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One of the main features of near-neutral atmospheric boundary layer (ABL) turbulence is the positive vertical velocity
skewness Skw above the roughness sublayer or the buffer region in smooth-walls. The Skw variations are receiving
renewed interest in many climate-related parameterizations of the ABL given their significance to cloud formation and
to testing sub-grid schemes for Large Eddy Simulations (LES). The vertical variations of Skw are explored here using
wind tunnel and flume experiments collected above smooth, rough, and permeable-walls in the absence of buoyancy
and Coriolis effects. These laboratory experiments form a necessary starting point to probe the canonical structure
of Skw as they deal with a key limiting case (i.e. near-neutral conditions). Diagnostic models based on cumulant
expansions, realizability constraints, and constant mass flux approach routinely employed in the convective boundary
layer as well as prognostic models based on third-order budgets are used to explain variations in Skw for the idealized
laboratory conditions. The failure of flux-gradient relations to model Skw from the gradients of the vertical velocity
variance σ2

w are explained and corrections based on models of energy transport offered. Novel links between the
diagnostic and prognostic models are also featured, especially for the inertial term in the third order budget of the
vertical velocity fluctuation. The co-spectral properties of w′/σw versus w′2/σ2

w are also presented for the first time to
assess the dominant scales governing Skw in the inner and outer layers, where w′ is the fluctuating vertical velocity and
σw is the vertical velocity standard deviation.

I. INTRODUCTION

Turbulent motion is responsible for much of the transport
of heat and water vapor within the planetary boundary layer1.
This transport determines the distribution of temperature,
winds, cloud formation, and precipitation2. For this reason,
it is often stated that life on Earth as we know it would not be
possible without turbulence3. Climate is routinely viewed as
a long-term integrator of weather (measured in decades) - an
assertion put forth by the Nobel laureate K. Hasselmann4. In
Hasselmann’s representation, the coupled ocean-atmosphere-
cryosphere-land system is decomposed into a rapid part - the
“weather” system (essentially the atmosphere) and a slowly
responding “climate” system (mainly the ocean, cryosphere,
and land vegetation). Weather is defined as the average state
of the atmosphere determined by its temperature, atmospheric
pressure, wind, humidity, precipitation, and cloud cover. Once
again, averaging of these atmospheric states is required to in-
tegrate stochastic fluctuations in the aforementioned variables
- and those stochastic fluctuations are traditionally attributed
to turbulence. Turbulent time scales in the atmosphere span
fraction of seconds (at the micro-scales) to an hour or so (for
large and very large eddy motion), and it is the aggregate of
these fluctuations that generate turbulent fluxes and changes in
the mean state of atmospheric variables needed for simulating
or modeling weather5.

Turbulence in the atmospheric boundary layer (ABL) has

a number of well-established ’signatures’ in its statistics that
are deemed significant for climate and meteorological model-
ing, dispersion studies, wind energy generation, and a plethora
of other applications pertinent to atmospheric chemistry and
atmospheric composition that ’feed-back’ on climate6. The
skewness of the vertical velocity component Skw has long
been recognized as one such key feature7 and frames the scope
of this work. It is the most elementary flow statistics quantify-
ing asymmetry due to the presence of a boundary and is given
by

Skw =
w′3

σ3
w

, (1)

where w′ is the instantaneous vertical (or wall-normal) veloc-
ity fluctuation, overline denotes averaging over coordinates of
statistical homogeneity (e.g. time averaging in many labora-
tory and field experiments or space-time averaging in direct
numerical simulations), and σs = (s′s′)1/2 is the standard de-
viation or root-mean squared value of the fluctuations of any
turbulent flow variable s.

In the absence of any thermal stratification or Coriolis ef-
fects, laboratory measurements of Skw over rough turbulent
boundary layers (including k-type and d-type) suggest that
Skw < 0 in the roughness sublayer (RSL) or the buffer re-
gion of smooth walls but switches to Skw > 0 in the in-
ertial and outer-layers8–11. This switch was shown to be
linked to a change in the type of organized eddy motion
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 2

dominating momentum transport. Sweeping motion domi-
nates within the roughness sublayer and ejective motion in
the remaining layers of the boundary layer8,9,12. Likewise,
Skw over natural and artificial canopies with different densi-
ties follow similar expectations with Skw < 0 within and just
above the canopy top followed by Skw > 0 for the remain-
ing layers9,12,13, a result consistent with other shear-driven
boundary layer experiments14. This finding indicates that
∂Skw/∂ z > 0 for much of the boundary layer depth δ except
in the buffer layer for smooth walls or roughness sublayer in
rough or permeable walls, where z is the distance from the
ground or zero plane displacement for canopy flows.

Moving onwards to the unstable atmospheric surface layer
(ASL), early studies found that Skw follows expectations from
Monin-Obukhov surface layer similarity theory15, hereafter
referred to as MOST, and is empirically given by16

Skw =CASL −
0.6ξ

1.253κ
[
(1−15ξ )−1/4 −1.8ξ

] , (2)

where CASL is a similarity coefficient, ξ = z/Lo is the at-
mospheric stability parameter (for unstable atmospheric con-
ditions, ξ < 0) , Lo is the Obukhov length5, and κ = 0.4
is the von Kármán constant. These relations are consis-
tent with the benchmark Kansas experiment that empirically
demonstrated17

κz

u3∗

∂w′3

∂ z
=−0.6ξ . (3)

For near-neutral ASL conditions (i.e. ξ = 0), these experi-
ments suggest that Skw = CASL ≈ 0.1 (i.e. a positive integra-
tion constant arising from equation 3), but offer no explana-
tion as to why. Convective boundary layers (CBLs) are also
characterized by Skw > 0 over their entire depth δ 18. In fact,
experiments and Large Eddy Simulations (LES) have shown
that in the CBL, Skw = 0.5−0.6 persists for extended regions
of the CBL (0.2 < z/δ < 0.75) as discussed elsewhere19,
though some LES results20 appear to exceed field experiments
in the upper regions of the CBL by a factor of two19. In
the limit of free convection (i.e. ξ → −∞), equation 2 sug-
gests that Skw=CASL+[0.6/(0.78×1.8)]=0.53, which is close to
the reported Skw = 0.5 from aircraft measurements for much
of the CBL18 as well as recent measurements in the near-
convective ASL21. Once again, such positive near-neutral Skw

limit in the absence of stratification is not well explained.
Interest in Skw has been proliferating in numerous applica-

tions including non-Gaussian models for dispersion22–25, pa-
rameterizing subgrid schemes in LES18,26,27, delineating the
fraction of time turbulent flows reside in updrafts (w′ > 0) ver-
sus downdrafts (w′ < 0)28, and higher-order closure modeling
of boundary layers20,21,29. The latter higher-order schemes
are now being implemented in climate models such as the
Cloud Layers Unified By Binormals (CLUBB)30,31, among
others32. Third-order closure schemes, especially for Skw,
were shown to be necessary for cloud formation in different
boundary layer regimes. Some studies showed that accom-
modating vertical velocity probability density function (PDF)
asymmetry in the ABL increased low cloud fraction by 20% -
30% in stratocumulus-to-cumulus transition regions33.

While much attention has been devoted to Skw within the
CBL7, less attention has been paid to models of Skw in near-
neutral conditions, the focus here. These conditions are preva-
lent in many planetary flow situations (e.g. air flow over ice
sheets, large open water bodies, and in many occasions over
land) and form a logical limit for ABL characterizations of
asymmetry, especially for vertical turbulent transport (includ-
ing Skw). They also form limiting states for approaches such
as CLUBB that must be recovered34. Indeed, when comparing
models and LES computed Skw to field experiments, there is
unavoidable bias regarding heterogeneity at the ground in field
experiments. Heterogeneity is known to have a higher im-
pact on variances (e.g. σ2

w) when compared to w′w′w′18,27,35.
Thus, disagreement between LES and field experiments, even
for near-neutral limits, may be due to either subgrid filtering
schemes employed by the LES or simply due to the non-ideal
nature of the ground surface. This attribution deficiency un-
derscores the need for benchmark data and theories on Skw de-
rived from idealized laboratory conditions at some reference
stability (e.g. near-neutral), the goal here.

In the present work, we purposely distinguish between two
types of models for Skw: diagnostic and prognostic. Diagnos-
tic models derive relations between Skw (the target variable)
and other statistical moments without requiring information
about the physics of turbulence. They often approximate the
PDF of a flow variable with cumulant expansion truncated at
some order, usually third or fourth8,9. These diagnostic mod-
els can then be used to impose constraints such as the so-
called realizability condition29,36 first studied in the context
of locally homogeneous and isotropic turbulence37. Prognos-
tic models seek to predict Skw from lower-order moments that
can be modeled from the ensemble-averaged Navier-Stokes
equations (NSE) using closure schemes. One common clo-
sure scheme links w′3 to the vertical gradients of w′w′ using
an eddy-viscosity coefficient (Kt ) given as32,38–40

w′w′w′ =−Kt

∂w′w′

∂ z
. (4)

Such closure remains controversial, especially in CBL and
canopy flows20,41–43. This motivated the development of
other approaches for the CBL such as the so-called large-
eddy skewed turbulence advection velocity approach or the
eddy-diffusivity mass flux approach20,29,44. In these revisions,
equation 4 is adjusted using an additive term that reflects
large-scale transport commonly modeled using the aforemen-
tioned mass flux approach44. In such a framework, the math-
ematical form for w′3 is given by45

w′w′w′ =−Kt

[
∂w′w′

∂ z
− γw

]

, (5)

where γw is a transport term formed from a large-scale ad-
vection velocity and a characteristic time scale. In the
CBL, γw can be related to the vertical transport of the heat
flux29,46, meaning that γw → 0 as near-neutral conditions are
approached. Despite these amendments, the frustration in sat-
isfactorily closing w′3 or Skw remains and is captured by the
statement from a leading authority in an influential article29
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 3

"Certainly, the problem of parameterization of Skw remains.

The authors should admit that they have no definitive answer

at the moment".
The two classes of models (diagnostic and prognostic) are

explored herein using a unique family of data sets that in-
clude open channel flow and wind tunnel experiments over
smooth walls, rough walls, and permeable walls across wide-
ranging Reynolds numbers Reδ = δu∗/ν and measurement
techniques, where δ is the boundary layer depth or, more in
general, the outer length scale of the flow and u∗ =

√

τw/ρ
is the friction velocity based on the total or wall stress τw, ρ
is the fluid density (air or water), and ν is the fluid kinematic
viscosity. Moreover, how constraints derived from diagnostic
models can be used to offer new parameterizations for prog-
nostic models are discussed. As shall be seen, the present
work leads to w′3 as

w′w′w′ =−

local effects
︷ ︸︸ ︷

Kt

∂w′w′

∂ z
+ βLw′q′

︸ ︷︷ ︸

large scale adjustment

, (6)

where q′ is related to the instantaneous turbulent kinetic en-
ergy, and βL is a constant that can be derived from pres-
sure and viscous effects on the third order budgets of w′3.
In this derivation, both a local gradient-diffusion term and a
non-local transport term arise from the governing equations.
Moreover, the signature of the non-local or large scale effects
appearing through w′q′ are also confirmed through analysis
of the co-spectrum between w′ and w′2 of the aforementioned
laboratory studies. The experiments here will also reveal that
these non-local effects are dominant over much of the bound-
ary depth (i.e. above the roughness sublayer or the buffer re-
gion) and that they can be parameterized by a down-gradient
of the turbulent kinetic energy (instead of ∂w′2/∂ z) provided
an outer layer correction is accommodated in the eddy vis-
cosity. The w′q′ has already been linked through quadrant
analysis and conditional sampling to the relative importance
of sweeps and ejections on momentum transport8,9. However,
those links - sometimes termed as structural models47–49- re-
main diagnostic10,43,50. Thus, a key novelty of the present
work is a link across all the aforementioned approaches and
their testing in smooth, rough, and permeable boundaries re-
stricted to adiabatic non-rotating flows that are stationary and
planar homogeneous.

II. THEORY

A. Definitions

The Cartesian coordinate system employed here sets x= x1,
y = x2, and z = x3 along the longitudinal, lateral, and ver-
tical (wall-normal) directions, respectively, with z = 0 being
the ground or zero-plane displacement. The instantaneous ve-
locity components along x, y, and z directions are labeled as
u = u1, v = u2, and w = u3, respectively, with U = u defin-

ing the mean velocity. Velocity fluctuations from their time-
averaged values at a point are indicated by primed quantities.

B. Diagnostic Models

The Skw has been linked to many flow statistics, and those
links are briefly reviewed because they impose constraints on
models quantifying asymmetry in w′. They also offer a com-
pact summary of different data sets that enables comparisons
across experiments.

1. Cumulant Expansion Models

The first link to be studied here is the so-called telegraph
properties of the w′ series and its overall intermittent be-
haviour. A third-order cumulant expansion of the individual
probability density function (PDF) of the normalized vertical
velocity wn = w′/σw is introduced and is given by8,9,51

PDF(wn) =PDFG(wn)

[

1+
1

6
Skw

(
w3

n −3wn

)
]

, (7)

PDFG(wn) =
1√
2π

exp

(

−w2
n

2

)

,

where PDFG(.) is a zero-mean unit variance Gaussian PDF
and the bracketed term corrects the PDF to account for skew-
ness only. This approximation for the PDF enables an esti-
mate of the fraction of time w′ is in an updraft (Γ+) or down-
draft (Γ−) and is given by10,51–53

Γ+ =
∫

∞

0
PDF(wn)dwn; Γ− =

∫ 0

−∞

PDF(wn)dwn = 1−Γ+,

(8)

which can be integrated using the expansion in equation 7 and
arranged to yield

Skw =
√

72π (0.5−Γ+) =
√

72π (−0.5+Γ−) . (9)

Here, updrafts and downdrafts are associated with w′ > 0 and
w′ < 0, respectively, and no assumptions are made about tur-
bulent stresses or heat fluxes. An Skw > 0 requires a Γ+ < 0.5
or Γ− > 0.5. Equation 9 is not prognostic or predictive but
suggests that the mean duration of updrafts (or downdrafts)
can be explained by asymmetry in the flow. As shall be seen
later, links between the so-called large-eddy skewed turbu-
lence advection velocity used in many CBL parameterizations
and Γ+ can also be established for shear-only driven flows.

Instead of updraft and downdraft, another measure that
characterizes the relative importance of ejections and sweeps
(i.e. ∆So) on momentum fluxes and linked to Skw can be de-
veloped using Cumulant Expansion Models (CEM) applied to
the joint PDF (JPDF) of w′ and u′. This measure is defined
using quadrant analysis and conditional sampling and is given
by8,9

∆So =
⟨u′w′⟩|4 −⟨u′w′⟩|2

u′w′ , (10)
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 4

where ⟨u′w′⟩|i is a conditional average of events in quadrant
i, with quadrant 2 corresponding to ejections (u′ < 0,w′ > 0)
and quadrant 4 to sweeps (u′ > 0,w′ < 0). The statistic ∆So is
the fractional difference between contributions of ejection and
sweep events to the overall time-averaged flux u′w′, where the
sign indicates whether sweeps (∆So > 0) or ejections (∆So <
0) are dominant. As before, a third-order cumulant expansion
of the JPDF(u′,w′) to link ∆So with key statistical moments
can be developed and is given by9

∆So =
M11 +1

M11

√
2π

[
2C1

(1+M11)2
+

C2

1+M11

]

, (11)

where C1 and C2 are defined as

C1 =

(

1+M11

)[
1

6
(M03 −M30)+

1

2
(M21 −M12)

]

C2 =−
[

1

6
(2−M11)(M03 −M30)+

1

2
(M21 −M12)

]

, (12)

and the so-called ’M’ notation (i.e. Mi j) is used to describe
different statistical (mixed) moments of u′ and w′ as

Mi j =
u′iw′ j

σ i
uσ

j
w

. (13)

In M notation, M11 defines the correlation coefficient
w′u′/(σuσw), M30 = Sku and M03 = Skw define individual
skewness values for u′ and w′, respectively, and M12 (associ-
ated with wall-normal turbulent transport of flux) and M21 (as-
sociated with wall-normal turbulent transport of longitudinal
velocity variance) define third-order mixed moments. When
equation 12 is inserted into equation 11, the final form linking
∆So to the statistical moments is

∆So =
1

M112
√

2π

[
M11

3
(M03 −M30)+(M21 −M12)

]

. (14)

A large corpus of experiments on momentum transport over
smooth surfaces and differing types of roughness elements
suggest a linear relation between each of the third-order mo-
ments. Specifically, M30 = buM12, M03 = bwM12, and M21 =
buwM12 where the respective constant values bu ≈ 2, bw ≈
−1.16, and buw ≈−1 were presented elsewhere9,10. The value
buw ≈−0.6 was also reported for flows within and just above
dense canopies across a wide range of thermal stratification
conditions50,52,54. Inserting these linear relations into equa-
tion 14 and simplifying yields10

Skw = M03 ≈
2bw

√
2π

1
3 M11(bw −bu)+(buw −1)

M11∆So. (15)

In dimensional form, the sought link between w′w′w′ and
σ3

w∆So is now given by

w′w′w′ ≈ 2bw

√
2π

1
3 M11(bw −bu)+(buw −1)

σ3
wM11∆So. (16)

This relation reveals a w′w′w′ that is not proportional to
∂σ2

w/∂ z as modeled by gradient-diffusion arguments38 such

as the one in equation 4 in the absence of large scale adjust-
ment. Equating this outcome to equation 9 yields an interest-
ing connection between Γ+ and ∆So given by

2bw

1
3 M11(bw −bu)+(buw −1)

= 6 CCEM; (17)

CCEMM11∆So = 0.5−Γ+.

Here, CCEM is a coefficient that is not constant and varies with
z due to the z-variations in M11. The latter result is sugges-
tive of a connection between the time fraction in updrafts and
downdrafts and the stress fractional imbalance between ejec-
tions and sweeps. When Skw > 0, 0.5 − Γ+ > 0, ejections
occur less than 50% of the time yet equation 17 adds an ex-
tra finding that ejections dominate momentum transport over
sweeps (i.e. ∆So < 0).

2. Realizability Constraints

One class of models propose that deviations from Gaus-
sian distribution must impact Skw as well as the flatness fac-
tor FFw = w′4/σ4

w with some coordination. The ’essence’ of
this argument is that the mechanisms that generate asymmetry
(e.g. Skw) are not entirely independent of the mechanisms that
produce large-scale intermittency (e.g. FFw). Realizability
constraints have been used to guide the development of such
coordination between Skw and FFw, especially in the CBL. In
more detail, two random variables a′ = w′ and b′ = w′w′ must
satisfy the statistical constraint

a′b′ ≤ σaσb, (18)

where σa = σw and σb = σw2 =
[

(b′−b′)2
]1/2

=
[

(w′2 −w′2)2
]1/2

. Expanding this expression yields

σw2 =
(

w′4 − (w′2)2
)1/2

=
[
FFwσ4

w − (σ2
w)

2
]1/2

(19)

= σ2
w (FFw −1)1/2 .

Inserting this finding into equation 18 and re-arranging results
in

w′w′w′ ≤ σ3
w (FFw −1)1/2 . (20)

Upon dividing both sides by σ3
w and squaring yields Sk2

w ≤
FFw − 1. When these inequality constraints are written as
equalities with unknown coefficient, they can be expressed
as36,55

FFw = α1(Sk2
w +1), (21)

where α1 is a model parameter that should exceed unity to
ensure realizability. For a Gaussian PDF, the Skw = 0, FFw =
3, and α1 = 3 (> 1). Empirical values ranging from 2.6−3.3
have been reported across a number of field experiments and
LES14,55. This class of models will also be considered using
the data here - as it facilitates a new closure scheme for the
budgets of w′3 to be derived later on in the prognostic models
section.
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 5

3. The Fractional Area/Mass Flux Approach

The Skw can also be used to define a so-called turbulent
advection velocity wa using

wa =
w′3

σ2
w

= Skwσw, (22)

and this advection velocity is employed to parameterize top-
down and bottom-up diffusion in CBLs29. In the eddy advec-
tion velocity model, the fractional area occupied by updrafts
(w+) and downdrafts (w−) are a and 1− a. These fractional
areas are presumed constant, which may be plausible in the
CBL but not necessarily in the near-neutral ABL (to be ex-
plored here). Nevertheless, it is instructive to ask what such a
model predicts for Skw. For a constant a44, the conservation
of fluid mass leads to the following expressions for the large
eddy skewed advection velocity approach:

aw++(1−a)w− =0, (23)

aw2
++(1−a)w2

− =σ2
w, (24)

aw3
++(1−a)w3

− =(Skw)σ
3
w, (25)

aw4
++(1−a)w4

− =(FFw)σ
4
w. (26)

These expressions describe the first four moments and can be
solved to yield

w+ =− 1−a

a
w−, and w− =± σw

√

(1/a)−1
,

a =
1

2
± Skw

2
√

4+Sk2
w

, or Sk2
w =−4+

1

a
+

1

1−a
, (27)

FFw =−3+
1

a(1−a)
, or FFw = 1+Sk2

w.

This latter finding is identical to equation 21 when setting
α1 = 1, which is the minimum α1 necessary for satisfying
the realizability constraint as shown in equation 20. When
equating equation 9 to the outcome of equation 27, a relation
between a (fractional area contribution by updrafts) and Γ+

(time fraction of updrafts) can be established, i.e.

a =
1

2
± 1

2

√
72π (0.5−Γ+)

√

4+72π(0.5−Γ+)2
. (28)

While a (a spatial quantity) is not linearly related to Γ+, a
one-to-one correspondence has been established here. On a
similar note, variants on this approach replace a and 1 − a

with PDF(w′ > 0) and PDF(w′ < 0) as discussed elsewhere29.

C. Prognostic Models

These models are based on moment expansion of the NSE
and closure schemes that link higher- to lower order mo-
ments. The prognostic approach commences with the govern-
ing equation for w. The first, second, and third order budgets

for the statistics of w′ are reviewed here along with conven-
tional closure models employed. Proposed revisions to them,
especially for the third order budgets are also presented. For
an incompressible or constant density flow, the instantaneous
equation for w (or w′) in the absence of stratification and Cori-
olis is given by

∂w

∂ t
+u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂ z
=− 1

ρ

∂P

∂ z
−g+ν

∂ 2w

∂x j∂x j

, (29)

where t is time, ρ is the fluid density (constant here), P is
the pressure, and the repeated i index denotes summation over
spatial coordinates ([x1,x2,x3] = [x,y,z]).

1. First Moment

Upon expressing the left-hand side of equation 29 in a
mass-preserving form

∂w

∂ t
+

∂ (uw)

∂x
+

∂ (vw)

∂y
+

∂ (ww)

∂ z
= · · · , (30)

then averaging while assuming stationary (i.e. ∂ (.)/∂ t = 0)
and planar homogeneous (i.e. ∂ (.)/∂x1 = ∂ (.)/∂x2 = 0) flow
in the absence of subsidence (i.e. w = 0), the vertical velocity
variance budget can be derived and is given by

Inertial Term
︷ ︸︸ ︷

∂w′w′

∂ z
= − 1

ρ

∂P

∂ z
︸ ︷︷ ︸

Pressure Gradient

Gravitational Acceleration
︷︸︸︷

−g , (31)

which upon integration with respect to z yields a Bernoulli-
like equation

w′w′+
P

ρ
+gz =CB, (32)

where CB is a constant of integration. When P = −ρgz (i.e.
hydrostatic approximation), ∂σ2

w/∂ z = 0 or σw must be a con-
stant =

√
CB and independent of z. Thus, deviations from

a constant σ2
w in z signifies deviations from hydro-static as-

sumption in the mean pressure vertical gradient.

2. Second Moment

The budget equation for w′w′ can be similarly derived by
multiplying equation 29 by 2w′ and averaging to yield

Inertial Term
︷ ︸︸ ︷

∂w′w′w′

∂ z
= − 2

ρ
w′ ∂ p′

∂ z
︸ ︷︷ ︸

Pressure−Velocity Interaction

+2 νw′ ∂ 2w′

∂xi∂xi
︸ ︷︷ ︸

Viscous Destruction

, (33)

where p′ is turbulent pressure deviation from the mean or hy-
drostatic state. This budget identifies two mechanisms that
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 6

impact ∂w′3/∂ z: The first is a pressure-velocity interaction
term that can act as a source or a sink as later discussed and the
second is a viscous destruction term that acts as a sink term.
A model for the pressure-velocity interaction term is needed
to mechanistically link the skewness to turbulent processes.
This term may be modeled using a linear return-to-isotropy
Rotta scheme56 modified here to maintain the pressure trans-
port term46. It is given by46,56,57

−2w′ ∂ p′

∂ z
=

CR

τ

(
2K

3
−w′2

)

−2
∂

∂ z
w′p′, (34)

where τ is a time scale, CR = 1.8 is the Rotta constant, K =
(1/2)u′iu

′
i is the turbulent kinetic energy at z. The Rotta model

actually applies to p′∂w′/∂ z (i.e. no gradients in p′ emerge).
However, ∂ (w′p′)/∂ z = p′∂w′/∂ z+w′∂ p′/∂ z, which is why
the pressure transport term emerges in equation 34. The term
∂ (w′p′)/∂ z has been ignored in many atmospheric turbulence
studies5,7 but can be included if finite and known58.

At large scales, the redistribution of kinetic energy among
velocity components by the pressure term to achieve an equi-
partition state is reasonably established59–61. Because the vis-
cous dissipation rate of K (= ε > 0) occurs at small (or micro)
scales that are presumed to be isotropic, it is reasonable to
assume that εu = εv = εw = (1/3)ε , where εu, εv, εw are the
viscous dissipation rates of u′u′, v′v′, and w′w′. Thus, with a
return to isotropy closure and an isotropy of dissipation rate
of K, a model for w′3 may be constructed and is given as57

∂w′w′w′

∂ z
=

CR

τ

(
2K

3
−w′2

)

− 1

3
ε. (35)

In the original Rotta scheme, τ = 2K/ε (i.e. return-to-isotropy
time scale is proportional to the relaxation time scale via CR)
and equation 35 can be expressed in non-dimensional form as

1

ε

∂w′w′w′

∂ z
=CR

(

1

3
− w′2

2K

)

− 1

3
. (36)

It is instructive to inquire about a reference state that result in
a zero vertical gradient in w′3 similar to the analysis leading to
a constant σ2

w with z variations. From the analysis above, this
state is achieved when the anisotropy measure Aw = σ2

w/(2K)
is a constant given by an equilibrium value

Aw,e =
1

3
− 1

3CR

. (37)

For a CR = 1.8 (or a CR = 0.9 when K is used in lieu of 2K),
Aw,e = 0.15. In the inertial sublayer (ISL) of the atmosphere
(or near-neutral ASL), common values for the second mo-
ments are σu/u∗ = 2.4, σv/u∗ = 2.1, and σw/u∗ = 1.25 so
that typical ISL values for Aw = 0.13, close to the predicted
value (= 0.15) from CR only. Thus, it is expected that w′3 be
a constant independent of z as these idealized conditions are
approached. Equation 36 makes clear that a reduction in Aw

below Aw,e leads to ∂w′3/∂ z > 0. In general, wall-blocking in
the RSL and contributions from large eddies to K in the outer

layer tend to reduce Aw below Aw,e. Thus, in both regions,

∂w′3/∂ z > 0.
For completeness, deviations from small-scale isotropy

(i.e.εu=εv=εw) can be accommodated in this framework as
these conditions may occur when the Reynolds numbers are
not high. If small-scale anisotropy does persist62, then it is
convenient to express εu + εv = αdεw, where αd < 2 as dis-
cussed elsewhere57. For such anisotropy, εw = ε/(1 + αd)
and

1

ε

∂w′w′w′

∂ z
=CR

(

1

3
− w′2

q2

)

− 1

1+αd

. (38)

This implies that Aw,e must be modified to Aw,ani so as to in-
clude small-scale anisotropy in the turbulent kinetic energy
dissipation rates. These corrections are not pursued further
given the uncertainty in the dissipation rate estimates in the
data sets used here.

3. Third Moment

The budget for the time rate of change of w′w′w′ can be
derived by multiplying equation 29 with 3w′2 and averaging
the outcome to yield46,63,64

∂w′3

∂ t
= 0 =

Inertial Term
︷ ︸︸ ︷

−∂w′w′3

∂ z
+3w′w′ ∂w′w′

∂ z
(39)

− 3

ρ

(

w′w′ ∂ p′

∂ z

)

︸ ︷︷ ︸

Pressure−Velocity Interaction

−2ν

(

3w′ ∂w′

∂xi

∂w′

∂xi

)

︸ ︷︷ ︸

Viscous Destruction

.

To close the fourth moment, a number of possibilities exist.
To maintain generality, the inertial term can be formulated as

−∂w′4

∂ z
+3w′w′ ∂w′w′

∂ z
=−σ4

w

∂FFw

∂ z
(40)

+σ2
w (3−2FFw)

∂σ2
w

∂ z
.

The most common closure is the quasi-Gaussian approxima-
tion setting FFw = 3 without making any assumptions about
the asymmetry36. In this case, ∂FFw/∂ z = 0 and the inertial
term reduces to −3σ2

w(∂σ2
w/∂ z). Another option is to use the

result of equation 21. As simplification, it is assumed that
the first term on the right-hand side of equation 40 is much
smaller than the second term so that:

−∂w′4

∂ z
+3σ2

w

∂σ2
w

∂ z
= σ2

w

[
3−2α1

(
Sk2

w +1
)] ∂σ2

w

∂ z
. (41)

Interestingly, when Sk2
w << 1, and α1 does not deviate appre-

ciably from 3, the Gaussian approximation is recovered. Thus,
the closure in equation 41 suggests that some deviations from
Gaussian can be accommodated provided FFw does not vary
appreciably with z.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
3
5
0
0
7



The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 7

Closure models for the pressure-velocity interaction and
viscous dissipation terms have been proposed46,63,64. A lin-
ear return to isotropy scheme yields56

− 3

ρ

(

w′w′ ∂ p′

∂ z

)

=
3

2

CR

τs

(
w′q′

3
−w′w′2

)

, (42)

and the viscous dissipation contribution can be modeled as

2ν

(

3w′ ∂w′

∂xi

∂w′

∂xi

)

= 2ε ′w′ = c2
w′q′

τs

, (43)

where c2 is a similarity constant, q′ = u′iu
′
i, ε ′ is the fluctuating

dissipation rate, and τs is a decorrelation time scale that need
not be identical to τ because w′ and the instantaneous time
scale ε ′/q′ can be correlated. Here, the interaction between
w′ and the pressure transport term has been ignored though its
effect can be accommodated if necessary.

Inserting these approximations into equation 39 yields64,

w′3 =

Gradient−Diffusion
︷ ︸︸ ︷

−2τsσ
2
w

3CR

∂w′w′

∂ z
+

Non−local Transport
︷ ︸︸ ︷

w′q′
(

1

3
− 2c2

3CR

)

. (44)

For operational purposes, a model for w′q′ is needed to prog-
nostically determine Skw. A plausible closure that has been
extensively studied is64,65

w′q′ =−κzu∗φL(z)
∂ (2K)

∂ z
, (45)

where φL is a correction to accommodate outer layer effects66.
It is common in open channel flows to assume φL(z) =
1− z/δ . In atmospheric boundary layers and wind tunnels,
φL(z) = (0.5+κz/αmδ )−1, where αm = κ/4. The quadratic
variation in z of the eddy diffusivity has been proposed in
earlier modeling studies of momentum transfer67 and tested
for open channel flows65. For z/δ << 0.1, the eddy diffu-
sivity increases linearly with z. However, the quadratic term
in z becomes the dominant term as z/δ increases beyond 0.5.
For wind tunnels, φL increases monotonically and approaches
a constant (and maximum) value. Inserting this closure into
equation 44 yields64

Skw =− 2

3CR

[

At,w
∂w′w′

∂ z
+Bt,u

∂K

∂ z

]

, (46)

where

At,w =
τs

σw

;Bt,u = (CR −2c2)
κzu∗φL(z)

σ3
w

. (47)

Because K = (1/2)(σ2
u +σ2

v +σ2
w) and σ2

u ≈ σ2
v +σ2

w, it fol-
lows that K ≈ σ2

u and ∂K/∂ z can be replaced by ∂σ2
u /∂ z.

It is worth noting that, even within a near-neutral ASL, σu

is impacted by eddies much larger than z consistent with
Townsend’s attached eddy model64,68–70. A plausible choice
is τs = κzu∗φL(z)/u2

∗, which makes the two eddy viscosity
formulations for At,w and Bt,u comparable in magnitude in the
ISL and outer layer, as routinely done in turbulence closure
schemes.

III. DATA SETS

The data sets have been collected over smooth walls71–73,
rough walls10, and permeable walls with varying permeability
and Reynolds numbers71. Table I summarizes the experimen-
tal conditions and the data sets as well as the original sources
describing the experiments. Data sets came from both open
channel flows (OC) and wind tunnel (WT) experiments. Lon-
gitudinal and wall normal flow velocities have been measured
with laser doppler anemometry in OC and with cross-hotwire
anemometry in WT experiments. Permeable wall experiments
have been performed with bed porosity measured in pores per
inches (ppi) of 60 (MNP1, MNP2), 30 (MNP3, MNP4) and 10
(MNP5). Rough wall experiments (HLR1, HLR2) have been
performed with a woven wire mesh with a roughness length of
6 mm. More methodological details are provided in the orig-
inal sources presented in Table I. These data sets represent
canonical wall-bounded flows and lack certain complexities
that are present in the ABL even under neutral conditions and
in the absence of Coriolis effects. The chief complexity absent
here is the effect of a stratified capping inversion that influ-
ences the outer region behavior of the conventionally neutral
ABL. This effect is likely to modify, at minimum, the φL(z)
formulation.

IV. RESULTS

The results section investigates the diagnostic models first
and then proceeds to explore the prognostic model predictions
using the third order budget. Agreement between model pre-
dictions and experiments is evaluated using linear regression
analysis where the coefficient of determination (R2) is pre-
sented on Figures 3, 6, 9a and 11. Before doing so, the mea-
sured first and second moments are reported and discussed in
Figure 1 for completeness. The normalized mean velocity as
a function of z/δ (i.e. presented with outer layer variables)
shows large differences across experiments due to simultane-
ous Reynolds number and roughness effects. No expected col-
lapse of the data onto a single curve is expected when using
such outer scaling variables for U/u∗ (Figure 1a). Much of
the scatter in the second moments is deemed to be below the
inertial sublayer (ISL) - roughly below z/δ = 0.1 (Figure 1b-
d). Data below this limit have been neglected for statistical
validation of the proposed models (i.e. coefficient of determi-
nation, R2). A region of constant stress and constant σ2

w exists
for z/δ ∈ [0.08,0.2] across most of the data sets (Figure 1b).
This region delineates operationally the ISL. For z/δ >0.3,
the σ2

w/u2
∗, σ2

u /u2
∗, and u′w′/u2

∗ decline in magnitude with in-
creasing z/δ , which is of significance to prognostic models
explaining the sign of Skw and the dominant processes con-
trolling its magnitude.

A. Cumulant Expansion Models

Figure 2 presents the measured values of Γ+, ∆So, and a

as a function of z/δ . For z/δ > 0.08, all data sets suggest
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 8

TABLE I. Summary of the data sets used in the analysis. Bed types are classified as S smooth, P porous, and R rough. Flow types are reported
as OC for open channels, and WT for wind tunnels. For convenience, the symbols used in the figures are reported here as well.

Source Data set Bed Flow δ ×10−3[m] u∗×10−3[m/s] Reτ Symbol
Manes, Poggi, and Ridolfi 71 MNS S OC 60 41 2160

MNP1 P OC 96 28 2349
MNP2 P OC 110 34 3234
MNP3 P OC 115 18 1856
MNP4 P OC 146 46 5840
MNP5 P OC 89 49 3848

Heisel et al. 10 HLR1 R WT 408 370 9611
HLR2 R WT 391 550 13683
HLS1 S WT 222 260 3681
HLS2 S WT 203 350 4536

Peruzzi et al. 72 PRS1 S OC 200 10 1730
PRS2 S OC 120 8 795
PRS3 S OC 85 22 1657

Poggi, Porporato, and Ridolfi 73 PGS1 S OC 50 21 1071
PGS2 S OC 45 7 331
PGS3 S OC 42 30 1232
PGS4 S OC 46 19 845
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FIG. 1. Measured values of: (a) normalized mean velocity U/u∗, (b)

vertical velocity variance w′2/u2
∗, (c) longitudinal velocity variance

u′2/u2
∗, and (d) turbulent stress u′w′/u2

∗ as a function of the normal-
ized wall normal distance z/δ . In this and all later figures, the sym-
bols correspond to the data sets in Table I.

0.5−Γ+ > 0. In fact, for z/δ ∈ [0.1,0.3], 0.48 < Γ+ < 0.50
for all datasets except one (PGS2 with Reτ =331), which is
approximately constant with respect to z variations. The col-
lapse of the data sets for ∆So is also rather remarkable when
inspecting the same interval z/δ ∈ [0.1,0.3]. For z/δ > 0.07,
all data sets suggest ejections dominate (∆So < 0) consistent
with rough-wall wind tunnel9 and smooth-wall open channel

flow8 experiments. As z/δ > 0.9, ∆So becomes ill-defined
because the turbulent stress is small. Last, it is noted that the
predicted a appears independent of z for z/δ ∈ [0.1,0.3], while
it is substantially reduced when z/δ > 0.3 for the majority
of datasets. However, the most consistent behaviour in terms
of ’data collapse’ identifying the strength of ejections across
datasets appears to be ∆So (as expected).

The relation between measured Skw and predictions from
Γ+ using equation 9 (i.e. using CEM) is shown in Figure 3.
The agreement is acceptable considering that this compari-
son covers all sublayers including the buffer- and roughness-
sublayers. As predicted by equation 9, when 0.5−Γ+ > 0,
the Skw > 0, and conversely. Likewise, the ratio of ∆So mod-
eled using a third order CEM applied to the JPDF(w′, u′) to
measured ∆So as a function of z/δ is also shown in Figure
4. Once again, the agreement is acceptable for much of the
boundary layer region (z/δ ∈ [0.1,0.9]). The values of the
individual moments Mi j used in the determination of ∆So,m

(modeled using CEM) as a function of z/δ are presented in
Figure 5. The most consistent collapse across all data sets
is for M03 = Skw in the region of 0.1 < z/δ < 0.9 (Figure
5b) followed by M12 (Figure 5d). Moreover, there is a no-
table collapse of M03 = Skw to a near-constant positive value
for z/δ ∈ [0.08,0.3], namely in the ISL, consistent with pre-
vious empirical studies16. The height independence of M12

was proposed to delineate the ISL in some studies on rough-
wall turbulence65 though it appears from the analysis here that
M03 may be an acceptable single-variable substitute. Across
all data sets and regions, the CCEMM11∆So appears to vary
linearly with 0.5−Γ+ as shown in Figure 6. This linearity
is consistent with predictions from equation 14 and suggests
that Skw, Γ+, and CCEMM11∆So are linearly related as fore-
shadowed from third order CEMs (see equation 17). A main
finding is that Γ+ contains significant information about im-
balances between sweeps and ejections responsible for mo-
mentum transfer.
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 9
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FIG. 2. Measured values of: (a) the fraction of time w′ > 0 (or Γ+),
(b) the imbalance between sweeps and ejection contributions to the
Reynolds stress (or ∆So), and (c) the fractional area a of updrafts as
a function of the normalized wall normal distance z/δ . The horizon-
tal dashed lines indicate the conditions whereby updrafts and down-
drafts are perfectly balanced.

B. Realizability Constraints

In general, the skewness and flatness factors of a PDF are
independent quantities. However, in turbulence modeling the
nature of the second-order non-linearity of the Navier-Stokes
equation means that budgets for the statistical moment m of a
single flow variable such as w′, require moment m+ 1 to be
known. Therefore, it may be conjectured that the physics of
turbulence requires some coordination between FFw and Skw.
The realizability constraint as formulated here links Skw to

-0.4 -0.2 0 0.2 0.4 0.6 0.8
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0.4

0.6

0.8

FIG. 3. Comparison between vertical velocity skewness (Skw) mod-
eled using third-order cumulant expansion (via measured Γ+) and
measured Skw. All values of z/δ are included.
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FIG. 4. Ratio of ∆So,m modeled using the third-order cumulant ex-
pansion and measured ∆So (computed from quadrant analysis) as a
function of z/δ .

FFw by replacing inequalities with equalities along with as-
sociated coefficients such as α1. It is important to note that
this inequality constraint is only statistical (i.e. applies to
any random variable) and replacing inequalities with equali-
ties is not derived from the physics of turbulence. Nonethe-
less, Figure 7c shows the variations in α1 using measured
Skw and FFw as a function of z/δ (reported in Figure 7a-b).
For 0.07 < z/δ < 0.9, the values of α1 are around 3.3 for
all data sets. This finding supports the working assumption
that the inertial term in the third-order budget of w′3 reduce

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
3
5
0
0
7



The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 10

10
-2

10
-1

10
0

-0.5

0

0.5

1

10
-2

10
-1

10
0

-2

-1

0

1

10
-2

10
-1

10
0

-1

-0.5

0

0.5

10
-2

10
-1

10
0

-0.5

0

0.5

FIG. 5. The variations of the triple moments: (a) M30 skewness of
u′, (b) M03 skewness of w′, (c) M21 mixed moment of u′2 and w′ and
(d) M12 mixed moment of u′ and w′2, as a function of the normalized
wall normal distance z/δ .
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FIG. 6. Comparison between 0.5−Γ+ and measured CCEMM11∆So.
The one-to-one line is based on the simplified CEM representation
used to obtain equation 17.

to (3 − 2α1)σ
2
w(∂σ2

w/∂ z). Moreover, an α1 = 3.3 is suffi-
ciently close to a Gaussian value when modeling the entire
inertial term using a Gaussian approximation (i.e. α1 = 3)
and deviates appreciably from the prediction by the fractional
area/mass flux approach that leads to α1 = 1.
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FIG. 7. The variations of: (a) measured FFw, (b) measured Sk2
w +

1, and (c) α1 estimated from FFw and Sk2
w + 1 as a function of the

normalized wall normal distance z/δ . The horizontal dashed lines
indicate the Gaussian approximation.

C. Gradient-Diffusion Prognostic Models

Equation 4 is used to compute the eddy diffusivity Kt by
dividing measured w′3 with measured ∂σ2

w/∂ z. The Kt thus
estimated is then normalized using σ2

wκz/u∗ to be consistent
with prior studies65. The outcome is shown in Figure 8: for
0.3< z/δ < 0.9, Kt decays with increasing z/δ ; for z/δ < 0.3,
which includes the ISL, the approach spectacularly fails even
at predicting the sign of Kt . More interesting is that this failure
may be decomposed into two regions: (i) a finite Skw associ-
ated with a zero vertical velocity variance gradient roughly in
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FIG. 8. The variation of the normalized computed eddy diffusivity
Kt as a function of the normalized wall normal distance z/δ . The
vertical dashed line roughly indicates ∂σ2

w/∂ z = 0. The horizontal
line is Kt = 0.

the ISL, and (ii) an unphysical negative diffusivity, mainly in
the buffer region or roughness sublayer depending on the data
set. The cross-over occurs when ∂σ2

w/∂ z = 0 (roughly de-
lineated by the vertical dashed line in Figure 8). Interestingly,
the work here suggests that within the ISL where ∂σ2

w/∂ z= 0,

down-gradient models fail to predict a finite w′3 and a rectifi-
cation based on w′q′ is required in this zone. For this reason,
the gradient-diffusion representation linking w′q′ to ∂K/∂ z in
equation 45 is explored in Figure 9. Note that for z/δ < 0.1,
data are shaded because these points are near or within the
sublayer below the ISL for many of the data sets, and are in
the near-wall region where there is greater uncertainty due to
experimental constraints such as measurement resolution. In
this analysis, q′ is not measured but estimated as q′ = 2u′2. By
and large and for 0.08< z/δ < 0.8, the gradient-diffusion rep-
resentation with a diffusivity based on κzu∗φL(z) predicts well
the vertical transport of energy needed to describe Skw. It can
be stated that the down-gradient model for w′q′ captures the
essential mechanisms needed to describe Skw in equation 46
and will be used later on to demonstrate that Skw is dominated
by this term. Returning to equation 46, there are two second-
order velocity gradients that impact Skw. Since the gradients
are measured and the diffusivities are modeled but expected
to be comparable based on the choice of τs, the significance
of the gradients, normalized by z and u∗, are first discussed in
Figure 10. From this Figure, it is clear that when z/δ > 0.1,
the normalized ∂σ2

u /∂ z are some 4-5 times larger in magni-
tude than ∂σ2

w/∂ z. Within the ISL, ∂σ2
w/∂ z ≈ 0 and much of

the finite Skw in the ISL is associated with ∂σ2
u /∂ z (as pre-

dicted by the prognostic approach). Hence, it is conjectured
that for 0.1 < z/δ < 1, the dominant term on the vertical ve-
locity skewness is not related to ∂σ2

w/∂ z. That is, the vertical

FIG. 9. (a) Comparison between measured and down-gradient mod-
eled vertical transport of turbulent kinetic energy when setting qm =
u′2. The shaded markers indicate z/δ < 0.1. The horizontal dashed
line denotes a perfect agreement between model and data. (b) The
assumed effective dimensionless mixing length κ(z/δ )φL(z/δ ) for
open channel flows (solid line) and wind tunnels (dashed line). Note
the parabolic behavior for open channel flows (characterised by a
free surface) and the monotonically increasing values for wind tun-
nel studies.

velocity skewness is primarily driven by

Skw,t =−2

3

(

1− 2c2

CR

)
κzu∗φL(z)

σ3
w

∂ (σ2
u )

∂ z
. (48)

This conjecture is directly tested in Figure 11, which com-
pares measured Skw with predictions from equation 48 Skw,t in
the range of 0.1 < z/δ < 1 (measured σ2

u and σ3
w are used in

these calculations). The agreement is quite acceptable given
the uncertainty in assumed φL(z) and measured longitudinal
velocity variance gradients. This finding explains why equa-
tion 4 fails when not accounting for the large-scale adjust-
ment, which is modeled here using equation 48. An impli-
cation of including φL is that in the outer layer, eddies com-
mensurate to δ and inner layer eddies commensurate to z are
significant. To what degree the contribution of these eddies
is evident in the experiments here is now considered using a
data set where the sampling duration enables statistical con-
vergence at the very large scales.

D. Further analysis: Co-spectral results

The co-spectrum between w′ and w′2 −w′2 is analyzed and
a typical shape is shown in Figure 12 for the longest sam-
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FIG. 10. Normalized (a) vertical and (b) horizontal velocity gradi-
ents as a function of the normalized wall normal distance z/δ . The
vertical dashed lines roughly indicate the upper limit of the ISL.

FIG. 11. Comparison between measured Skw and predictions from
equation 48 with CR = 1.8, c2 = 0.1, u∗, and the gradients reported in
Figure 10. The shaded markers indicate z/δ < 0.1. The one-to-one
line is also shown.

pling duration data set needed to resolve large and very large
structures (i.e. MNS in Table I). Consistent with expectations
from equation 47, when z/δ > 0.2, scales defined by both z

and δ play a role as anticipated from an eddy diffusivity that
scales with z(1− z/δ ). At kδ = 0.9 the dominant length scale
is δ because z and δ are comparable. Likewise, in the re-
gion where z/δ < 0.1, attached eddies (kz = 0.4) appear to
contribute most to the co-spectral content of w′ and w′2 −σ2

w,
as expected, because z/δ no longer contributes to the eddy
diffusivity. These findings independently support the formu-

FIG. 12. The measured co-spectra of w′/σw and (w′2/σ2
w)− 1

as a function of normalized wavenumber and height (z/δ ). The
wavenumber k is normalized with δ in the left panels (a, c) and with
z in the right panels (b, d). The bottom panels (c,d) report the co-
spectra at 4 heights: z/δ = 0.1 in the ISL, z/δ = 0.2 transitioning
from the ISL to the outer layer, z/δ = 0.7 in the outer layer, and
z/δ = 0.9 near the top of the boundary layer. Those locations are
also shown in the top panels as dashed horizontal lines. The 95 con-
fidence bound for the co-spectra is approximately 0.84 to 1.16 times
kδPw′,w′w′ .

lation in equation 47 that identifies z and δ (through φL) as
the limiting scales to be accommodated in models for Skw for
the ISL and outer layer region. However, caution should be
exercised in such naive binary representation of length scales
as the analysis also shows that eddies up to 10δ (often related
to very large scale motion or VLSM) still have finite contribu-
tions on the co-spectra.

V. CONCLUSIONS

The present work explores the vertical velocity skewness
(Skw) in wall bounded flows covering smooth, rough, and per-
meable surfaces across a wide range of Reynolds numbers
(Reτ = 331− 13683). The exploration focused on diagnos-
tic and prognostic models for Skw. The following conclusions
can be drawn:

• For the diagnostic models, it was shown that third order
cumulant expansions for the single and joint (with u′)
PDFs establish links between duration of updrafts Γ+,
the relative importance of ejections over sweeps to mo-
mentum transport ∆S0, and Skw. Those derivations are
statistical in nature and only offer constraints on the ver-
tical velocity skewness values. However, they make no
contact with the Navier-Stokes equations or the physics
of turbulence.
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The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 13

• The fractional area/mass flux approach that is routinely
used in convective boundary layer models to correct
gradient-diffusion formulations was also explored (for
near-neutral conditions) across many roughness values
and Reynolds numbers. This approach was used to in-
vert for the fractional area of updrafts (= a) to match
Γ+. The findings support a constant a independent
of z in the range 0.1 < z/δ < 0.3. When combined
with third order cumulant expansion, a unique link be-
tween a and Γ+ was established. It was also shown
that such a model predicts a relation between the ver-
tical velocity flatness factor FFw and Skw given by
FFw = α1(Sk2

w+1) with α1 = 1 independent of a. Such
α1 = 1 is the minimum required to satisfy the realizabil-
ity constraints. The data here were used to examine α1

as a function of z/δ and it was shown α1 = 3.3 is plausi-
ble for 0.1 < z/δ < 1. Such a value is sufficiently close
to the value predicted from a quasi-Gaussian approxi-
mation (α1 = 3).

• The prognostic approach considered the budgets for w′,
w′2, and w′3. It was shown that the budget of w′ yields
a constant σ2

w independent of z/δ only when the mean
pressure is hydrostatic. This finding establishes a link
between the emergence of a constant σ2

w with respect to
z expected in the ISL and models for the mean pressure.

• The budgets for w′2 and w′3, when combined together,
resulted in a model for w′3 that has two contributions: a
gradient diffusion contribution arising from inertia that
links w′3 to ∂σ2

w/∂ z and a non-local contribution that

links w′3 to the turbulent transport of kinetic energy
w′q′. This transport term arises from return-to-isotropy
considerations originally established when closing the
w′2 budget using a linear Rotta scheme.

• The term w′q′ was shown to be reasonably approxi-
mated with a down gradient model with respect to tur-
bulent kinetic energy K provided the standard eddy
diffusivity κzu∗ is multiplied by a correction func-
tion for outer layer eddies φL(z/δ ). The contribu-
tion from w′q′ explains much of the Skw values in
the range of 0.1 < z/δ < 1 when using κzu∗φL and
∂K/∂ z. This finding offers a bridge to the diagnos-
tic structural models that already demonstrated w′q′ =
−(3/4)∆So(ASMσ2

u σw + BSMσ3
w), where ASM = 1.34

and BSM = 1.59 are constants9,10. Thus, the vertical ve-
locity skewness can now be written as

Skw =−

local effects
︷ ︸︸ ︷

2

3CR

τs

σw

∂w′w′

∂ z
+ (49)

βL

3

4
∆So

(

ASM

σ2
u

σ2
w

+BSM

)

︸ ︷︷ ︸

large scale adjustment

.

When ejections dominate momentum transport over
sweeps, ∆So < 0 and Skw remains positive even when

∂σ2
w/∂ z = 0 (i.e. negligible local effects, mean pres-

sure is hydrostatic). This result can also be expressed as
a mass flux model given the relation between ∆So and
Γ+ in Figure 6, and the relation between Γ+ and the
fractional area in the mass flux approach. This super-
position of down-gradient and mass flux approaches is
widely used in turbulence parameterization in climate
models. Thus, the work here offers a new perspective of
how to combine local and non-local effects when mod-
eling Skw and shows the interconnection between diag-
nostic and prognostic models.

• In canonical wall-bounded flows, large and very large
scale semi-organized turbulent structures that exceed in
size the boundary layer depth δ contribute significantly
to turbulent kinetic energy68,70,74,75 and other higher or-
der flow statistics for u′ even in the ISL69,76. To what
degree these structures impact w′3 has not been resolved
from earlier studies. The work here demonstrates that
such structures still have a finite contribution to the
asymmetry in w′. To what degree their effects can be
accommodated through the proposed outer layer cor-
rection φL to the eddy diffusivity κzu∗ requites further
exploration.

• Diagnostic and prognostic models exhibit remarkable
consistency in both the ISL and outer layer, regardless
of the underlying surface and Reynolds numbers. This
suggests that the effects of roughness and Reynolds
numbers are confined to the roughness sublayer itself
along with its thickness (deepest in terms of z/δ for
the lowest Reτ =331). However, the uncertainties in
measurements within the near-wall region, do not al-
low speculate claims on surface type effects below ISL.
Furthermore, the findings show no significant depen-
dence on the Reynolds number within the range of Rτ

from 8 × 102 to 1 × 105. The consistency of the re-
sults, despite variations in Reτ and surface type, sug-
gests the universality of Skw above the roughness sub-
layer or buffer layer.

To summarize, the breadth of the results presented here pro-
vides an enhanced understanding of vertical velocity skew-
ness that spans the flow phenomenology, governing Navier-
Stokes equations, and statistical outcomes of turbulence. The
asymmetry is linked to large-scale coherent turbulent struc-
tures (Figure 12), which in a simplified sense includes sweeps
ad ejections. A model for skewness must therefore include a
non-local adjustment to account for these large-scale eddies
(equation 6). The form of the adjustment can be determined
prognostically from the governing budget equations (equation
44) or diagnostically from statistics that quantify properties of
the turbulent structures (e.g. ∆So and Γ+). Regardless of the
approach, the non-local adjustment is well described by the
kinetic energy transport w′q′ (Figure 11) as shown here.

In the second and third moment prognostic models, the fol-
lowing assumptions have been made: (i) the linear return-to-
isotropy (Rotta) model, and (ii) isotropy of the dissipation
rate to model pressure-velocity interactions and viscous de-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
3
5
0
0
7



The vertical-velocity skewness in the atmospheric boundary layer without buoyancy and Coriolis effects 14

struction. The Rotta model, which neglects nonlinear inter-
actions, particularly underperforms in the near-wall region,
where anisotropy is sustained by the mean strain rate. This
limitation may be overcome by adopting well known non-
linear return to isotropy models61,77–80. The assumption of
isotropy in the dissipation rate implies that isotropy is well-
established at the dissipation scales (i.e., small or microscale).
While this assumption is reasonably valid at moderate-to-high
Reynolds numbers, it can be problematic at low Reynolds
numbers, where anisotropy persists even at the dissipation
scale.

While these results do not address all aspects of ABL pa-
rameterizations needed in models such as CLUBB, they do
offer bench-mark outcomes for the adiabatic limit based on
controlled laboratory experiments. In this respect, they may
be viewed as necessary but not sufficient to progress on turbu-
lence parameterizations for the asymmetry in w′ within cli-
mate models. The LES framework may benefit from the
Skw models here as LES is repeatedly called upon to con-
trast the effects of ground inhomogeneities on cloud forma-
tion when referenced to homogeneous cases. As already
discussed, Skw is expected to be smaller for heterogeneous
ground cover given the disproportionate impact of heterogene-
ity on σ2

w when compared to w′3. Thus, bench-mark expecta-
tions for the Skw profiles of what the homogeneous cover case
ought to be for a set of surface roughness and Reynolds num-
ber runs within the LES is, undoubtedly, necessary.

Future effort will bifurcate in two directions. One seeks
to explore the extension of these approaches (prognostic and
diagnostic) to stratified flows in the atmosphere (mainly sur-
face layer and roughness sublayer including vegetated and ur-
ban employing atmospheric data) - where buoyancy, elevated
Reynolds numbers, Coriolis forces, and enhanced roughness
values are expected. The other seeks dedicated open chan-
nel flow experiments that will clarify the contribution of the
many eddy sizes, including large-scale structures, on the co-
spectra of w′- w′2, w′ - u′2, and w′-w′3. These co-spectra
(and concomitant co-spectral peak similarities) can assist in
the formulation of future prognostic models or revisions to a
linear φL(z) = 1− z/δ . These future experiments do require
extended sampling duration to reliably resolve contributions
of very large eddy sizes.
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