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A B S T R A C T

Collaborative hubs that integrate multiple teams to generate ensemble projections and forecasts for shared
targets are now regarded as state-of-the-art in epidemic predictive modeling. In this paper, we introduce
Influcast, Italy’s first epidemic forecasting hub for influenza-like illness. During the 2023/2024 winter season,
Influcast provided 20 rounds of forecasts, involving five teams and eight models to predict influenza-like
illness incidence up to four weeks in advance at the national and regional administrative level. The individual
forecasts were synthesized into an ensemble and benchmarked against a baseline model. Across all models, the
ensemble most frequently ranks among the top performers at the national level considering different metrics
and forecasting rounds. Additionally, the ensemble outperforms the baseline and most individual models across
all regions. Despite a decline in absolute performance over longer horizons, the ensemble model outperformed
the baseline in all considered horizons. These findings show the importance of multimodel forecasting hubs
in producing reliable short-term influenza-like illnesses forecasts that can inform public health preparedness
and mitigation strategies.
1. Introduction

In modern public health, infectious disease forecasting and scenario
modeling play a crucial role. These approaches provide stakeholders
and policymakers with essential tools to anticipate and respond to
infectious diseases by integrating mathematical models, advanced ana-
lytics, and data (Desai et al., 2019; James et al., 2021; Lutz et al., 2019).
Over the past decade, inspired by best practices in disciplines like mete-
orology (Gneiting and Raftery, 2005), collaborative hubs have emerged
as an innovative tool for epidemiological forecasts (Reich et al., 2022;
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E-mail address: nicolo.gozzi@isi.it (N. Gozzi).

Shea et al., 2020). More in detail, a forecasting hub is a consortium
of several modeling teams that contribute their forecasts to a common
set of targets. These forecasts are typically aggregated into an ensem-
ble, which combines predictions from individual models to produce a
consensus forecast representing the hub’s collective outlook. In pre-
vious efforts, ensemble forecasts have demonstrated greater accuracy
and reliability over time compared to the contributions of individual
models (Sherratt et al., 2023; Cramer et al., 2022). In the context of
epidemiological forecasts, this approach was pioneered by the Centers
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for Disease Control and Prevention with the 2013–2014 Influenza Sea-
son Challenge (Biggerstaff et al., 2016) and later expanded to support
the response to several health threats including Ebola (Viboud et al.,
2018), West Nile Virus (Holcomb et al., 2023) Dengue (Johansson
et al., 2019), Chikungunya (Del Valle et al., 2018), Influenza (McGowan
t al., 2019; Reich et al., 2019), and more recently, COVID-19 (Sherratt

et al., 2023; Cramer et al., 2022; Wolffram et al., 2023). In various
nstances, different targets have been considered, ranging from cases
o hospitalizations and disease-related mortality.

Here, we present Influcast, the first Italian epidemic forecasting
hub on influenza-like illness (ILI). Influenza and other respiratory
diseases impose a significant burden on healthcare and hospital systems
worldwide and constitute one of the primary economic costs for public
health systems (World Health Organization, 2019; Putri et al., 2018).
Forecasting the impact of respiratory diseases has the potential to
provide a wealth of actionable information to optimize the allocation
of resources (e.g., hospital beds, medical staff, vaccines) and help fine-
tune communication campaigns to raise public awareness and promote
preventive measures.

In Italy, the epidemiological surveillance of respiratory diseases
typically runs every winter season, from week 42 (mid-October) to

eek 17 of the following year (late April). Sentinel physicians diagnose
otential cases of ILI based on specific symptoms and report them to
he Istituto Superiore di Sanità (ISS, the Italian National Institute of
ealth). This data is then aggregated by the ISS, which releases weekly

estimates of ILI incidence at both national and sub-national (19 regions
and 2 autonomous provinces) levels (Istituto Superiore di Sanità, 2020).
Due to the time required for reporting and aggregation, the provided
report pertains to the week preceding its release date.

Influcast was launched in the 2023/2024 winter season to forecast
LI incidence in Italy and its regions up to four weeks ahead. Over 20
orecasting rounds, 5 independent research teams contributed a total

of 8 different models. Individual model’s forecasts were combined into
an ensemble forecast and evaluated in real-time against a baseline fore-
casting model which consistently predicts as median value the last data
point within the calibration period and whose predictive intervals are
estimated on past data. Across various evaluation metrics and spatial
units, the ensemble model emerged as one of the best performers.
When assessing aggregated performance metrics, the ensemble model
frequently ranks in the upper half across different criteria. Although
its absolute forecasting accuracy declines over longer horizons, the
ensemble outperforms the baseline model at all considered forecasting
horizons. At the sub-national level, the ensemble remains the leading
model, surpassing the baseline in every region and outperforming
ndividual models in most cases.

Overall, our findings confirm the effectiveness of collaborative fore-
casting and ensemble models in delivering reliable short-term fore-
casts of influenza-like illness incidence. The results demonstrate that
pooling predictions from multiple modeling teams not only improves
accuracy but also increases the robustness of forecasts. These results
stress the value of multi-model approaches in public health, supporting
better-informed decision-making for managing influenza-like illness.

2. Results

Influcast generated 20 forecasting rounds during the 2023/2024
influenza season, from week 2023-46 (mid-November 2023) to week
024-13 (late March 2024). In each round, modeling teams were asked

to submit forecasts on ILI incidence in Italy and its regions for the next
four weeks. Incidence is calculated as reported cases per 1000 patients
(i.e., the population covered by the network of sentinel physicians).

nly probabilistic forecasts in the form of quantiles were accepted
(more details on the submission format are provided in Section 4.1).
Each week, individual forecasts were combined into an ensemble fore-
ast and evaluated against a baseline model which consistently predicts
s median value the last data point within the calibration period and
hose prediction intervals are estimated on past data. Details on the

alculations for both ensemble and baseline models are provided in
4.2.
2

ection h
2.1. Forecasting challenge and contributing models

By the end of the 2023/24 season, 5 modeling teams had submitted
 total of 8 individual models. Forecasts were uploaded and visualized
hroughout the season on an interactive web platform, enabling users
o examine both individual model forecasts and the ensemble output
https://influcast.org/). The platform also provided weekly bulletins
hat interpreted and communicated the latest insights from the fore-

casts. More details on the Influcast platform are reported in Section 4.1.
Of the eight models submitted, four were mechanistic models, two were
emi-mechanistic models, and the remaining two were statistical mod-

els. Among the four mechanistic models, two adopted a metapopulation
approach, while the other two used a single-population approach.

esides historical data for fitting, the models incorporated additional
data, including (i) mobility data, (ii) contact data, (iii) population
distribution data, and (iv) participatory surveillance data. We refer
the reader to the section S7 (Models Description) of the Supplementary
Information for further details on the models, where we also provide a
table reporting the correspondence between the model names used in
this manuscript and those used on the Influcast platform (Table S3).

Fig. 1A shows an example of one-week-ahead ensemble forecasts
(50% and 90% prediction intervals) for Italy and its regions in dif-
ferent forecasting rounds. In the Supplementary Information (Figures
S11–S14), we also show two, three, and four weeks ahead ensemble
orecasts in different spatial units. Fig. 1B illustrates the number of

models submitted for each round. Despite small fluctuations, the num-
ber of submitted models remained fairly stable across rounds, with four
out of eight total models submitting forecasts at the sub-national level
s well.

2.2. Performance of submitted models

Defining what makes a model ‘‘good’’ is challenging, particularly be-
cause a model’s performance depends on the target metric considered.
In this context, we evaluate models’ predictive performance based on
he paradigm of maximizing the sharpness of the predictive distributions
ubject to calibration (Gneiting et al., 2007). In other words, we aim for

prediction intervals to be as narrow as possible (and closely aligned
ith real data), while ensuring that forecasted probabilities match the
bserved frequencies.
National forecasts. Table 1 presents the aggregated performance

of individual models using several metrics to evaluate the predicted
LI incidence at the national level. The first metric considered is the
elative mean absolute error of the median forecast (relative MAE).
he procedure to compute the relative MAE is detailed in Section 4.3.

In general, aggregating forecasts from all rounds and horizons, each
model is compared to the others submitted in the same round in
terms of MAE, and the obtained value is then divided by the value
or the baseline model. Consequently, values of relative MAE below 1
ndicate better performance, while values above 1 indicate worse per-
ormance compared to the baseline. Among the models, Mechanistic-1
hows the lowest relative MAE (0.56), followed closely by Mechanistic-3
0.58) and the ensemble (0.59). Notably, a relative MAE of around 0.5
ndicates that the model reduces uncertainty in predictions by approxi-
ately 50% compared to the baseline. Then we find Mechanistic-4, with
 relative MAE of 0.73, Statistical-2 (0.77), Semi-mechanistic-2 (0.84),
nd Statistical-1 (0.99). The remaining two models show a relative MAE
reater than one, Semi-mechanistic-1 (1.80) and Mechanistic-2 (1.86).

We also consider the relative weighted interval score (relative WIS),
a metric that evaluates not only the accuracy of the median but also
the accuracy of the prediction intervals in bounding actual data (see
ection 4.3). The relative WIS is also referenced to the baseline value.

In terms of relative WIS, Mechanistic-1 is the best (0.54), followed by
he ensemble (0.57) and Mechanistic-3 (0.58). In this case, four models
ave a relative WIS greater than 1.

https://influcast.org/
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Fig. 1. (A) One-week ahead ensemble forecasts (50% and 90% prediction intervals) at the national and sub-national level in different forecasting rounds. (B) Number of models
submitting forecasts at the national and sub-national level.
Table 1
Models forecasting performance. Performance of different models in terms of relative MAE of the median, relative WIS, 50%
and 90% coverage. For each metric, the score of the model achieving the best performance is highlighted in bold and the
ranking of top three models is indicated in parentheses.
Model N. of rounds Relative MAE Relative WIS Coverage (50%) Coverage (90%)

Mechanistic-1 19 0.56 (1st) 0.54 (1st) 0.75 0.89 (1st)
Mechanistic-2 20 1.86 1.64 0.04 0.49
Mechanistic-3 20 0.58 (2nd) 0.58 (3rd) 0.47 (3rd) 0.70 (3rd)
Mechanistic-4 19 0.73 0.73 0.16 0.37
Semi-mechanistic-1 16 1.80 2.14 0.06 0.27
Semi-mechanistic-2 14 0.84 1.04 0.19 0.30
Statistical-1 20 0.99 1.09 0.17 0.43
Statistical-2 19 0.77 0.85 0.11 0.31

Ensemble 20 0.59 (3rd) 0.57 (2nd) 0.51 (1st) 0.80 (2nd)
Baseline 20 1.0 1.0 0.49 (2nd) 0.66
Finally, to assess calibration of models we evaluate the 50% and
90% coverage. Coverage is defined as the proportion of points falling
within the specified intervals (more details in Section 4.3). For a
perfectly calibrated model, the 50% predictive interval will contain
exactly 50% of the observations, resulting in a perfect coverage score
3

of 0.5. Similarly, for the 90% predictive interval, the perfect coverage
score would be 0.9. The ensemble achieves an almost perfect 50%
coverage (0.51), while it is slightly under-confident for 90% coverage
(0.80). Among the other models, Mechanistic-3 follows the ensemble for
50% coverage (0.47), while Mechanistic-1 performs the best for 90%
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coverage (0.89). In the Supplementary Information (Figure S15), we
present coverage plots for different models and forecasting horizons,
showing that the ensemble model maintains good coverage also across
other intervals.

We observe that, on average, mechanistic models perform better.
For instance, in terms of relative MAE, the top two models are mecha-
nistic. Similarly, when considering WIS and 90% coverage, the top and
third-ranked models are mechanistic, with the ensemble model ranking
second in both cases. For 50% coverage, the third and fourth models
are mechanistic, while the first and second models are the ensemble
and the baseline, respectively.

Fig. 2 shows the standardized rank for the WIS and the abso-
ute error of the median of different models across all horizons and
orecasting rounds. We stress how in this case we consider absolute
rrors rather than MAE (i.e., absolute errors average over different
ime horizons) as reported in Table 1. More details on standardized

rank calculation are provided in Section 4.3. In general, the model
that performs the best for a given horizon in a forecasting round will
have a standardized score of 1.0, while the worst-performing model
will have a score of 0.0. When considering the WIS score, the models’

edian standardized ranks are as follows: Mechanistic-3 (median rank
f 0.78), the ensemble (0.75), and Mechanistic-4 (0.71) are the top
hree models. Following these, Mechanistic-1 (0.62), Semi-mechanistic-2
0.56), Statistical-2 (0.44), Statistical-1 (0.33), and the baseline (0.33)
eature ranks between 0.30 and 0.70. Lastly, Semi-mechanistic-1 (0.28)
nd Mechanistic-2 (0.22) have the lowest median ranks. When consid-
ring the absolute error, we observe a similar pattern: Mechanistic-3
nd Mechanistic-4 share the top rank, both with a median standardized
ank of 0.75. The ensemble model ranks third, tied with Mechanistic-1,
oth with a median standardized rank of 0.67. Following these, we find
emi-mechanistic-2 and Statistical-2 with median standardized ranks of
.55 and 0.50, respectively. The last four models are ranked as follows:
tatistical-1 (0.33), the baseline model (0.33), Semi-mechanistic-1 (0.28),
nd Mechanistic-2 (0.0).

Interestingly, while the ensemble model does not achieve the high-
est median standardized rank, it is the model that most frequently
4

ranks in the top half. This occurs in more than 75% of rounds across
both metrics, meaning that over 75% of the rank distribution for the
ensemble lies in the range of ranks greater than 0.5. This suggests
that the ensemble’s performance is more stable than other models
across rounds, a desirable feature especially in the context of short-
term epidemiological forecasts. This finding is further supported by
the results presented in Section S2 of the Supplementary Informa-
tion, where we analyze model rankings across different forecasting
rounds. While model rankings show variability over time, the ensemble
model achieves rankings comparable to the top-performing models
while showing a much lower variance in its performance.

In Fig. 3A, we present the ratio between average WIS of different
odels and of the baseline (both computed averaging WIS values

f 1, 2, 3 and 4-week ahead horizons) in different forecast rounds.
alues below 1 indicate better performance relative to the baseline,
hile values above 1 indicate worse performance. The performance
f the ensemble model is highlighted in orange. The background of
he plot also displays the evolution of reported ILI incidence. Overall,
he ensemble model provides more accurate forecasts compared to the
aseline, with only a few exceptions. Indeed, we observe a reduction
n performance during the forecasting rounds for weeks 2023-49 and
023-50, just before the epidemic peak. This pattern is observed for
he majority of models. In the Supplementary Information, we repeat

this analysis for the absolute error of the median, finding analogous
esults (Figure S16). Additionally, in section S1 of the Supplementary
nformation we compare the ensemble to each individual model in
erms of WIS and absolute error of the median for each forecasting hori-
on separately. When considering the WIS, we find that only models
echanistic-3 and Mechanistic-4 outperform the ensemble in more than
alf the rounds for horizon 1, while in all other cases, the ensemble
lways achieves a lower WIS than any individual model in at least
alf of the forecasting rounds. In the case of the absolute error of

the median, only model Mechanistic-3 outperforms the ensemble for
horizons 1, 2, and 3, achieving lower absolute error in 70%, 60%,
and 53% of forecasting rounds, respectively. Similarly, Mechanistic-1
achieves lower absolute error than the ensemble in 63% of rounds
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Fig. 3. Models performance in time and by horizon. (A) Ratio between average WIS of different models and of the baseline (both computed averaging WIS values of 1, 2, 3 and
4-week ahead horizons) in different forecast rounds. It follows that values smaller than 1 indicate better performance with respect to the baseline, while values greater than 1
indicate worse performance. The ensemble model is highlighted in orange, the baseline model as a black dashed line. The background displays the reported ILI incidence for the
corresponding weeks. (B) On the left, we show the absolute WIS values of the Ensemble for different forecasting horizons (from 1 to 4 weeks ahead). In the inset, the figure also
shows the median WIS relative to the baseline model by horizons. On the right, we repeat the analysis considering the absolute error of the median as a performance metric.
The box boundaries represent the interquartile range (IQR), the line inside the box indicates the median and the whiskers extend to 1.5 times the IQR from the quartiles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for horizon 1, 53% for horizon 2. Finally, Mechanistic-4 outperforms
he ensemble in 53% of rounds for horizon. In Fig. 3B, we focus on
he ensemble and show its performance in terms of absolute WIS and
bsolute error of the median for different horizons, from one to four
eeks ahead, aggregating results from different rounds. As expected,

orecasting performance deteriorates for longer horizons. For WIS, the
edian value increases from 0.33 for one-week-ahead forecasts to 1.18

or four-week-ahead forecasts, a 3.5-fold increase. For absolute error,
he median rises from 0.58 to 2.18, a 3.7-fold increase. In the inset, the

figures also show the WIS and absolute error of the ensemble divided
y the WIS and the absolute error of the baseline (median values) for
ifferent horizons. In this case, we observe a fairly stable trend, with
he ensemble’s WIS and absolute error being 0.3 to 0.5 times that of
he baseline model, indicating improved performance across all forecast
orizons.
Sub-national forecasts. In Fig. 4A, we present the forecasting

performance at the sub-national level. Two regions (Valle d’Aosta
and Calabria) did not activate epidemiological surveillance for the
2023/2024 winter season and therefore were excluded from the anal-
sis. On the left, we show the relative WIS for different regions for
odels providing forecasts at the sub-national level. Relative WIS is

omputed following the same procedure used for quantities reported
n Table 1 and as detailed in Section 4.3. The models are ordered
rom best to worst in terms of performance. The ensemble is the best
odel, with a relative WIS of less than one in all regions. Regions are
5

ordered from best to worst performance. We notice heterogeneity in
forecasting performance across regions, with Sicilia, Marche, and Lazio
showing the best performance, while Liguria, Provincia Autonoma di
Bolzano, and Friuli Venezia Giulia showing the worst performance.
On the right, we show the standardized rank of the relative WIS for
different models across all regions. The ensemble is the top performer

ith a median rank of 0.8, while the baseline is the worst in terms
f median standardized rank. In the Supplementary Information, we

repeat the analyses considering the relative absolute error, finding
analogous results.

Finally, in Fig. 4B we show the performance of the ensemble model
over time also in the case of sub-national forecasts. Specifically, box-
lots and swarmplots are used to display the average ratio of the

WIS of the ensemble model to the baseline model for each forecasting
round across different regions. The gray shaded areas in the background
represent the weeks during which regions reached their epidemic peak,
and the number of regions peaking in each week is reported above
the shaded areas. We see that 17 out of 19 regions peaked in three
consecutive weeks: 2023-51, 2023-52, and 2024-01. The remaining two
regions peaked in weeks 2023-50 and 2024-02. This evidence indicates a
strong correlation between the epidemic curves of different regions. A
similar pattern to the national forecasts is observed, with performance
decreasing right before most of the regions reached the epidemic peaks.
Nonetheless, the WIS of the ensemble model is worse than that of
the baseline model, in median terms across all regions, only in week
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Fig. 4. Models subnational forecasting performance. (A) On the left is shown the relative WIS of different models providing sub-national forecasts in different regions. Relative
WIS calculation is detailed in Section 4.3. On the right is shown the standardized WIS rank of different models over all regions. The box boundaries represent the interquartile
range (IQR), the line inside the box indicates the median and the whiskers extend to 1.5 times the IQR from the quartiles. (B) Comparison of the average WIS of the ensemble to
the baseline across different forecast rounds and regions. The box boundaries represent the interquartile range (IQR), the line inside the box indicates the median and the whiskers
extend to 1.5 times the IQR from the quartiles. Individual points, each representing a region, are also shown above boxplots. The gray shaded areas represent the weeks during
which regions reached their epidemic peak, with darker shades indicating a higher number of regions peaking in that week. Additionally, the actual number of regions peaking
in each week is reported above the shaded areas.
2023-49 throughout the entire period considered. Additionally, also for
sub-national forecasts we observe lower performance in the epidemic
tail. However, the median performance of the ensemble model across
all regions remains below the baseline threshold.

3. Discussion

In this paper, we presented Influcast, the first Italian forecasting
hub focused on real-time short-term predictions of influenza-like illness
incidence. Our performance analysis indicates that: (i) most submitted
models demonstrated superior performance compared to the baseline
across various metrics, and (ii) the ensemble model outperforms the
baseline and most individual models. Indeed, when considering aggre-
gated performance metrics such as relative WIS, relative MAE, and
coverage, the ensemble model is always among the top three per-
formers. Additionally, in terms of standardized rank for both WIS and
absolute error, the ensemble ranks in the top three and most frequently
appears in the top half for both metrics, indicating a more stable and
uniform accuracy over time.

We observed that the forecasting performance of the ensemble
deteriorates as the forecast horizon increases, with four-week-ahead
predictions being generally more than three times worse than one-
week-ahead predictions. Nonetheless, the ensemble performs better
than the baseline across all forecasting horizons. Additionally, the
ensemble outperforms the baseline and most individual models in the
majority of forecasting rounds, with few exceptions. Specifically, we
observe a reduction in performance, at both national and sub-national
level, right before the epidemic peak. This pattern is observed for the
majority of models. This period is typically the most uncertain phase of
the epidemic. The reduction in performance can also be attributed to
6

the flattening of the curve around the peak, where the baseline model
performs relatively better. Additionally, around the peak, prediction
intervals may widen due to increased uncertainty. Interestingly, while
the performance of some models declines toward the tail end of the
epidemic, the ensemble model continues to outperform the baseline
even during this phase.

When evaluating model performance at the regional level, the en-
semble is again the top performer, outperforming the baseline in all
regions and each individual model in the majority of cases. Overall,
we observed heterogeneous performance across different regions. Al-
though a single round of forecasting limits our ability to explore these
differences in depth, we expect that with data from future seasons,
we will gain a clearer understanding of the factors driving regional
performance, such as data quality or inherent regional characteristics.

We observed that mechanistic models tended to perform better
compared to other model classes. Interestingly, past research on in-
fluenza forecasts in the US found that statistical models performed
similarly or slightly better than mechanistic ones (Reich et al., 2019),
while in the context of COVID-19, top-performing models included both
mechanistic and statistical components (Cramer et al., 2022). However,
due to the limited number of models submitted over a single season,
this comparison cannot be considered definitive and may be specific
to the particular problem being analyzed. Additionally, the observed
differences in performance may be influenced by factors beyond the
model’s characterization, such as the integration of external data and
signals, the techniques used for parameter estimation, and the model’s
robustness to data quality issues. Future work will be needed to system-
atically disentangle these factors to better understand their contribution
to model performance and to guide the development of more effective
forecasting approaches.
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The present work comes with limitations. First, while ILI incidence
s a good proxy for the burden of respiratory diseases, it is not a

disease-specific signal. Since it is based purely on symptoms, multiple
pathogens contribute to this signal, including influenza viruses, coron-
aviruses (including SARS-CoV-2), and respiratory syncytial viruses. This
limits the ability to break down the impact by disease and provides lim-
ited information on what is driving ILI dynamics. In future seasons, we
aim to address these limitations by incorporating new data to refine the
definition of forecasting targets, specifically incorporating data from vi-
rological surveillance. In Italy, the National Institute of Health conducts
virological surveillance alongside epidemiological surveillance every
winter. By combining data from these two surveillance systems, we
aim to define targets that are more specific to individual pathogens,
thereby providing more interpretable information. It is plausible that
making targets more disease-specific could enhance the accuracy of
orecasts (Viboud and Vespignani, 2019). Additionally, this objective
ligns with broader trends observed in similar forecasting challenges,
uch as the CDC’s FluSight forecasting initiative, which recently shifted
rom ILI incidence to laboratory-confirmed influenza hospitalizations as
orecasting target (Mathis et al., 2024). Second, the limited number of
ubmitted models challenges the comparison of different model classes
nd the exploration of methodologies to further enhance the ensemble
e.g., weighted or trained ensembles) (Ray et al., 2023). However,

the number of submitted models meets the minimum requirement to
create an effective ensemble, as demonstrated also by a recent study
on optimizing the number of ensemble members (Fox et al., 2024).

Overall, we confirmed the relevance of multi-model efforts in real-
ime short-term forecasting of infectious diseases, applying for the first
ime these approaches in Italy for influenza-like illness. More broadly,
nflucast is one of the first epidemic forecasting hubs built post-COVID-
9 for other respiratory diseases in Europe. We hope it will serve as a
odel for implementing similar approaches in other countries. Besides
roviding short-term forecasts during the winter season to support
esponse to respiratory disease epidemics, Influcast overarching goal is
o improve outbreak preparedness by building a network of epidemic
odelers and public health officials who share best practices and data.
hese efforts contribute to the establishment of robust collaboration
ipelines that can be rapidly deployed in emergency situations.

4. Materials and methods

4.1. Forecast submission and visualization platform

The infrastructure supporting Influcast consists of two primary com-
ponents: the GitHub collaborative platform, which is utilized for the
submission of forecasts, and a dedicated website for visualizing the
output results (InfluCast, 2024).

During the 2023/24 influenza season, participating teams submitted
probabilistic forecasts on ILI incidence for the upcoming four weeks
on a weekly basis. Specifically, Influcast considers the number of cases
per 1000 patients reported by the network of sentinel physicians across
Italy as the target variable for the forecasts. This data is communicated
every Friday by the Italian National Institute of Health through the
RespiVirNet bulletin (Istituto Superiore di Sanità, 2020). The incidence
ata published pertains to the previous week, while Influcast is updated
he following Wednesday, allowing teams time to process the new data
nd produce new forecasts. Consequently, the forecasts published on
nflucast on Wednesday refer to the previous week (for which there
s no consolidated public data yet), the current week, and the next
wo weeks. Teams were required to submit forecasts in a standardized
ile format, and an automated validation process was implemented
o verify the filename, contents, and compliance with the allowed
ubmission window. Forecasts had to be provided in quantile format,
ith teams required to submit 23 quantiles for each forecasting horizon.
eams could choose to submit forecasts at the national level only or

nclude subnational-level forecasts as well. Beyond the shared targets
7

and standardized file format, we allowed teams flexibility in other
spects, such as incorporating additional data or signals, making as-

sumptions about data quality and revisions, and considering exogenous
factors (e.g., behavior changes or seasonality) that could influence the
short-term progression of the epidemic. Detailed information about the
forecast format and the submission pipeline is provided on the Influcast
GitHub Wiki page (Github, 2024). The Influcast GitHub repository
also collects weekly surveillance data, including historical records from
ast seasons, for both Italy and its regions. In each round, forecasts
rom each model are automatically combined to produce ensemble
redictions, which are stored in the repository as an additional model,
longside the baseline model (more details in Section 4.2).

The Influcast web platform features an interface allowing one to
examine both individual model forecasts and the ensemble output. An
example of the interface is presented in Fig. 5. Forecasts for the next
our weeks from each model are represented using prediction intervals.

The default values include the 90% and 50% intervals, but users can
select a specific prediction interval via the menu located in the bottom
right corner of the visualization. By default, the most recent forecasts
are displayed. However, users can also explore forecasts from previous

eeks by dragging the vertical bar on the graph. White points represent
istorical data that were unavailable at the time of model calibration.
his approach allows for a visual assessment of each model’s predictive

ability, enabling verification of whether the actual data fell within the
estimated prediction intervals. Through the menu on the left, users can
select the geographical unit of interest, either Italy or one of its regions,
as well as a specific season. Additionally, it is possible to display the
predictions of multiple models by selecting them from the menu located
in the bottom left corner.

4.2. Baseline and ensemble models

Baseline model. The baseline forecasting model consistently predicts
a median value matching the last observed data point during the
alibration period. To generate quantiles, we use the previous 1-step
ncrements. Specifically, we compute 1-step differences up to time 𝑡:
= (𝑑2, 𝑑3,… , 𝑑𝑡). To ensure the median forecast matches the last cal-

bration point, we create a symmetrized set of increments 𝛿′ = (𝛿 ,−𝛿).
or a forecast with a maximum horizon of 𝐻 , we sample 𝐻 increments
rom 𝛿′. The prediction at horizon ℎ is calculated as: 𝑓ℎ = 𝑣𝑡 +

∑ℎ
𝑖=1 𝑑ℎ,

here 𝑣𝑡 is the last observed data point. Using this approach, we gen-
rate 10,000 baseline stochastic trajectories to compute quantiles and
rediction intervals. We note that this baseline model is the same one
sed in other epidemiological forecasting challenges, such as FluSight
nd the US and European COVID-19 Forecasting Hubs (Mathis et al.,

2024; Cramer et al., 2022; Sherratt et al., 2023).

Ensemble model. Individual forecasts are combined into an ensemble
forecast by taking a simple average across quantiles. This method is
also known as quantile averaging or Vincent method (Howerton et al.,
2023). In practice, quantile of level 𝑞 of the ensemble forecast at time
𝑡 will be:

𝑓 𝑒𝑛𝑠
𝑞 (𝑡) = 1

𝑀𝑡

𝑀𝑡
∑

𝑚=1
𝑓𝑚
𝑞 (𝑡),

where 𝑀𝑡 is the number of models that submitted a forecast at time
𝑡. All models except for the baseline are included in the ensemble
calculation.

4.3. Evaluation metrics

Weighted Interval Score. The Weighted Interval Score (WIS) is an ap-
proximation of the continuous ranked probability score (CRPS)
(Bracher et al., 2021). For a given prediction interval (1 − 𝛼) × 100%
(e.g., 90% for 𝛼 = 0.1) of a model’s forecast 𝐹 , the interval score is
defined as:
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Fig. 5. The Influcast web interface. The visualization dashboard allows displaying the four weeks ahead prediction for the ensemble and for specific models, choosing the season,
the location and the prediction intervals to show.
𝐼 𝑆𝛼(𝐹 , 𝑦) =
⎧

⎪

⎨

⎪

⎩

𝑢 − 𝑙 + 2
𝛼 (𝑙 − 𝑦) if 𝑦 < 𝑙 ,

𝑢 − 𝑙 if 𝑙 ≤ 𝑦 ≤ 𝑢,
𝑢 − 𝑙 + 2

𝛼 (𝑦 − 𝑢) if 𝑦 > 𝑢,
where 𝑢 (𝑙) represents the upper (lower) limit of the prediction interval
and 𝑦 is the actual observed value. The WIS generalizes the interval
score to multiple prediction intervals and is defined as:

𝑊 𝐼 𝑆𝛼0∶𝐾 (𝐹 , 𝑦) = 1
𝐾 + 1∕2 ×

(

𝑤0 × |𝑦 − 𝑚| +
𝐾
∑

𝑘=1

[

𝑤𝑘 × 𝐼 𝑆𝛼𝑘 (𝐹 , 𝑦)
]

)

.

Here, 𝐾 denotes the total number of intervals considered, 𝑚 is the
forecast median, and 𝑤𝑘 are the non-negative weights assigned to the
different intervals. Following a standard approach, we set 𝑤0 = 1∕2,
𝑤𝑘 = 𝛼𝑘∕2, and consider 11 prediction intervals (𝛼𝑘 = 0.02, 0.05, 0.10,
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90).

Absolute Error. Given a median forecast 𝑓𝑖 and an actual correspond-
ing value 𝑎𝑖, the absolute error is simply computed as:

𝐴𝐸 = |𝑓𝑖 − 𝑎𝑖|

When averaged over different time steps 𝑖 we obtain the mean
absolute error (MAE).

Coverage. Prediction interval coverage is the fraction of times a pre-
diction interval of a given level covers the observed data. Intuitively,
90% coverage is the fraction of times actual data are included in the
90% prediction interval. For a perfectly calibrated model, prediction
interval coverage will be equal to the nominal coverage. Following the
example, this means that exactly 90% of times points will be included
in the 90% prediction interval. Mathematically, for a prediction interval
of level 𝛼 and a set of 𝑁 data points 𝑦𝑖 it is computed as:

𝐶 𝑜𝑣𝛼 = 1
𝑁

|

|

{𝑖 ∈ {1,… , 𝑁} ∶ 𝑙𝛼 ,𝑖 ≤ 𝑦𝑖 ≤ 𝑢𝛼 ,𝑖}|| ,

where 𝑙𝛼 ,𝑖 and 𝑢𝛼 ,𝑖 are the lower and upper limits of the prediction
interval.

Relative performance. We apply the procedure presented in Ref.
Cramer et al. (2022) to compute relative performance. For simplicity,
we will present the steps to compute the relative MAE, but an analogous
procedure can be performed to obtain the relative WIS. First, for each
pair of model 𝑚 and 𝑚′, we compute the pairwise relative MAE skill as:
8

𝜃𝑚,𝑚′ =
𝑀 𝐴𝐸𝑎𝑣𝑔

𝑚

𝑀 𝐴𝐸𝑎𝑣𝑔
𝑚′

,

where 𝑀 𝐴𝐸𝑎𝑣𝑔 is the average MAE of model 𝑚 computed using all
available forecasts where both 𝑚 and 𝑚′ participated. Then, for each
model 𝑚 we compute the geometric mean of different 𝜃𝑚,𝑚′ :

𝜃𝑚 =

( 𝑀
∏

𝑚′=1
𝜃𝑚,𝑚′

)1∕𝑀

.

Finally, for easier interpretation, we divide each 𝜃𝑚 by the result of
the baseline model:

𝜃∗𝑚 =
𝜃𝑚
𝜃𝐵

.

Then, the obtained quantity 𝜃∗𝑚 represents the relative MAE of model
𝑚, adjusted for the difficulty of the forecasts it produced and rescaled
such that the baseline model has a relative performance of 1. It follows
that, 𝜃∗𝑚 < 1 indicates that model 𝑚 is better than the baseline, while
𝜃∗𝑚 > 1 indicates that model 𝑚 is worse than the baseline.

Standardized rank. For model 𝑚, and observation 𝑖 we compute its
standardized rank as:

𝑟𝑎𝑛𝑘𝑠𝑡𝑑𝑚,𝑖 = 1 − 𝑟𝑎𝑛𝑘𝑚,𝑖 − 1
𝑁𝑖 − 1 ,

where 𝑁𝑖 is the number of models submitting forecasts for observation
𝑖 and 𝑟𝑎𝑛𝑘𝑚,𝑖 is the rank of model 𝑚 and observation 𝑖 according to the
metric considered (WIS or absolute error). The model with lowest WIS
(or absolute error) for observation 𝑖 will rank first (i.e., 𝑟𝑎𝑛𝑘𝑚,𝑖 = 1),
therefore it will have a standardized score of 1. On the contrary, the
model with the highest WIS will rank last (𝑟𝑎𝑛𝑘𝑚,𝑖 = 𝑁𝑖) and therefore
will have a standardized score of 0.

Evaluation metrics were computed using the scoringutils package
(Bosse et al., 2022).

4.4. Epidemiological data

We use data provided by the Italian National Institute of Health
through their weekly bulletins (Istituto Superiore di Sanità, 2020).
During the 2023/24 season in Italy, the epidemiological surveillance of
respiratory diseases ran from week 42 of 2023 (ending on October 22,
2023) to week 17 of 2024 (ending on April 28, 2024). Sentinel physicians
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diagnosed potential cases of influenza-like illness based on specific
symptoms and reported these cases to the National Institute of Health.
This data was then aggregated by the institute, which released weekly
estimates of ILI incidence at both national and regional levels. Two
regions, Valle d’Aosta and Calabria, did not activate epidemiological
surveillance for the 2023/2024 winter season and therefore were ex-
cluded from the analysis. The data reflected the previous week; thus,
the report published in week 𝑡 contained data from week 𝑡− 1. Weeks are
defined from Monday to Sunday, and the data was subject to revision
due to delays in submissions from some sentinel physicians. Histor-
ical incidence data are published on GitHub in a machine-readable
format (RespiVirNet, 2020).
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