict our attention to
the set of 2.06M events having associated at least one packet capture with a non-empty payload.
As it is well known that most IDS alarms are false positive classifications [8], the main goal is to
correctly rank attacks into 5 decreasing severity levels ℓ : some classes pertain to malicious traffic (1:
Successful attack, 2: Virus, trojan and worm and 3: Unsuccessful attack attempt) while other classes
are related to either benign (4: IDS false alarm) or unspecified (5: Other) traffic. Additional details
concerning data collection process are reported in Appendix A.1.

4.2.2 Spatio-temporal viewpoint. In particular, there are 232 applications in total in the dataset, with
the top 5 (HTTP, DNS, SMB, HTTPS and UDP) representing 88% of the total events – an expected
imbalance. These applications generate a set of precisely 2500 unique attack types (identified by
their textual eventName description) for which their most frequent top-5 (top-10) represent 26.8%
(35.6%) of the total. Further information about the attack types and details on the top-10 events are
deferred to Appendix A.2.

As the data comes from active firewall deployments, we do not control the collection policies: as
such, we cannot assume homogeneity across time in terms of the types of events captured. This is
especially relevant for the study of deployments that need to adapt to evolving data [10]. We charac-
terize the temporal evolution of events in Fig. 2, showing the cumulative distribution of events over
time (left) as well as heatmaps by event names/attack severity according to months (middle/right),
where we split the data in five bins of equal number of days (27.5). Regarding attack severity level ℓ
(right), we observe a large imbalance in both spatial distribution and temporal behavior: successful
attacks are very infrequent (severity class ℓ=1 comprises 787 events, representing less than 0.4% of
the total) while most of the false positive and other traffic samples (ℓ∈[4,5]) are concentrated in the
third and fourth bins. In particular, most of the category ℓ=4 events are detected in a period of four
days, ranging from Aug. 15th to 19th: this bursty behavior is expected and represents a potential
challenge for properly training ML and LLM models.

Temporal skew can similarly be found analyzing event names (middle): most SMB attacks (top-1
and top-3 in terms of frequency, attacks of severity ℓ=2) concentrate in Jun-Jul, while SSL weak
hashing scans (top-4 frequency, severity ℓ=4) appear to be carried out mostly during Aug-Sep. This
confirms the potential data drift that was previously hinted, as completely new types of attacks (i.e.,
zero-day previously unseen eventName) may start to appear after months of collection, which
has consequences on the evaluation protocol to be put in place to avoid gathering biased results.

4.2.3 ML viewpoint. From an ML viewpoint, information in the Alarm log and Alarm evidence can
be either used as input or output of the classification task. Generally speaking, the ML classifiers
are presented with input readily available from the Alarm evidence, i.e., the 5-tuple flow identifier
*The dataset is a sensitive asset which we cannot therefore release. We are investigating the possibility of releasing a curated
fraction, but we have not received clearance to do so.
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Fig. 2. Temporal evolution of the volume of events across categories (left), top-5 event names (middle,
corresponding to the first five events in Table 8), and event categories (right). The fill color indicates the
percentage of samples each cell represents and is independent across the two plots.

as well as the packet payload extracted from the raw traffic stream. When more than one packet
is available, we further concatenate payloads of several packets belonging to the same event (i.e.,
associated to the same eventID in the log). As for the output, our classification target is the
severity of the identified attack ℓ∈[1,5]⊂N, where the lower the value, the higher the severity.
Additionally, the IDS provides a textual description of the attack (eventName): we consider

the eventName field as either (i) input to ML/LLM classifier for IDS-assistance, as well as (ii)
intermediate output of the RAG classifier for IDS replacement. Concerning the latter case, recalling
Fig.1-(b,c), the AttackDB can be queried through RAG to predict the most likely eventName, to
be used as input by the risk severity classifier even in the absence of an IDS.

4.3 Data Splits and Evaluation Scenarios
To rigorously evaluate the performance and generalization capabilities of our AI Firewall, we curate
our dataset of real-world network events to design several evaluation scenarios that avoid common
pitfalls [10]. Table 2 summarizes the number of security events used for model training and testing,
according to different splits we hereby motivate and describe. In a nutshell, we use a (i) curated
subset with models of the OpenAI GPT family due to privacy issues, (ii) a stratified split to assess
different models’ capacity to learn from the data, isolating model limitations from the effects of
potential data shifts and (iii) two time-based splits, to closely assess models’ robustness to real-world
conditions and data shifts.

Table 2. Dataset and associated computational cost: (left) Number of samples for stratified vs temporal splits
and (right) training and inference (batch size 1) costs for ML, BERT and RAG models for the stratified split.

Data splits Stratified 15/08-split 21/08-split Computational cost ML BERT RAG

Train 17174 42245 42687 Train time (sec/sample) 0.25 0.7 0.02
Validation 4294 10562 10672 Inference time (ms/sample) 0.07 40.3†/5.5‡ 34.4
Test 411626 575414 406449 Inference rate (sample/sec) 13.7k 25†/181‡ 29

† batch size B=1, ‡ batch size B=20

4.3.1 Curated subset. A balanced subset of 20 samples per class (100 overall), on which we gather
clearance for testing with proprietary LLMs (i.e., OpenAI GPT) while preserving privacy, that we
use to partly answer RQ1. Given its small size, the subset has anecdotal value and yields ballpark
figures, but it allows manual validation of results.

4.3.2 Stratified selection. Stratified selection is typically used in ML for consistent performance
evaluation, in that, it avoids the sampling bias present in many ML security studies (the most
frequent problem, common to 60% of the studies surveyed in [10]).
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Typically, we start by randomly splitting the full dataset into 80/20 for train/test purposes. To
counter class imbalance in the training process, we create a fairly balanced subset by subsam-
pling the train fold, ensuring the selection of at least one sample per each of the (eventName,
application, ℓ) tuples and oversampling the minority classes. This yields a more balanced class
distribution (despite successful attacks are still under-represented). The train subset is further split
into train/validation sets with an 80/20 ratio, and the same train/validation folds are used for both
LLM and ML workflows.

Finally, from the much larger portion (0.4M samples) of the original dataset left for test purposes,
we ensure that no duplicate event (i.e., repeated attack from the same source with the same payload)
is present in both the training and testing sets. We use stratified split to relatively compare ML
vs LLM in RQ2, and for ablation studies of RQ3. We are aware that, unlike the train/validation
sets, the test set will still be affected by class imbalance: therefore, we will avoid the inappropriate
measure pitfall (top-5 flaw present in 33% of the ML security studies [10]) by resorting to unbiased
metrics (e.g., weighted accuracy and macro average F1 score) and reporting confidence intervals
over multiple repetitions. The weighted accuracy (or balanced accuracy) is a metric that accounts for
class imbalance by computing the average of recall values for each class, computed 1

𝐶

∑𝐶
𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖

,

where 𝐶 is the number of classes, 𝑇𝑃𝑖 and 𝐹𝑁𝑖 are the true positives and false negative for class 𝑖 .

4.3.3 Time-based splits. At the same time, stratified selection (or cross-fold validation) breaks
temporal consistency and yields temporal data snooping from future events – a prevalent flaw in
ML security (the second most frequent problem, found in 57% of the studies [10]). We therefore
design two more realistic scenarios, where ML/LLM models predict future events based solely on
past data, without control over the event distribution. This mimics the conditions of a real-world
deployment, testing the models’ ability to adapt to evolving threats.
We resort to temporal splits that conserve roughly the same magnitude of the 80/20 stratified

splits: in particular, our dataset consists of network events collected during 138 days, with a
strong data drift happening during mid-august as reported in Fig.2. We therefore consider two
temporal splits, namely: (i) 15/08-split: this split uses 82 days for training (until August 15th, so just
before the drift) and the remaining 56 days for testing; (ii) 21/08-split: this split uses 88 days for
training (until August 21st, so just after the drift) and the remaining 50 days for testing. Clearly, (i)
corresponds to a worst-case stress-testing for the generalization capability of the model, as the test
split contains radically different zero-day attacks never seen in training (i.e. out-of-distribution),
while (ii) corresponds to a mild stress-test*, yielding a conservative performance assessment that is
furthermore not affected by temporal data snooping.

After the temporal split, a similar subsampling approach is used to reduce the training/validation
set sizes, whereas the test set corresponds to all security events happening after the split date.
We extensively use the time-based splits to gather a conservative assessment of ML and LLM
performance (RQ2) in real-world settings throughout the paper.

4.4 Classification Models
4.4.1 Prompt engineering. We use few-shot prompting as a frozen-LLM baseline. We use a range of
pre-trained LLM models of different size and openness, notably open-source LLM with on-premise
deployment model that keeps data private (Llama2 7B and 13B [55], and Mistral 7B[34]) as well as
proprietary LLMs with cloud-based API access that exposes data to third parties (OpenAI GPT-3.5
and GPT-4 [46]). For each input event, we construct a prompt that includes the task description,
the input payload, as well as instructions and examples to classify the event into one of the five
*In that models are trained once and never updated, whereas in practice we would expect at least a weekly/monthly model
update.
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categories: the model output is then parsed to extract the predicted label. While we experiment
with a set of prompts (the finally used prompts are reported in Appendix B.2), we do not want
to invest too much time in prompt (over) engineering [57]: our goal is to assess the current level
of ease of deployment with limited effort (RQ1), i.e., if the problem is already solved by the most
powerful models available in the academia/market. When leverage frozen models, the running
time of a single inference is around 10 seconds.

4.4.2 Retrieval Augmented Generation (RAG). For our RAG baseline, we employ a dense passage
retrieval system implemented using ChromaDB with state-of-the-art embedding models [5, 6].
While the full system employs RAG for textual explanation, to provide a fair comparison with
prompting, LLM and ML for classification, we also directly measure the ability of RAG to correctly
classify payload as an intermediate step, with the methodology explained in Sec.5.1.2.
As the complexity of setting up RAG is marginal with respect to that of a fine-tuning LLM/ML

pipeline (also notice from the left portion of Table 2 that training time for RAG is the lowest), by
comparing RAG vs prompting we still assess the ease of deployment with limited effort (RQ1).
Instead, by comparing the performance of RAG to that of fine-tuned LLMs, we can assess the extent
to which LLMs are simply memorizing known patterns vs their generalization ability (RQ2).

4.4.3 State-of-the-art ML baseline. In this study, we pay particular attention to avoiding being
blinded by the LLM hype: otherwise stated, we put as much care and effort into constructing the
traditional ML solution, as much as we put into constructing the LLM ones. We, therefore, employ a
state-of-the-art ML baseline, avoiding the inappropriate baseline pitfall (P6 in [10], 20% prevalence).
Using the same folds in Table 2 for a fair comparison, we train several ML models, for over 50

hyperparameter combinations (details deferred to Appendix B.1) on classic TF-IDF [52] representa-
tion of the input data. We then assess the performance of these ML models on the validation fold
to select the best performing one, to finally gather performance results on the test set. Purposely
excluding deep learning methods (of which we focus on the next section), we include methods that
work well on imbalanced data (Logistic Regression, Ridge Classifier, and Complement Naive Bayes)
as well as methods successfully used across a very wide spectrum of classification tasks (Random
Forest, Support Vector Machines and Gradient Boosting Classifier). On the one hand, this approach
can be seen as a strong ML baseline for a conservative performance comparison with LLMs in the
context of this study. On the other hand, it is also amenable for practical deployment, as ML models
could be periodically re-trained with a sliding window approach, and the best-selected model could
be used for the current period until the next retrain. Using a strong ML baseline and a principled
analysis methodology, we can reliably assess whether LLM encoding abilities offer a statistically
significant advantage over a traditional state-of-the-art ML approach (RQ2).

4.4.4 Fine-tuned LLM Encoders. Pre-trained LLMs provide rich, contextual representations of
textual data. These models are trained using self-supervision techniques to predict the next token
(or masked tokens, etc.) on vast amounts of unlabeled text data. Recent work [15] has shown that
fine-tuning pre-trained LMs on downstream tasks, such as sequence classification, often yields
state-of-the-art performance with minimal amount of task-specific training data. In our case, we
aim at fine-tuning LLMs for attack severity prediction based on payload input. In practice, we
fine-tune* several models: to outline best LLM practices (RQ3), we assess the impact of (i) model
size by contrasting BERT, GPT-2 (small, medium, and large) and Mistral-7B (Sec.5.4.1) and of (ii)
model architecture by contrasting BERT, BigBird, SecureBERT and UniXcoder (Sec.5.4.2).

*As dataset is proprietary and sensitive, we do not obtain clearance to release weights of the LLM models we fine-tune
either.
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Table 3. Prompt engineering: Macro average recall (weighted accuracy), macro average F1 score and Confusion
matrix of different frozen LLMs, for payload + 5-tuple input on the curated dataset.

Open-weight, on-premise Proprietary, cloud

M: Llama2 Llama2 Mistral GPT-3.5 GPT-4
W: 7B 13B 7B 20B† 1.5T†
W: 0.28 0.29 0.33 0.27 0.45
F1: 0.34 0.30 0.28 0.32 0.46

CM: 1 2 3 4 5
Predicted label

1

2

3

4

5

Tr
ue

 la
be

l

14 1 5 0 0

16 1 3 0 0

7 0 13 0 0

20 0 0 0 0

2 17 1 0 0
1 2 3 4 5

Predicted label

1

2

3

4

5

Tr
ue

 la
be

l

9 10 1 0 0

1 19 0 0 0

4 15 1 0 0

15 2 3 0 0

0 20 0 0 0
1 2 3 4 5

Predicted label

1

2

3

4

5
Tr

ue
 la

be
l

1 2 6 4 7

1 1 11 0 7

2 7 10 1 0

0 0 11 6 3

0 0 2 3 15
1 2 3 4 5

Predicted label

1

2

3

4

5

Tr
ue

 la
be

l

10 0 5 4 1

8 10 1 1 0

16 2 2 0 0

8 1 6 5 0

5 0 12 3 0
1 2 3 4 5

Predicted label

1

2

3

4

5

Tr
ue

 la
be

l

11 0 3 6 0

13 5 0 2 0

17 0 3 0 0

9 0 3 8 0

0 0 2 0 18

M: model,W: # weights († popular estimates for GPT models size),W: weighted accuracy, CM: confusion matrix

• BERT: Bidirectional Encoder Representations from Transformers (BERT) [20] is a transformer-
based model pre-trained using a combination of masked language modeling (MLM) and next
sentence prediction (NSP) objectives, employing a bidirectional architecture: this allows it to
condition on both left and right context, making it well-suited for sequence classification tasks. We
employ a BERT model with 110M parameters and a maximum sequence length of 512 tokens.

• BigBird: As BERT limits input to 512 tokens, which implies truncation of packet payload,
we also consider BigBird [58], a ∼110M parameters model that handles 4096 tokens long input
sequences through a sparse attention mechanism.

• UniXcoder: Since BERT is not specifically designed to handle packet payload input, we in-
clude UniXcoder [30], a ∼110M parameters model that can process both natural language and
programming language inputs, which might better suit to encode network data.

• SecureBERT: We also evaluate the cybersecurity-specific model SecureBERT [7], which has
been trained using a large corpus of cybersecurity resources based on the RoBERTa model and has
achieved very promising results in grasping cybersecurity language.

• GPT-2: Additionally, we fine-tune the latest open-source version of OpenAI GPT-2 family [49],
which allows us to also assess classification performance across a range of model sizes from 117M
(GPT-2 small), to 345M (GPT-2 medium) and 774M (GPT-2 large) parameters.

• Mistral-7B: The largest model we fine-tune for classification tasks is Mistral [34] a 7B billion
parameter model that uses Grouped-Query Attention (GQA) for faster inference, coupled with
sliding window attention (SWA) to handle sequences of arbitrary length at reduced inference cost.

• Fine-tuning hyperparameters: Deferred to Appendix B.3 for space constraints.

5 Experimental results
5.1 Ease of deployment (RQ1)
5.1.1 Prompt engineering. Using the representative subset of 100 balanced samples, we perform
prompt engineering using different LLMs and summarized the results in Table 3. It is easy to gather
that the performance of both open-weight LLMs as well as proprietary LLMs are different (F1 score
0.28-0.46) yet unsurprisingly similar across all models (except GPT-4), but unsatisfactory for IDS
replacement (even in case of GPT-4). Additionally, the confusion matrices reported at the bottom of
Table 3 show that except for Mistral, a large number of events are (wrongly) classified as successful
attacks (notice the first column).
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Not shown for lack of space, we also perform experiments by additionally feeding frozen LLMs
with the actual eventName gathered from the IDS, which by definition of the problem possibly
contains false positives. Interestingly, doing so actually deteriorates the overall performance, as this
increases the odds that frozen LLMs believe false alarms to be successful attacks. While this could
probably be countered by altering the prompting, we believe that effort should be targeted to the
analysis of more sophisticated and carefully engineered solutions.

5.1.2 RAG alone. We next turn our attention to the performance of RAG for attack classification.
To conduct a statistically significant analysis, we refrain from assessing the full end-to-end RAG
pipeline which would entail analyzing the natural language output of the frozen LLM, and instead
focus on the intermediate RAG-specific contribution: otherwise stated, we assess the quality of the
top-𝑘 information retrieved from the AttackDB and passed to the frozen LLM. This allows us to
analyze the full dataset and the different scenarios shown early in Table 2. We recall that given a
specific scenario (stratified or time-split), all the training and validation samples are ingested into
the AttackDB, and all test samples are used for performance evaluation. Performance is reported in
Table 4.

Table 4. RAG retrieval performance: Weighted accuracy for severity classification (left) and Recall@{1,2,3} for
eventName retrieval (right) on all scenarios, for payload + 5-tuple input and two RAG embedding models.
Performance metrics were reported as Median ± 0.5*IQR (inter-quartile range) of 50 bootstrapped resamples
of the experimental results.

Scenario Embedding model Class: ℓ ∈ [1, 5] Class: eventName

Weighted accuracy Recall@1 Recall@2 Recall@3

Stratified all-mpnet-base-v2 0.818 ± 0.006 0.696 ± 3.9 · 10−4 0.758 ± 4.7 · 10−4 0.788 ± 4.8 · 10−4
all-MiniLM-L6-v2 0.817 ± 0.004 0.622 ± 3.8 · 10−4 0.680 ± 4.9 · 10−4 0.708 ± 4.9 · 10−4

15/08-split all-mpnet-base-v2 0.623 ± 0.005 0.568 ± 4.8 · 10−4 0.614 ± 4.0 · 10−4 0.638 ± 3.8 · 10−4
all-MiniLM-L6-v2 0.614 ± 0.005 0.513 ± 3.5 · 10−4 0.556 ± 4.4 · 10−4 0.577 ± 3.4 · 10−4

21/08-split all-mpnet-base-v2 0.819 ± 0.005 0.640 ± 4.9 · 10−4 0.695 ± 3.9 · 10−4 0.721 ± 3.9 · 10−4
all-MiniLM-L6-v2 0.788 ± 0.004 0.574 ± 6.0 · 10−4 0.624 ± 7.5 · 10−4 0.648 ± 7.0 · 10−4

Attack severity ℓ classification. To assess classification accuracy for the attack severity ℓ ∈ [1, 5],
we perform the top-1 query, essentially returning the class of the closest sample in terms of cosine
similarity of the payload embeddings space (requiring amatrix multiplication and a linear scan of the
AttackDB, and is thus a lightweight operation). Results for severity classification and eventName
retrieval are reported in Table 4 for two different embedding models, using payload + 5-tuple input.
While results are not directly comparable to the anecdotal ones reported in Table 3, we see that
weighted accuracy improves significantly (up to 0.82), although it is still not sufficient for IDS
replacement.
In particular, results for the stratified split are on par with results for the temporal 21/08-split,

which is encouraging. At the same time, we observe a degradation due to zero-day attacks in the
15/08-split, which is also expected as the RAG AttackDB does not contain any valid samples due to
the attack drift. Finally, we point out a slight but consistent differences concerning the model used
to embed packet payloads: while in the scope of this paper, we limitedly contrast two alternatives,
a broader exploration of the RAG embedding models is a possible direction to further improve RAG
performance.
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Retrieval of eventName. To assess retrieval for the textual description eventName, we instead
report the recall@k of the top-𝑘 query with 𝑘 ∈ {1, 2, 3}, essentially assessing for each sample in
the test set, whether one of the 𝑘 retrieved eventName descriptions matches the IDS ground truth.
Clearly, in reason of the 500× larger number of available classes (i.e., there are exactly 2500 unique
eventName strings), this task is more complex than the severity classification. At the same time,
result reported in Table 4 exhibit quite strong performance: recall@1 only marginally drops from
stratified (0.796) to 21/08-split (0.640) and adversarial 15/08-split (0.568).
As such, while RAG improves over frozen LLMs, it is again not satisfactory to replace an IDS.

At the same time, RAG-retrieved information may be usefully exploited by ML and NLP models,
which we analyze in Sec.5.3.

5.2 ML vs fine-tuned LLM (RQ2)
We therefore turn our attention to ML and fine-tuned LLM to help improve the classification of
attack severity. Without loss of generality, we limitedly fine-tune BERT in this section. As we
aim to gather statistically relevant and unbiased assessment, we: (i) perform a fair comparison
by ensuring that ML models and BERT are trained on the same train/validation fold; (ii) gather
a strong ML baseline by taking the best performing model (selected on the validation set) out of
over 50 combinations of ML models and hyperparametrizations; (iii) consider also practical and
adversarial temporal splits; (iv) report results over 4 repetitions with different seeds; (v) use macro
accuracy to counter for class-imbalance in the test sets; (vi) confirm results significance with a
statistical test.
Table 5. ML vs LLM: Weighted accuracy of attack severity classification (mean ± standard deviation over four
repetitions) for ML vs BERT on all scenarios, along with the number of times that BERT wins over ML (#)

IDS Input data Stratified 15/08-split 21/08-split
ML BERT # ML BERT # ML BERT #

Replacement Payload only 0.812 ± 0.020 0.841 ± 0.036 3 0.604 ± 0.011 0.687 ± 0.012 4 0.785 ± 0.016 0.868 ± 0.026 4
+ 5-tuple 0.878 ± 0.030 0.882 ± 0.022 2 0.681 ± 0.008 0.728 ± 0.010 4 0.881 ± 0.015 0.917 ± 0.004 4

Assistance + eventName 0.877 ± 0.014 0.960 ± 0.008 4 0.686 ± 0.010 0.769 ± 0.010 4 0.890 ± 0.005 0.958 ± 0.014 4
+ 5-tuple + eventName 0.938 ± 0.010 0.978 ± 0.006 4 0.744 ± 0.022 0.791 ± 0.005 4 0.939 ± 0.030 0.982 ± 0.002 4

Depending on the input data, ML/BERT can be considered as an IDS replacement, which is reported
at the top of Table 5. We gather that: (i) BERT results consistently outperform the best from 50+
ML models, that (ii) for both ML/BERT useful information can be extracted from 5-tuple (e.g., port
numbers) and that (iii) accuracy is maintained for temporal 21/08-split (over 90%) and degrades
for adversarial 15/08-split (to slightly more than 70%) due to zero-day attacks. When ML/BERT
are considered for IDS assistance (bottom of Table 5) we can additionally feed IDS eventName
to ML and to BERT (with a simple concatenation) as previously done for prompting. In this case,
however, we gather that knowledge of eventName significantly improves performance, especially
for BERT (excess of 98% for stratified and 21/08-split, degrading to 79% for adversarial time split).

Overall, we observe that BERT gains over ML are sizeable (mean pairwise difference of BERT vs
ML weighted accuracy equal 5% percentage point), consistent (over all repetitions, splits and input
types), and statistically significant (a one-sample Student T-test confirms the 5% difference with 95%
CI [0.04, 0.06]): we thus conclude that non-linear feature extraction performed by transformer-based
architectures provides a sizeable advantage over classic ML techniques.

5.3 Performance in practice (RQ2)
We next assess the level of performance that can be expected in practice, for which we limitedly
consider time-based splits. In particular, we use the RAG-alone baseline as well as the just observed
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ML/BERT baselines for IDS replacement or IDS assistance (i.e., having access to IDS eventName).
We further consider an IDS replacement solution where ML/BERT models are fed with a forecast
of eventName gathered through RAG-based retrieval capabilities.

Table 6. Performance in practice. Weighted accuracy andmacro average F1 score of attack severity classification
for the whole spectrum of investigated solutions, on the time-split scenarios.

Model RAG★ ML★ ML† ML‡ BERT★ BERT† BERT‡

Input Payload Payload +eventName +eventName Payload +eventName +eventName
+ 5-tuple + 5-tuple (RAG) (IDS) 5-tuple (RAG) (IDS)

15/08-split 0.623 0.528 0.687 0.551 0.693 0.556 0.729 0.726 0.727 0.576 0.731 0.575 0.788 0.745
21/08-split 0.821 0.754 0.886 0.738 0.893 0.758 0.896 0.925 0.914 0.869 0.915 0.873 0.982 0.962
★ RAG, ML, and BERT baselines early introduced in Table 4 and Table 5; † IDS replacement; ‡ IDS assistance

Results are tabulated in Table 6, reporting the weighted accuracy and the average macro F1
score (because weighted accuracy is too close for certain cases) for each configuration on a single
repetition. It can be seen that solutions are essentially ranked from worst (left) to best (right). In
a nutshell (i) ML improves over RAG, and BERT improves over ML, to the point that (ii) an IDS-
replacement BERT-based solution based on payload + 5-tuple input, is on par with an IDS-assistance
ML solution leveraging IDS eventName. (iii) Adding RAG-learned eventName information
consistently boosts ML and BERT performance over using only payload + 5-tuple input across
two splits. Even so, (iv) we gather that for BERT there is a significant gap between using RAG-
learned eventName vs using the actual IDS eventName: weighted accuracy of attack severity
classification could improve from 91% to 98% (21/08-split) or from 73% to 79% (adversarial 15/08-
split). One axis for future work for IDS-replacement concerns therefore improvement of RAG
retrieval capabilities.

5.4 Best LLM practices (RQ3)
Yet another axis of improvement concerns the choices of LLM for fine-tuning, such as (i) LLM
model size or other architectural details such as (ii) pre-training domain data, and (iii) context
window size: we finally conduct an ablation study of these aspects.

5.4.1 LLM model size. Using BERT as a reference, we compare the relative weighted accuracy gain
for models of growing size: specifically, we fine-tune 3 models of the GPT-2 family (small-124M,
medium-355M, and XL-1.5B) and one model of the Mistral family (small-7B). Due to computational
complexity, we perform a single training experiment per model on the stratified scenario, and we
test on a subset of 10k (out of 411k) samples – as such, results here should be interpreted in order
sense. We further stress that the fine-tuned GPT-2/Mistral models lose their language generation
capabilities, and can only be used for attack severity classification. However, from the top portion

Table 7. Ablation studies. Relative performance gain of macro accuracy with respect to BERT baseline for
different fine-tuned LLM models: ablation of model sizes (left) and architectural choices (right).

Baseline Size ablation† Architecture ablation‡

Model BERT GPT-2 Mistral BigBird UniXcoder SecureBERT

Size small small med XL small small small small
Weights/Property 110M 124M 355M 1.5B 7B 8× context Coding domain Security domain
Performance ref. -0.1% -3.3% -1.2% -0.0% -8.3% +1.1% +0.7%
†tested on 10k samples of the stratified split, payload + 5-tuple input ‡tested on the full stratified split, payload-only input



A Systematic Comparison of Large Language Models Performance for Intrusion Detection 15

of Table 7, we gather that there is no reason to do so: indeed, it appears as such there is no gain
(and sometimes a small loss) in utilizing larger models – which can be tied to the fact that training
7B weights for a 5-class output on a relatively small training set size is an unnecessary overkill, as
fine-tuning the 110M weights of the BERT models already has sufficient discriminative power.

5.4.2 LLM architectural details. Other factors than model size can play an impact on classification
accuracy: for instance, one could start fine-tuning from other pre-trained models such as UniX-
coder [30] or SecureBERT [7], that have been refined with domain-specific data and may be better
suited to process “network packet language”.

Another limiting factor resides in BERT 512-token input size (compared to the 1460 bytes MSS of
a single TCP packet), and the fact that packet captures often comprises multiple packets per event.
As such, it would be interesting to enlarge the scope of the window to avoid truncation as in BERT,
which we do by using BigBird [58], which uses an 8× larger context through sparse attention.

We therefore conduct a study, using only packet payload as input on the full stratified scenario,
comparing the BERT reference against the above-mentioned alternatives, which is reported in
the right portion of Table 7. From the table, we gather that (i) fine-tuning domain-specific models
only provide a slight performance advantage, as the domain adaptation does not help associating
payloads to the correct severity class. We also observe that (ii) sparse attention yields a performance
degradation: this hints to the fact that the most important information is carried in the first packet,
and that extending the context through sparse attention might access further away tokens, yet with
less discriminative power.

5.4.3 Computational complexity. We briefly comment on the train vs inference computational
complexity, that we early reported in the left portion of Table 2 for ML, BERT and RAG solutions (but
not for frozen LLMs, as it is not on the same scale). From a computational perspective, ML training
and inference (using 104 CPU cores) is significantly faster than BERT/RAG; interestingly, “training”
RAG (embedding samples) is cheaper than fine-tuning BERT (backpropagation), while inference cost
can benefit from batching. As we have early seen, these techniques are complementary in nature,
so that an overall system would benefit from their combination – preferring simpler techniques to
treat volumes of traffic, and reserving the more costly yet powerful techniques to deal with more
complex cases.

6 Discussion
This paper systematically analyzes a range of state-of-the-art LLM techniques for the purpose of
cyberdefense. We investigate if LLMs can assist or replace current IDS, for the task of classifying
attack severity, identifying the attack class (and assisting humans by providing a textual explanation
of the attack). We set out a broad study, contrasting state-of-the-art ML against a range of LLM
techniques (namely: Few-shot prompting, Retrieval Augmented Generation, and Fine-tuning), and
employ a large span of proprietary (GPT-3.5, GPT-4) and open weight models (BERT, SecureBERT,
UnixCoder, BigBird, GPT-2, LLama2, Mistral), spanning from small (100M) to foundational size (7B
for the largest model we fine-tune locally on our premises, and above for inference with cloud-
based models). To provide a bird-eye picture of the pros and cons of LLM for cyberdefense, we
additionally investigate several inputs (from raw payload to simulate IDS replacement, to payload
augmented with IDS information for IDS assistance) and data splits (stratified, temporal splits),
and pay attention to avoid the most widespread pitfalls [10] in the evaluation methodology. Using
proprietary data from customer deployment, we perform a thorough set of experiments: while we
are aware that the lack of publicly available data hampers comparison reproducibility, we believe
that the results we gather in this work are general at least from a qualitative point of view.
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We now summarize our key takeaways and discuss the main limitations, highlighting potential
avenues to further improve the usefulness of LLMs for cyberdefense.

6.1 Key takeaways
Prompt engineering: Few-shot prompting of frozen LLMs is easy but insufficient for IDS replace-

ment. For IDS assistance, managing false positives remains challenging with prompting alone.

Retrieval augmented generation: RAG is marginally more complex and provides a significant
improvement, as it is easy to construct an AttackDB of embedded payload entries, which can
provide contextually useful information (e.g., learned eventName) with moderate accuracy.

Fine-tuning: Fine-tuned LLMs are considerably more complex to put in place, but are also
significantlymore effective than RAG orML:we gather that the transformer-based feature extraction
exhibits a statistically significant advantage over the best out of 50+ ML models trained on the
same data – and that for attack severity classification, models of foundational size are an overkill.

Zero-day attacks: Overall, performance for known attacks (i.e., in-distribution in ML terms) is
satisfactory even months after training. At the same time, performance may drop significantly in
case of attack drifts due to zero-day attacks (i.e., out-of-distribution samples), showing that the
generalization capability of fine-tuned LLMs to novel attacks is limited.

6.2 Limitations
Generalization: Generalization to zero-day attacks should be the most urgent point in the research

agenda: First, in the absence of a clear, dominant strategy for continual learning [56], this could
be tackled as an engineering effort (e.g., by setting up a data pipeline for periodic retraining).
Alternatively, recent innovations in multi-modal zero-shot learning [48] offer a promising approach
to correlate raw data with meaningful natural language descriptions (e.g., in our case the semantics
of an “attack"), hence promoting the development of the right inductive biases.

Practical deployment: Whereas this work investigates the suitability of LLM for IDS, an interesting
yet orthogonal line of work should be devoted to the integration of payload-based LLM techniques,
such as the one analyzed in this work, with the set of already existing behavioral ML-based IDS
tools.

Untapped potential: We additionally believe that, while we gather good results in practical settings,
there is also clear room for improvement in constructing the RAG database [24], for instance, using
payload-specific embedding models.

Natural language explanation: Finally, in this work we limitedly defer the explainability of the
attack classification to the appendix for the lack of space – however, we believe this aspect to be of
paramount practical importance.
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A Dataset details
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Fig. 3. Data collection environment

A.1 Collection environment
Fig. 3 depicts additional details about the data collection environment. Data is collected in a
production environment where several firewall devices deployed in customer networks perform
line-rate operations on all traffic received. Firewalls raise alerts based on an existing ruleset (we
cannot disclose detailed information about commercial products) and store the corresponding
evidence packets whenever rules are triggered based on known fingerprints. Such alerts are
enriched with sensory details (a few hundred features) that are next streamed to the Qiankun
cloud for further processing. The cloud can perform additional post-processing to extract, among
others attack severity (ℓ) and threat type information (see next). Finally, human operators actively
review part of the alarms, typically prioritizing those with the highest expected severity [8], and
possibly manually revising (notably, de-escalating) some of the Cloud-imputed attack severity
labels ℓ during the incident analysis process.

Table 8. Properties of the Top 10 event names in the datasets. The heatmap depicts the breakdown of the
attack severity class ℓ .

Rank Event description (eventName) % Events # Apps % Malicious [ℓ heatmap] # Source IPs # Destination IPs

1 Microsoft Windows SMB CVE-2017-0147 6.7% 2 100% 647 (0.8%) 56117 (84.8%)
2 ISC BIND VERSION Request 6.3% 1 0.03% 3215 (4.1%) 445 (0.7%)
3 SMB Anonymous Trans2 Request SESSION_SETUP 6.2% 2 100% 327 (0.4%) 57511 (86.9%)
4 SSL Certificate Signed Using Weak Hashing Algorithm 4.6% 121 0.0% 2877 (3.6%) 131 (0.2%)
5 Zgrab Scan Network Attempt 3.0% 3 100% 4304 (5.4%) 944 (1.4%)
6 Realtek Jungle SDK UDPServer Command Execution 2.6% 4 1.64% 281 (0.3%) 272 (0.4%)
7 SSL Random Scanner - Nmap Script 2.1% 8 98.9% 3788 (4.8%) 2351 (3.6%)
8 Directory Traversal Attempt - Found in HTTP URL 2.0% 16 99.8% 5943 (7.5%) 1138 (1.7%)
9 Telnet Service Weak Password Login Failed 1.1% 1 100% 17031 (21.5%) 13 (<0.1%)
10 OS Command Injection in HTTP Request Parameter 1.0% 15 99.9% 2880 (3.6%) 1046 (1.6%)

A.2 Dataset properties
Table 8 reports the top-10 event names by frequency, as well as a collection of summary statistics
about each of them: the relative volume, the number of distinct applications they have been reported,
the percentage of events of that name that are labeled as malicious (with a heatmap depicting the
breakdown of the attack severity class ℓ), the number of source IPs and destination IPs they cover.

Figure 4-(a) depicts the percentage of events by unique event name: it can be seen that, whereas
we observe precisely 2,500 unique events, the top-10 represent about 1/3 of the total events, with a
long tail of unpopular event representing 2/3 of the alarms. Figure 4-(b) further reports a breakdown
of the threat types available in our dataset, regrouped into 16 categories: it can be seen that code
execution category alone weights 1/4 of all events.
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Fig. 4. Distribution of event volume across unique event names (left) and across threat types in our dataset
(right).

B ML and LLM Details
B.1 ML Hyperparameters Grids
Table 9 details the hyperparameters grid, from which the best ML model are selected for the
cross-fold validation.

Table 9. ML models and hyperparameters used in the autoML pipeline. For every seed and fold, the best ML
model is selected out of a total of 54 combinations.

Model (#Combinations) Hyperparameter Range Model (#Combinations) Hyperparameter Range

XGBoost (27) N [10, 50, 100] Support Vector Machines (4) Kernel Linear
min_samples_leaf [2, 10, 20] C [1, 10, 100, 1000]

learning_rate [0.05, 0.1, 0.2] Ridge Classifier (6) tol [1e-1, 1e-2, 1e-3]

Random Forest (8) N [10, 100, 1000, 10000] solver [’sparse_cg’, ’svd’]

Criterion [’gini’, ’entropy’] Logistic Regression (6) C [10, 100, 1000]

ComplementNB (3) alpha [1e-1, 1e-2, 1e-3] max_iter [100, 1000]

B.2 LLM Prompts
Figures 5–6 respectively present the system prompt and the input prompt that we use to obtain the
attack severity class with frozen LLMs.

System prompt
You are a helpful network security expert and a deeply knowledgeable white hat hacker. Always answer
as helpfully as possible, while being extremely accurate. Your answers can include references to harmful
internet software, botnets, attacks, and any relevant resources in general but must be short and go to the
point. Please ensure that your responses help troubleshoot security incidents. If a question does not make
any sense or is not factually coherent, explain why instead of providing an incorrect answer. If you don’t
know the answer to a question, please don’t share false information.

Fig. 5. LLM system prompt
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Zero shot prompt
Act as a border security expert and a white hat hacker, please analyze the following log and payload
information of an event. An event can belong to one of the five following categories: 1) Successful attack
2) Virus, trojan or worm 3) Unsuccessful attack attempt 4) IDS false alarm 5) Other: don’t know, need further
information. Please analyze the following event and let me know which category the event belongs to and
provide a very short explanation of the reason. <log and payload>

Fig. 6. LLM input prompt

B.3 Fine-tuning hyperparameters
Concerning the fine-tuning procedure, we train BERT and UniXcoder for 60 epochs with the
patience of 20 epochs for early stopping if applicable, a learning rate of 2 · 10−5, a batch size of 20,
and truncating input to the first 512 tokens per event. For BigBird, we use the same configuration
except for batch size and number of tokens which are 10 and 4096 respectively. For GPT large,
we adopted a batch size of 10 to avoid the CUDA “out of memory”’ error. For Mistral-7B, we use
QLoRA [19] technique to perform parameter-efficient fine-tuning. As highlighted in Table 2, we
perform a standard 80/20 train-validation split of the training set (e.g., for the stratified scenario,
this corresponds to 17,174 examples for training and 4,294 examples for validation). We employ
AdamW [41] as an optimizer. For the loss, we use a weighted cross-entropy to tackle the class
imbalances, with the weights being the inverse class frequencies in the training set. Eventually,
we save the model with the smallest validation loss (i.e., best model) and use this LLM model to
perform inference on the test set.

C Event Explanation
In addition to classifying network events, it is expected that LLMs are helpful to provide natural
language format explanation E associated with the event, to explain the reasons of the classification,
and assist the human experts in understanding and responding to potential security incidents (or,
to automatically actuate configuration changes in the network to mitigate the threat, which we do
not focus on at this stage). As previously illustrated in Fig.1-(c), the frozen LLM has access to a
wealth of information including:

• Raw packet payload 𝑃 , collected by the monitoring device (a string of size up to about 10 KB)
• Attack type (eventName), either issued by RAG or by the IDS (a string of size up to 256 B)
and category (recall Fig.4)

• Attack severity label ℓ , issued by the fine-tuned LLM or RAG (an integer in [1,5])
• Cyber Threat Intelligence (CTI) information about IP addresses involved in the event (a
JSON-formatted ontology, of size possibly exceeding 256 KB)

Fig. 7 shows a snapshot of the dashboard of a full system implementation, where all the above
information is visible for one example threat (a trojan of class ℓ=2, with pixelization of sensitive
information such as IP addresses, timing, and event identifiers). All the above elements are annotated
in the dashboard for clarity: in this context, we mostly focus on explainability aspects from the (i)
fine-tuned LLM and (ii) frozen LLM viewpoints.

C.1 Fine-tuned LLM: Token-level and keyword-level explainability
The output of fine-tuned LLM is not meant to be directly parsed by human experts. However,
fine-tuned LLM can provide frozen LLM useful information or hints about why a given classification
decision was taken. As seen from the top of Fig. 7, the fine-tuned LLM issues three outputs. Namely,
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Fig. 7. Annotated snapshot of the dashboard, showing all elements (RAG, IDS, CTI, Frozen and Fine-tuned
LLMs) in one example security incident (with pixelization of sensitive information such as IP addresses,
timing, and event identifiers).

the output consists of the class label discussed in the main portion of this paper, as well as two
alternative ways of explaining why the decision was taken.
Token-level explanation: Getting explanations from complex architectures such as Transformers
is challenging and several explainability methods have been proposed [37, 38, 45, 53] in different
modalities. In this work, we use the Integrated Gradients [53] method that has been implemented
in the Captum [1] and Transformers Interpret [4] frameworks. The method sums the gradients for
inputs along the path from a given baseline (e.g., a zero embedding vector for text models) to the
input. It can be implemented using a few calls to the gradient operator, which applies to various
deep-learning networks. In this way, we can measure the contribution from each token for any
predicted output label.
Keyword-level explanation: In addition, we use KeyBERT [29], a keyword extraction technique
based on BERT embeddings, to identify the most salient terms in the input network event. These
keywords serve as a concise summary of the event’s content and as a helper for the larger frozen
LLM, to know where to focus its attention.

C.2 Frozen LLM: Textual event explanation
Frozen LLM is used to provide a terse summary of the incident by aggregating all information
highlighted in red in the picture: notably, packet payload, CTI information RAG/IDS, and fine-tuned
LLM class, token-level and keyword-level attention. The above information is provided to the
frozen-LLM in context, i.e., as a prompt constructed using the input data and the predicted attack
class, which is provided as a static explanation. Additionally, the information is in context so that
humans can interact with a locally deployed model (currently: Mistral-7B or LLama2-13B, with
a pending upgrade to a frozen LLama3) for further Q&A and assistance. It is worth noting that a
principled and quantitative evaluation of these textual explanations is challenging, which is why
we preferred to separately overview it as an Appendix, and therefore separate it from the main
scope of the article.
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