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Highlights: 

What are the main findings? 

• The TERIMAAS framework successfully integrates BIM, GIS, and IoT data to en-
hance multi-hazard risk assessment, bridging scales from territorial impacts to indi-
vidual structures. 

• A public building case study in a critical natural hazards area in northwest Italy 
demonstrates real-time flood risk assessment to improve resilience and disaster man-
agement strategies. 

What is the implication of the main finding? 

• The scalable approach equips different types of stakeholders with actionable insights 
for enhancing critical infrastructure resilience against evolving environmental risks. 

• Policy-makers and asset managers gain a dynamic decision-making tool, fostering proactive 
disaster preparedness and optimised resource allocation. 

Abstract: In an era of increasingly abundant and granular spatial and temporal data, the 
traditional divide between environmental GIS and building-centric BIM scales is dimin-
ishing, offering an opportunity to enhance natural hazard assessment by bridging the gap 
between territorial impacts and the effects on individual structures. This study addresses 
the challenge of integrating disparate data formats by establishing a centralised database 
as the foundation for a comprehensive risk assessment approach. A use case focusing on 
flood risk assessment for a public building in northwest Italy demonstrates the practical 
implications of this integrated methodology. The proposed TErritorial RIsk Management 
& Analysis Across Scale (TERIMAAS) framework utilises this centralised repository to 
store, process, and dynamically update diverse BIM and GIS datasets, incorporating real-
time IoT-derived information. The GIS spatial analysis assesses risk scores for each hazard 
type, providing insights into vulnerability and potential impacts. BIM data further refine 
this assessment by incorporating building and functional characteristics, enabling a com-
prehensive evaluation of resilience and risk mitigation strategies tailored to dynamic en-
vironmental conditions across scales. The results of the proposed scalable approach could 
provide a valuable understanding of the territory for policymakers, urban planners, and 
any stakeholder involved in disaster risk management and infrastructure resilience plan-
ning. 
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1. Introduction 
This paper examines how Digital Twin (DT) challenges can enhance multi-hazard 

risk assessments by integrating Building Information Modelling (BIM), Geographic Infor-
mation Systems (GIS), and the Internet of Things (IoT) domains. This study presents the 
TErritorial RIsk Management & Analysis Across Scale (TERIMAAS) framework, using a 
flood risk case study to illustrate the practical application of these integrated technologies 
enabled by implementing a consolidated centralised database. 

1.1. Background and Motivation 

In the modern era, the DT [1,2] paradigm disrupted the idea of representing the 
world through simplified models that describe its behaviour. A DT is a real-time digital 
replica of a physical entity. The fundamental parts can be mirrored in a virtual environ-
ment and continuously updated from multiple sources for various purposes [3]. Rapid 
advances in telecommunications and information technology in recent years have led hu-
mans to want to achieve more accurate and detailed descriptions of the built environment. 
The goal is to reach the twin copy of the system—a building, a city, or a territory in the 
field of investigation—and interrogate it concerning its real-time state. The most cutting-
edge enabling technologies, including Big Data, cloud computing, the IoT, and artificial 
intelligence (AI), now make it possible to collect, store, and handle an ever-increasing 
amount of data by facilitating cross-domain access. Data have become so relevant in the 
information society that it is seemingly the only thing that matters. The creation, distribu-
tion, use, dispersal, integration, and management of information have become the most 
significant cultural, economic, and political tasks to achieve competitive advantages [4]. 
In line with this understanding, the Dutch architect Maas provocatively published a book 
at the end of the last century that reflected on the futuristic “Datatown”, a city-based ex-
clusively upon data, a city to be described only by the flow of information [5]. Data ap-
pears to be the most reliable tool for providing an accurate view of social interactions from 
our daily activities and the environment that staged those interactions [6]. Now up to 
fourteen [7], the characteristics of Big Data were initially defined according to the 3Vs 
model—volume, variety, velocity—by analyst Doug Laney, based on a 2001 study [8]. 
Volume concerns the amount of data collected and stored. Data creation follows an expo-
nential process. According to the global data and business intelligence platform “Statista”, 
about 328.77 million terabytes, or 0.33 zettabytes, of data are created daily [9]. Moreover, 
90 percent of the world’s data have been created in the past two years alone [10]. Variety 
concerns the diversity of formats, sources, and structures. Velocity allows it to be readily 
available for real-time management and use. 

Within this framework, using interoperable platforms is crucial to converting data 
into usable information to ensure fruitful collaboration among stakeholders and make 
sense of the data through their interpretation. A system aimed at a data-driven approach 
in the built environment, in a transition process such as the current one, must be able to 
develop an ecosystem of services [11] by responding to queries related to the synchronic 
state of affairs of diachronic scenarios [12]. This aspect is particularly crucial when exam-
ining resilience in the age of climate change, as numerous dimensions need careful moni-
toring. Improving the understanding of disaster risk and strengthening disaster risk gov-
ernance, as suggested by the Sendai Framework of 2015 [13], represents another goal to 
be achieved. According to the United Nations Office for Disaster Risk Reduction 
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(UNDRR), disasters are indeed reversing global development at unprecedented rates; 
therefore, urgent actions are needed to build resilience to withstand and respond to shock 
in every decision we make. With current climate projections, the world could face 560 
yearly disasters by 2030 [14]. As tools nowadays enable a more performant multidiscipli-
nary knowledge of the built heritage, pragmatic experimentation to guide the handling of 
complexity is essential in structuring and graphical and visual representation of the data. 
The perspective lies in experimenting with ways to relate heterogeneous, static and dy-
namic data to each other, interrogate them concerning specific objectives, and visualise 
them through intuitive presentation modes. 

One of the most relevant aspects of a multi-hazard assessment is considering the con-
tinuous transition in scale, from the general to the particular and vice versa. Data have 
become increasingly accurate over time, assuming greater complexity and resolution; 
however, they consider the specific areas of investigation. To predict the impacts of the 
environment on individual works, as well as the effect of individuals concerning the sur-
roundings, the availability of large-scale spatial and temporal data must cross that of high-
resolution detail, as depicted in Figure 1. The perspective of making effective decision 
support systems [15] to predict pre- and post-extreme event impacts requires the interpre-
tation of data derived from spatial knowledge of buildings, territory, and hazards. 

 

Figure 1. Strengthening building resilience through IoT-driven environmental data integration. 

1.2. Literature Review 

BIM and GIS are critical technologies in the architecture, engineering, and construc-
tion (AEC) and geospatial industries. The possibility of cross-reading data from these do-
mains has emerged as a promising practice for enhancing spatial data analysis and infra-
structure management efficiency and scope. BIM offers highly detailed, three-dimen-
sional representations of buildings, integrating comprehensive datasets on architectural, 
structural, and mechanical systems [16,17]. Conversely, GIS excels in spatial data analysis 
and visualisation, offering a broader macro-level view of natural and built environments 
[18]. Their integration leverages the micro-level detail of BIM with the macro-level spatial 
analysis capabilities of GIS, offering a transformative advancement for improved data uti-
lisation, collaboration, and decision-making capabilities for various sectors. 

The application that finds the most exhaustive discussion in the literature is undoubt-
edly related to the realisation of urban models for the management of Smart Cities. The 
different granularity of geometric, spatial, material, and functional information favours 
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advanced analyses, accurate simulations and more informed decision-making processes 
to address complex urban challenges related to sustainability and resilience. This ap-
proach yields a two-fold value. On the one hand, it enriches the management of point 
infrastructures that can benefit from a more effective contextualisation of works. On the 
other hand, it is critical for disaster management [19,20], which is increasingly central to 
international policies in the ever-more pressing context of climate change. 

The GIS-BIM fusion enables a holistic assessment of a critical asset, particularly in 
managing natural hazards and disasters at different levels [18] and evaluating mitigation 
actions. In fact, GIS is particularly adept at hazard risk assessment and management due 
to its robust spatial data analysis capabilities, which include terrain modelling, hydrolog-
ical analysis, and infrastructure visualisation [15,21]. BIM complements this by providing 
detailed data on building structures and systems, allowing for the precise evaluation of 
vulnerabilities and the development of targeted mitigation strategies [22]. When inte-
grated, BIM’s granular building information and GIS’s broad spatial context enhance 
emergency response efforts, improve situational awareness, and support more informed 
decision-making [23]. This integrated approach is crucial for effective disaster manage-
ment, where timely and accurate data are imperative [24]. The STORM project exemplifies 
such integration by offering a comprehensive multi-hazard risk assessment and manage-
ment tool tailored for cultural heritage sites, addressing both natural hazards and climate 
change impacts [24]. 

Despite the promising potential of GIS-BIM urban modelling, several limitations hin-
der its widespread adoption and operational efficiency. These challenges span technolog-
ical, methodological, and institutional dimensions. Recent research has focused on vari-
ous approaches to achieve effective BIM-GIS integration focusing on data interoperability, 
standardisation, and processing techniques. 

• Data interoperability and integration challenges: as the two systems were designed 
for different purposes, one of the most significant limitations lies in the difficulty of 
seamless data exchange between BIM and GIS platforms, leading to isolated data si-
los and impaired comprehensive analysis [22,25]. Although open data standards 
such as IFC (industry foundation classes) CityGML or GeoJSON aim to bridge this 
gap, they are not universally implemented and may lead to information loss during 
conversion. Differences in data formats, coordinate systems, and semantic represen-
tations often lead to compatibility issues. Although BIM can utilise global coordi-
nates, it frequently defaults in practice to local coordinate systems for detailed de-
sign, whereas GIS typically employs global coordinate systems for spatial analysis. 
Furthermore, the extent and accuracy of georeferencing in BIM models may vary 
substantially across standards, model versions, and authoring tools [26]. In cases 
where a BIM model is already georeferenced, GIS integration may be indeed simpli-
fied because geographic alignment tasks can be slightly more straightforward. How-
ever, assessing the building’s position data is critical regardless of whether a BIM 
model includes global coordinates by default. Efforts to overcome data incompatibil-
ities include the development of middleware tools, standard conversion protocols, 
and hybrid platforms. Nonetheless, data conversion between these formats can lead 
to data loss and reduced accuracy [27] and can be resource-intensive and prone to 
errors [28]. 

• Semantic mapping and ontologies: semantic discrepancies between BIM and GIS 
models constitute a significant hurdle. Ontological frameworks [29] have been devel-
oped to establish mappings between BIM’s detailed, object-oriented semantics and 
GIS’s spatially referenced data. The granularity of BIM data often mismatches the 
broader spatial scope of GIS. BIM models typically focus on individual buildings or 
infrastructure elements, while GIS operates at scales encompassing neighbourhoods, 
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cities, or regions. Reconciling these different levels of detail to ensure meaningful 
integration without oversimplifying or overloading the system is a significant chal-
lenge. 

• Level of detail: one of the key aspects of BIM-GIS integration is considering the dif-
ferent levels of detail (LOD) used in each domain. In BIM, the LOD is used to catego-
rise the level of completeness of the graphic and alphanumeric information contained 
in a model, ranging from basic geometry with a low amount of associated data to 
highly detailed 3D building components with large amounts of additional parame-
ters [30]. On the other hand, GIS data adopt a different approach to LODs (ranging 
from LOD0 as simple building footprints to LOD4 as 3D buildings with modelled 
interiors) [31], which are based on spatial resolution and typically reach a lower 
amount of detailed geometries if compared to the higher LODs of BIM, because of 
the larger territorial scope for which they are used. A proper BIM-GIS integration 
would therefore need to take into account these discrepancies without sacrificing the 
essential data of each domain nor overloading the emerging integration with redun-
dant specificities. The concept of the level of information need (LOIN) introduced by 
the ISO 19650 [32] can be useful for implementing models (i.e., level of detail, dimen-
sionality, location, appearance, parametric behaviour, accuracy, and reliability of 
model elements) that fulfil certain information purposes, even though they are not 
characterised by a high level of graphics or information. In fact, the level of infor-
mation need framework defines the extent and granularity of information according 
to its purpose. 

• Computational complexity and performance: integrating BIM and GIS often results 
in highly complex datasets that can be computationally demanding to process. The 
level of detail required for BIM models may overwhelm GIS systems while simplify-
ing BIM data for GIS applications risks losing critical architectural or engineering 
details. Managing and visualising these large datasets requires an advanced compu-
tational infrastructure, which may not be accessible in many urban planning contexts. 

• Cost and resource constraints: developing and maintaining integrated BIM-GIS mod-
els is resource-intensive, requiring significant software, hardware, and skilled per-
sonnel investment. These costs can be prohibitive for smaller municipalities or pro-
jects with constrained budgets. 

• The lack of standards and workflow: international efforts, such as ISO 19650 and 
Open Geospatial Consortium (OGC) standards, aim to harmonise the BIM and GIS 
ecosystems. However, there is no universally accepted framework or workflow for 
integrating BIM and GIS, which leads to inconsistencies in implementation. The lack 
of standardised protocols makes collaboration among stakeholders more difficult, 
especially in multidisciplinary projects involving architects, engineers, urban plan-
ners, and policy makers. Furthermore, data ownership, privacy, and lack of stand-
ardised workflows hinder adoption. 

• Limited scalability for urban dynamics: while BIM-GIS models excel in static anal-
yses, they often struggle to incorporate temporal and dynamic urban processes, such 
as population growth, traffic patterns, and environmental changes. Current models 
frequently lack the flexibility to update in real-time, limiting their utility for adaptive 
urban management. 

While significant progress has been made, continued research and standardisation 
efforts are crucial to address the existing challenges and unlock the full potential of BIM-
GIS integration. Currently, great research interest is focused on implementing web-based 
and cloud platforms for data exchange and visualisation. A recent systematic review high-
lights that centralised databases and integrated webGIS platforms significantly contribute 
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to informed decision making in disaster risk management by enhancing capabilities in 
risk data collection, processing, and the dissemination of natural disasters [33]. 

Despite the advantages of integrating BIM and GIS, traditional systems often rely on 
static data, posing significant limitations for real-time hazard assessment and responsive 
disaster management. In the context outlined above, emerging opportunities that may of-
fer interesting insights in the coming years are oriented towards the development of Dig-
ital Twins, with the integration of dynamic data and automatic data analysis procedures 
using Artificial Intelligence and Machine Learning techniques. The IoT can enable contin-
uous, real-time data collection and transmission, which provides up-to-date information 
on environmental conditions and structural integrity [34]. 

As shown in the “House of Digital Twin” framework [35] illustrated in Figure 2, the 
system architecture should support data interoperability, standardisation, and real-time 
data integration, incorporating automated data transformation, validation, and updating 
processes. It should also provide a centralised data repository to streamline data manage-
ment and improve stakeholder accessibility [36,37]. Standardised data protocols and in-
teroperable systems to enhance the usability of risk information [38] are in fact highlighted 
as requirements by studies and the reviews of risk web platforms. 

Integrating IoT with BIM and GIS facilitates dynamic model updates and enhances 
hazard assessment and response capabilities [39]. As an example, the InSPiRE project 
demonstrates the efficacy of combining IoT with BIM for predictive maintenance, improv-
ing lifecycle management through real-time data acquisition and analysis [12]. 

Through the literature analysis, it is clear that this research addresses a critical 
knowledge gap by adopting a multi-hazard approach that provides a more realistic and 
comprehensive understanding of the impacts. A well-designed, interoperable framework 
will enhance data sharing, improve decision making processes, and optimise resource 
management in disaster risk management. It will also facilitate the development of inno-
vative, resilient cities capable of effectively withstanding and recovering from natural haz-
ards and disasters [40–43]. 
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Figure 2. The “House of Digital Twin”, illustrating the essential components of a DT [17]. 

1.3. Significance of the Study 

Effective resilience planning for multi-hazard scenarios requires integrating territo-
rial and building-scale analyses, especially as environmental risks continue to evolve dy-
namically. Current methodologies often fail to comprehensively address these intercon-
nected scales, resulting in fragmented data utilisation and less effective disaster manage-
ment strategies. This study makes key contributions, including the following: 

• Macro- and micro-scale integration: combines GIS-driven territorial data with BIM-
based building models to deliver comprehensive resilience insights. 

• Centralised database: employing PostgreSQL [44] to unify GIS, BIM, and IoT data, 
ensuring consistency across different scales. 

• Real-time risk monitoring: integrates IoT updates to continuously evaluate hazards, 
vulnerabilities, and exposures, enabling proactive interventions. 

• Operationalising Digital Twin: merges static models with dynamic environmental 
data to support decision making across multiple scales. 

• Validated framework: demonstrates effectiveness through a flood risk case study, 
linking regional hazards with building vulnerabilities. 

• Scalable and modular design: adapts to various hazards and geographic contexts, 
supporting both urban resilience and localised infrastructure protection. 

• Addressing research gaps: overcomes the critical limitations in GIS-BIM integration, 
offering a comprehensive approach to resilience planning [15]. 

To achieve these features, this study is guided by clearly defined objectives that trans-
late TERIMAAS’s contributions into actionable outcomes. These objectives ensure that the 
framework’s theoretical foundations align with practical applications, effectively address-
ing real-world challenges in disaster resilience and multi-hazard risk management: 
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• Develop a centralised database: create a PostgreSQL-based system to integrate GIS, 
BIM, and IoT data for unified macro- and micro-scale analyses [44]. 

• Define risk indicators: implement dynamic metrics for the real-time assessment of 
vulnerabilities and hazards across territorial and building scales. 

• Validate through application: demonstrate the adaptability and reliability of TER-
IMAAS through a flood risk case study in Piedmont, Italy, connecting regional haz-
ard data with localised vulnerabilities. 

• Propose a modular framework: establish a scalable and adaptable methodology suit-
able for diverse natural hazards and geographic contexts. 

TERIMAAS goes beyond existing approaches by unifying territorial and building-
level analyses into a cohesive, dynamic framework. Its ability to integrate GIS, BIM, and 
IoT data while providing real-time insights attempts to set a standard for multi-hazard 
resilience planning. The contributions of this study will allow stakeholders to make in-
formed decisions, optimise resource allocation, and protect both communities and infra-
structure. 

The methodology developed in this study is scalable and adaptable to various study 
areas, thereby enhancing the generalisability and practical application of the findings. 
This approach is visually represented in the framework shown in Figure 3, which links 
building-scale resilience with territorial-scale hazards. 

The research is organised as follows: Section 2 describes the methodology and tech-
nical framework of TERIMAAS, highlighting software and data management processes; 
Section 3 presents the method’s application in a case study, focusing on a specific use-
case; Section 4 includes the discussion, findings, and future works; and Section 5 provides 
a summary of the study. 

 

Figure 3. The DT domain: connecting the building detail with world scale for integrated hazard 
assessment. 

2. Methodology 
The volume and variety of information to be achieved and managed in the perspec-

tive of obtaining a representative twin model of the territory crucially configure data col-
lection and visualisation activities. The outlined complexity must recognise the need to 
intelligently converge highly heterogeneous data sources such as type, format, discipline, 
and granularity. Accessing a comprehensive consolidated database is essential for 
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correlating multidisciplinary and cross-scale data and paves the way for new testing and 
approaches. 

The TERIMAAS framework employs a structured and integrated approach to multi-
hazard risk assessment, addressing data interoperability challenges, temporal variability, 
and cross-scale analysis. The methodology is designed to unify macro-(territorial) and mi-
cro-(building) scale perspectives, combining IoT, GIS, and BIM data into a centralised and 
dynamic system. The framework ensures precise and actionable insights for disaster risk 
management by focusing on real-time adaptability and cross-domain data integration. 

The architecture of TERIMAAS is presented in Figure 4. The core of the proposed 
solution is an infrastructure-as-a-service, consisting of a collection of virtualised resources 
for storage, processing, and visualisation purposes. The idea is to combine static and dy-
namic data of interest through a relational database management system (RDBMS). In this 
way, it is possible to make information datasets generally managed with dedicated envi-
ronments interact with each other. IoT, GIS, and BIM systems constitute the primary da-
tabases that implement the central storage unit. The monitoring and analysis method for 
territorial resilience is therefore structured into three interconnected processes. 

The first process focuses on dynamic data management, leveraging IoT sensors and 
automated pipelines to ingest real-time geotagged data. These data are validated and pro-
cessed to create high-resolution hazard maps that adapt dynamically to evolving scenar-
ios, enabling timely decision making. 

The second process emphasises geospatial data management, employing high-reso-
lution vector and raster datasets to analyse regional hazard impacts. By utilising scalable 
cloud infrastructure, this process facilitates the efficient handling and visualisation of data 
for multi-hazard scenarios. 

The third process centres on building-scale data management, integrating enriched 
BIM models with the centralised database. Advanced bidirectional tools, such as Dynamo 
and FME, enable dynamic updates to building vulnerabilities while linking them to 
broader regional hazard data. 

Together, these processes bridge temporal hazard monitoring, geospatial precision, 
and building-level assessments. Dynamic updates, powered by trigger functions, trans-
form incoming data into actionable insights, which are visualised through intuitive dash-
boards and platforms. This cohesive methodology sets the stage for the detailed explora-
tions in Sections 2.1–2.3, showcasing how TERIMAAS effectively integrates data to ad-
vance multi-hazard resilience planning. 
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Figure 4. Conceptual design of the TERIMAAS multi-hazard framework. 

2.1. Dynamic Data Management at the Temporal Scale 

Natural hazards, such as earthquakes, floods, or wildfires, necessitate real-time as-
sessment, a capability often limited by the static nature of traditional GIS and BIM datasets 
collected post-event [45]. TERIMAAS addresses these challenges in hazard scenarios 
through a robust and continuous data ingestion pipeline. Application programming in-
terfaces (APIs) and webhooks serve as gateways, facilitating the constant influx of high-
frequency, geotagged data streams from IoT sensors. These sensors provide real-time 
data, which can originate from diverse sources such as national meteorological agencies, 
regional hazard monitoring networks, or open source weather data providers. 

The raw data undergo a multi-stage validation process, which includes outlier detec-
tion, spatial interpolation, and plausibility checks against historical data, and real-time 
observations. Subsequently, validated data are integrated into a spatially enabled Post-
greSQL/PostGIS geodatabase. 

The ingestion of fresh data triggers a cascade of automated processes using Trigger 
functions tailored to the specific hazard. Real-time sensor data are spatially interpolated 
and integrated with external data sources to generate high-resolution hazard maps for 
hazard events. These estimates are fed into distributed physical models running on a scal-
able cloud infrastructure to dynamically simulate the hazard’s evolution. These models 
incorporate factors relevant to the specific hazard, such as terrain, weather patterns, and 
infrastructure vulnerability. The resulting hazard maps are then used to assess risk at var-
ious scales, from individual buildings to entire regions. A rule-based alert system can dis-
seminate targeted warnings to relevant stakeholders through multiple channels, enabling 
timely evacuations or other mitigation actions if pre-defined risk thresholds are exceeded. 
This IoT-driven methodology empowers TERIMAAS to furnish a continuously updated 
and multi-layered view of the unfolding hazard situation, which is vital for making in-
formed decisions at various spatial scales, from individual properties to the entire territo-
rial landscape. 

It is essential to observe that, when moving from single-hazard to multi-hazard anal-
ysis, the temporal and spatial scale of the risk may drastically change. Figure 5 from Gill 
et al. 2014 shows the spatial and temporal scales over the 16 natural hazards on logarith-
mic axes. Here, the spatial scale refers to the area that the hazard impacts, and the 
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temporal scale refers to the timescale on which the single hazard acts upon the natural 
environment [46]. 

 

Figure 5. Natural hazard types mapped by spatial and temporal scales [46]. 

2.2. Geospatial Data Management at the Territorial Scale 

GIS are integral to the TERIMAAS framework, providing the tools necessary for com-
prehensive multi-hazard risk assessments. As GIS data advances in resolution and den-
sity, the capability to capture and analyse spatial information has significantly improved. 
This enhanced data quality allows for the more precise and detailed evaluation of natural 
hazards and their impacts on natural and built environments. 

The TERIMAAS framework leverages vector and raster data to conduct thorough 
hazard analyses. Vector data, which include discrete features such as roads, buildings, 
and land parcels, complement raster data that represent continuous variables like eleva-
tion and temperature. These dataset’s high-resolution and high-density nature supports 
detailed local-scale analyses, which are crucial for understanding vulnerabilities at the 
level of individual structures and natural features. For instance, flood risk assessments 
may utilise detailed hydrological models and terrain attributes derived from raster data. 
At the same time, earthquake studies might focus on vector-based seismic fault lines and 
building inventories. Integrating these diverse datasets—high-resolution digital elevation 
models (DEMs), land use and land cover classifications, infrastructure networks, and his-
torical hazard footprints—ensures a comprehensive approach to risk assessment. The 
combination of proprietary and open source data sources, including satellite imagery, Un-
manned aerial vehicles (UAVs) and handheld devices further enhance the richness and 
applicability of the geospatial data. 

The TERIMAAS framework employs cloud-based GIS solutions from Amazon Web 
Services (AWS) to manage substantial volumes of high-resolution data. AWS provides 
scalable infrastructure for handling extensive datasets and facilitating advanced web vis-
ualisation for hazard management. Essential services include Amazon S3 (Simple Storage 
Service) for scalable object storage, and cloud-optimised GeoTIFFs (COGs) for efficient 
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data access and processing. AWS EC2 (Elastic Compute Cloud) offers the computational 
power required for complex spatial analyses, while AWS Lambda enables serverless com-
puting to automate and streamline data processing workflows. These cloud-based solu-
tions address the challenges associated with large, high-resolution datasets, improving 
data management efficiency and real-time visualisation capabilities. 

In addition to cloud infrastructure, GeoPython libraries [47] are pivotal to the analyt-
ical processes within TERIMAAS. Libraries such as GeoPandas, Rasterio, GDAL (Geospa-
tial Data Abstraction Library), and Shapely are utilised for various tasks. GeoPandas sup-
ports the high-performance manipulation of geospatial data frames, Rasterio specialises 
in raster data operations, GDAL facilitates format conversion, and Shapely enables ad-
vanced geometric operations and spatial queries. Pyproj aids in coordinate transfor-
mations, and Fiona manages spatial data files. Tools like HydroSHEDS and HEC-RAS are 
integrated for hydrological and flood analysis to model and analyse water flow and flood-
plain dynamics. The automation of these processes is achieved through AWS Lambda, 
which ensures the accurate and timely geospatial analyses by executing Python 3.11 
scripts and workflows with minimal manual intervention. 

2.3. Data Management at the Building Scale 

Regarding the building scale, BIM methodology [48] provide a digital representation 
of an asset, focused not only on its graphical 2D and 3D features but, most importantly, 
the quantitative and qualitative information related to any of its constituent elements. 
Therefore, it serves as a common source of information about a facility, allowing users to 
have a reliable basis for decision making. When integrated into DTs, BIM provides an 
accurate geometric and semantic model of a built asset. This allows for a more granular 
analysis of potential impacts and vulnerabilities, enabling a potential element-by-element 
type of assessment. 

Specifically, to encourage interoperability between the various systems used, it was 
decided to use the industry foundation classes (IFC) format, an open exchange format 
through which both the data and the geometries of a model can also be read outside of 
any BIM authoring software, almost all proprietary, used to create the model itself [49]. 

The methodological approach proposed within the TERIMAAS system uses a series 
of connections, some made in real-time by the tools and software capable of managing the 
BIM methodology available on the market. Among these, an essential component of an 
integrated system such as the one proposed is undoubtedly made possible by tools based 
on a visual programming language (VPL) [50], i.e., systems thanks to which a user, even 
if not an expert in any specific programming languages, can prototype any functionality 
from scratch, not already present among the basic ones of the software used, and com-
pletely customised based on the needs of the project or application to be created. Further-
more, since these are tools that, in most cases, are integrated, in the form of plugins, within 
the software used in the AEC industry, the interoperability of data relating to these do-
mains is already optimal. In the case of the system proposed here, there were two tools 
based on VPL that it was suggested to integrate within the developed methodology, both 
currently part of proprietary software (while maintaining the aim of also exploring further 
similar solutions coming from the ecosystem of open source tools): feature manipulation 
engine (FME, version 2024.1.3) and dynamo (version 2.12, the latter an integral part of the 
Autodesk Revit 2022 software). There are many similarities in the use of the two tools for 
integration with the proposed methodology, certainly including the numerous possibili-
ties for exchanging data, both incoming and outgoing, between the model and the data-
base, as well as between these and any module of additional calculation that is intended 
to be part of the system’s structure. 
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Specifically, the Dynamo plugin [51] has been tested and prepared for bidirectional 
data exchange with the database: in the model-to-database direction, all data and alpha-
numeric parameters relating to each component of the model can be transferred within 
the database, in dedicated tables, with writing and/or updating operations, thanks to the 
fact that, among the functions available in the plugin above, there are some specific ones 
for making connections to databases and sending any command to them, effectively al-
lowing the execution of any CRUD (create, read, update, delete) operation. Furthermore, 
again using certain features made available by Dynamo, it is also possible to make web 
connections, for example, to external servers using specific HTTP endpoints, to send data 
relating to the model to said servers, or receive from them, for example, real-time infor-
mation from sensors placed on site. Both mentioned functions have been successfully used 
and tested within the TERIMAAS system methodology. In addition, in the database-to-
model direction, the connections made possible by Dynamo have also allowed us to ex-
periment with the reception of updated data coming from the PostgreSQL database, fol-
lowing processes triggered by lambda functions every time the database itself receives 
updated data from IoT sources. The result and related visualisation are shown in the fol-
lowing sections. Ultimately, once again, taking advantage of the functionality made avail-
able by Dynamo to execute SQL (structured query language) commands against relational 
databases, it is possible to obtain updated data processed by the server and receive them 
directly within the Dynamo script. Similarly, if necessary, it is also possible to directly 
execute web requests to external services and obtain input data from sensors or public 
databases. Once the data, as mentioned earlier, have been received within the VPL script, 
it is possible to process it further, for example, as was done in the use case presented later, 
by compiling (or updating) appropriate parameters associated with the spaces of a build-
ing, as well as each component of the BIM model created. 

Similarly to Dynamo, the FME tool [52] was also tested for the purpose of integration 
into the proposed methodology. In this case, the specific objective was integrating the al-
phanumeric data and geometric information within the database. This approach was mo-
tivated by the fact that FME provides the possibility of exporting a BIM model (in this 
case, in IFC format) into numerous other spatial formats and environments thanks to its 
multiple available converters. Currently, the results of this process are still very experi-
mental, and further tests are being carried out due to some emerging critical issues relat-
ing to the compatibility of the geometric encoding adopted by the BIM model, the one 
allowed within the PostgreSQL database, and the necessary further conversions needed 
in the case of geometry export from the database toward other 3D viewers. However, 
other intermediate solutions, which can potentially be integrated into the methodology, 
are currently being tested [53]. 

With all this considered, as shown in Figure 6, the TERIMAAS framework comprises 
a series of domain-specific functionalities that make it possible to have GIS (territorial 
scale), BIM (building scale), and IoT (dynamic) data converged into a single environment. 
This allows the system to perform specific risk calculations that consider data coming 
from these different domains and store the raw data and the processed results in a shared 
integrated database. Finally, this can be visualised through dedicated viewers, potentially 
using locally installed software and browser-based web viewers. 
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Figure 6. Technical framework of TERIMAAS, highlighting software and data management pro-
cesses. 

3. Use Case Implementation 
The methodology presented above is tested through an illustrative use case to clarify 

the practical application considering a specific environmental risk. This approach can also 
reflect the modular nature of the TERIMAAS system, outlining its potential in multi-haz-
ard management. 

The prototype phase of our study focuses on flood risk by assessing the vulnerability 
of an actual public building. By cross-referencing the data merged in the centralised Post-
gres database prototype, the characteristics of the hazard can be related to the area and, 
specifically, to the characteristics of the building and its activities. Integration is aimed at 
correlating a relevant precipitation event’s effect on the built environment. From the dy-
namic rainfall dataset, the precipitation height has been derived and related to the con-
struction BIM data, allowing the identification of all model elements affected by the phe-
nomenon to assess potential damage. The focus is not only on the envelope and structural 
building components but also on the interior environments. With regard to potential 
flooding, it will, therefore, be possible to identify in detail the functions and assets af-
fected, for example, sensitive rooms such as archives and libraries or IT equipment such 
as servers often located in basements. 

The methodology included the following steps: (i) case study selection, (ii) data col-
lection, (iii) integrated database implementation, (iv) data processing, (v) data visualisa-
tion. 

3.1. Case Study Selection 

Among the many possible areas of interest for this kind of analysis, the Val d’Ossola 
territory, in the northwest of Italy, was chosen for its susceptibility to several types of 
natural hazards. In fact, this area, included within the administrative territory of the 
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Piemonte Region, is among the ones characterised by relatively high seismic activity, at 
least compared to the rest of the Region [54,55]. Moreover, in this area, surrounded by 
many mountains and rivers, the probability of flood events is also exceptionally high 
[56,57]. Finally, another important criterion for choosing the case study area was the rela-
tive proximity to the authors, which could have allowed the possibility of performing vis-
its and surveys at any needed time. 

Based on the aforementioned reasons, a school building located in Val d’Ossola was 
selected as a typological case study due to its sensitivity and strategic importance in flood-
prone areas (Figure 7). School buildings are a considerably sensitive type of asset, given 
that, from the perspective of safeguarding human lives, users are primarily children, and 
therefore, the impact of a disaster event is likely to be extremely high. Moreover, signifi-
cant public buildings like schools, hospitals, sports halls, and police stations are usually 
considered “strategic” buildings, meaning that these are types of structures that need to 
remain operational even in case of disaster events because they might be used, among 
other things, to host injured and displaced people temporarily. Specifically, the chosen 
building was the Primary School of Crodo (VB), one of the schools located in its munici-
pality. This building, dating back to the first decades of the 20th century, comprises four 
levels, the lowest of which hosts a post office, a public music room, and a series of unused 
empty spaces in the back. The remaining floors above host all the main spaces of the 
school, such as classrooms, labs, offices, and restrooms. In particular, the school spaces 
include five classrooms, two laboratories, an office, and a storage space and restrooms for 
each floor. There is also a minor construction on the side of the building, hosting the cen-
tral heating unit and a small terrace at the back of the last floor. 

3.2. Data Collection 

The first phase involves collecting data on the case study and the relevant contextual 
information needed to approach the use case. Documentary research was carried out to 
understand the building and its construction phases by investigating the historical and 
municipal archives in the area, and an on-site visit was made to understand its current 
state. 

Several GIS and IoT data sources were identified and used to enhance the flood risk 
assessment. The GIS data include DEMs, vegetation soil curve number raster, land 
use/land cover classifications, infrastructure networks, historical flood footprints, and 
flood maps. These datasets are primarily sourced from national and regional government 
agencies and are updated regularly to ensure accuracy and relevance. 

OpenMeteo [58,59], an open source meteorological data platform, has also been used. 
It compiles real-time weather observations and forecast models, providing easy access to 
critical parameters such as precipitation, temperature, humidity, and wind via RESTful 
APIs. 
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Figure 7. The selected case study building (marked in red) and its related territorial context. The 
figure highlights how the area is interested by medium-high probability of flood events. 

While these data were already available in open format, the building-specific infor-
mation was implemented entirely from the creation of a BIM model. As shown in Figure 
8, it consists of a relatively high LOD [30] for the architectural discipline. In contrast, the 
structural and systems disciplines have a lower LOD because of the lack of data. Specifi-
cally, the level of geometry is consistent enough across architectural and structural disci-
plines, giving sufficient detail about the geometric characteristics and proportions of in-
dividual building elements and their components. On the other hand, the amount of in-
formation, i.e., the level of information, is much higher for architectural elements and 
spaces, giving insights about materials and functional uses, while information about the 
structural materials and performance were not available at the time, and therefore, only 
assumptions could be made about it. The parameters entered in the model are functional 



Smart Cities 2025, 8, 27 17 of 29 
 

to the purpose of the use case, so even if the overall LOD is not rich, valid and interesting 
considerations can be drawn from the analysis. 

Table 1 below outlines the various datasets used, their purposes, formats, sources, 
frequency of updates, and accessibility, offering a comprehensive view of the data inte-
gration necessary for this flood analysis. This GIS and IoT data integration ensures a ro-
bust flood risk assessment and management framework, facilitating effective decision 
making and planning. 

 

Figure 8. (a) The school building used as a case study, and (b) its corresponding BIM model for 
assessment and visualisation purposes. 

Table 1. Summary of the data sources, purposes, and formats. 

 

Type Purpose Format Data Provider Accessi-
bility 

DEM Digital elevation model for mapping 
and analysis 

Raster (Ge-
oTIFF) 

Online (API)-National 
Mapping Agency [60] Open 

DTM 
Digital terrain model for hydrological 

and topographical analysis 
Raster (Ge-

oTIFF) 
Online (API)-National 
Mapping Agency [61] Open 

Soil Curve Num-
ber 

Soil curve number raster for runoff cal-
culation in hydrological models 

Raster (Ge-
oTIFF) 

Online (API)-Environ-
mental Agency  

Open 

Precipitation Data 
Real-time precipitation measurements 

for flood forecasting 
Time-series 

(CSV) 

Online (OpenMeteo 
API)-Weather Stations 

[58] 
Open 

Meteorological 
Data 

Weather parameters (temperature, hu-
midity, wind) for detailed flood impact 

analysis 

Time-series 
(CSV) 

Online (OpenMeteo 
API)-Weather Stations 

[59] 
Open 

Soil Moisture 
Data 

To assess soil saturation levels which 
impact runoff and flooding potential 

Time-series 
(CSV) 

Online (API)-National 
Weather Service [59] 

Open 

Building Infor-
mation 

Detailed architectural and structural 
data for flood risk assessment of build-

ings 
IFC Offline-Local/Architec-

tural Firms  
Closed 

Land Use/Land 
Cover 

Classification of land cover types for 
flood impact analysis 

Vector 
(SHP) 

Online (GIS)-Environ-
mental Agency [62] Open 

Historical Flood 
Footprints 

Records and extent of past flood events 
for risk assessment and planning 

Vector 
(SHP) 

Historical (GIS)-Na-
tional Disaster Agency 

[63] 
Open 

Hydrological 
Models 

Simulation models for predicting flood 
behaviour and water flow dynamics 

Model 
(HEC-
HMS) 

Offline-Hydrological In-
stitutes [64] 

Closed 
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3.3. Integrated Database Implementation 

The TERIMAAS framework is built on a centralised PostgreSQL database enhanced 
with PostGIS, providing a robust infrastructure for managing diverse spatial and tem-
poral datasets critical to multi-hazard flood risk assessment. This database supports the 
seamless integration of GIS, BIM, and IoT domains, forming the foundation of the school 
building case study. The database schema organises four primary datasets: 

• Meteorological inputs: real-time weather data ingested at 15 min intervals, retaining 
spatial (e.g., station coordinates) and temporal (e.g., timestamps) details. 

• Topographic layers: high-resolution DEMs and soil conservation service (SCS) curve 
number rasters, essential for terrain and runoff analysis. 

• Building attributes: structural information from BIM models, including basement el-
evations, material properties, and equipment locations. 

• Hazard metrics: outputs from hydrological simulations, such as flood depth and ve-
locity grids, used to assess building-level and regional risks. 
To support high-performance processing, the database employs advanced optimisa-

tion techniques. Spatial indexing using GiST indexes enhances the efficiency of query op-
erations, particularly for large geospatial datasets, ensuring the rapid retrieval of relevant 
information. Additionally, time-based partitioning segments meteorological inputs into 
temporal intervals, streamlining data retrieval and simplifying the maintenance of con-
tinuously growing datasets. These optimisations ensure that the database can handle dy-
namic, real-time data flows while maintaining fast and reliable performance. The data-
base’s robust security framework includes the following: 
• Role-based access control (RBAC): restricts access to authorised users. 
• Encryption: secures sensitive information during storage and transmission using 

SSL/TLS protocols. 
• Audit logging: tracks all data access and modifications for traceability and accounta-

bility. 
• Backup and replication: safeguards against data loss, ensuring availability during 

disaster scenarios. 

This centralised database ensures data consistency, enabling validated datasets to be 
readily available for advanced modelling and real-time risk analysis. Figure 9 illustrates 
the seamless integration of GIS, BIM, and IoT datasets within the TERIMAAS database 
architecture. 

 

Figure 9. Integrated database demonstration including all GIS, IoT, and BIM domains. 
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3.4. Data Processing 

The data processing pipeline in the TERIMAAS framework transforms validated in-
puts from the centralised database into actionable insights for flood risk assessment. By 
integrating meteorological, geospatial, and structural datasets, this pipeline provides 
high-resolution, dynamic hazard evaluations tailored to the case study. 

Real-time meteorological data [65] are retrieved every 15 min via AWS Lambda func-
tions and undergo a rigorous validation process. The data are checked against baselines 
and thresholds stored in the meteorological thresholds table to ensure only high-quality 
data are used for analysis. The cleaning process includes the following steps: 

• Outlier detection: identifies and removes anomalies using statistical methods like Z-
score analysis. 

• Missing data imputation: addresses gaps through spatial and temporal interpolation 
techniques. 

• Spatial alignment and temporal synchronisation: ensures consistency with the data-
base schema. 

Validated data initiate downstream workflows through PostGIS triggers, which au-
tomate critical spatial operations to streamline the processing pipeline. For example, me-
teorological inputs are intersected with topographic and hydrological layers, including 
DEMs and SCS Curve Number rasters. This intersection generates updated boundary con-
ditions required for hydrological models. The outputs from these operations, such as re-
fined data for flood simulations, are stored in the hazard metrics table, ensuring the im-
mediate availability for subsequent analysis and decision-making processes. 

Hydrological simulations are performed using the HEC-HMS model, deployed on 
AWS Fargate for scalable cloud-based computation. This model dynamically simulates 
runoff and flood extents based on updated conditions. The outputs, including flood depth 
and velocity grids, are passed to 2D hydrodynamic models, which simulate floodwater 
propagation across terrain. These models incorporate the following: 

• Infiltration rates, surface roughness, and channel conveyance for accurate flood dy-
namics. 

• GIS datasets, including terrain elevation, land use patterns, and watershed delinea-
tions, enhance flood simulations by accounting for local characteristics. These factors 
refine flood risk assessments and help tailor interventions to specific regional condi-
tions. 

• Building-level risk assessments integrate hazard metrics with BIM attributes, dynam-
ically recalculating structural vulnerabilities. Basement elevations, equipment loca-
tions, and material properties are evaluated against updated flood depth and velocity 
thresholds to identify specific risks. These recalculations allow stakeholders to prior-
itise interventions and allocate resources effectively. 

The hazard risk score is normalised to ensure consistency across regional and build-
ing-level assessments. Updated flood maps and risk scores provide actionable insights for 
stakeholders, enabling informed decision making for disaster risk mitigation. 

3.5. Data Visualisation 

The database mentioned above is a central repository accessible to the BIM system, 
enabling dynamic flood risk recalculations and accurate hazard mapping for emergency 
planning and disaster response. After obtaining the results of the calculations, there was 
the need to represent them graphically so that any potential stakeholder could easily and 
immediately understand. As a first test of representation of the calculation results carried 
out, the Autodesk Revit 2022 software was tested as a viewer (the same one also used for 
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the modelling of the school) thanks to the communication possibilities of the Dynamo 
plugin, already illustrated previously, with the system server set up. 

A series of example tests were carried out on the BIM model with Dynamo (Figure 
10) to simulate the data update after a request to the database to retrieve hazard calcula-
tion results on the area. These included a risk assessment of the building’s functional 
spaces and a few building component categories (namely walls, windows and doors), of 
which their respective vulnerability and exposure factors were computed. Through the 
proper functional categorisation of spaces and a view filter applied to the visualisation of 
building components within the 3D view of Dynamo itself, it was possible to represent a 
selection of flood risk scenarios which, based on the intended use of each space and the 
type and height of the related components of the envelope, the model is themed to imme-
diately and directly show the risk to which the various parts of the building are subject. 

The example tests considered the three simple standard parameters related to the 
most common and consolidated risk assessment practices. The risk is, therefore, split into 
hazard, vulnerability, and exposure. 

The hazard factor comes from the calculations performed at the territorial scale, 
which are directly saved into the database and retrieved by Dynamo through a dedicated 
call. The vulnerability factor is a parameter associated with each building element and 
space; therefore, dedicated calculation criteria were set up based on the category of each 
building component to assess this parameter. For the sake of structuring examples to test 
the data exchanges, simple assessment expressions were set up. For building spaces, the 
vulnerability index was a value directly dependent on the function of each space (i.e., 
classrooms have a remarkably high vulnerability while unused or storage spaces have the 
lowest). On the other hand, the vulnerability of wall elements was based on a calculation 
set up to compute their thickness and the elevation of their base. Moreover, a combination 
of sill height and elevation over the ground was used, considering openings like walls and 
doors. The result of each component’s assessment is then automatically compiled back 
into the model on a dedicated “vulnerability index” parameter assigned to each element 
instance. Lastly, the exposure factor is a parameter based on the time and date, meaning 
that it is considered lower when the spaces of the building are not used, as opposed to 
when it is crowded with people. These three parameters are collected and computed to-
gether in the final script. The results are shown graphically by colouring the desired build-
ing elements according to a predefined gradient, as shown in Figure 11. 
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Figure 10. Dynamo script for the vulnerability and exposure assessment calculations of selected BIM 
model elements, and the colour-coded visualisation of the risk results. 
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Figure 11. Probability-based flooding risk visualisation for building elements on weekdays, ac-
counting for exposure due to building occupancy: room elements (a,b), structural elements (c,d), 
and door/window elements (e,f) at 06:00 A.M. (a,c,e) and 11:00 A.M. (b,d,f). Increased occupancy 
during working hours contributes to higher overall risk. 

4. Discussion 
The TERIMAAS framework presented in this study provides a robust and compre-

hensive approach to bridging the gap between environmental and building-centric scales 
by integrating diverse temporal and spatial data sources. It harmonises GIS, BIM, and IoT 
domains to deliver consistent, multi-level, granular information. The established inte-
grated database links static hazard-related GIS data for specific areas with dynamic haz-
ard monitoring from IoT sensors. This enables an accurate analysis of the hazard’s impact 
on a specific infrastructure by leveraging the detailed information available in BIM data. 
This approach supports a multi-dimensional, multi-scale risk assessment to evaluate asset 
vulnerability effectively. It is critical to understanding the interplay between broader en-
vironmental hazards and their localised effects on individual structures, a long-standing 
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challenge in disaster risk management. The method’s effectiveness has been rigorously 
validated through a real-world case study, considering the flood impact assessment on a 
public building in a critical area of northern Italy. 

4.1. Findings 

The proposed database integration in the use case aims to assess the impact of flood 
events on a public-school building. The building is in a high-risk area, as identified by GIS 
hydrogeological hazard maps, and its characteristics are detailed through a parametric 
digital model. Data processing determines the precipitation’s maximum ground accumu-
lation height relative to the structure. Integrating multiple information domains makes it 
possible to identify the affected building levels, assess potential damage to components 
and equipment, and determine unusable spaces. Although BIM modelling provides very 
detailed asset information, a very high level of detail is not always necessary for mean-
ingful analysis. While geometric detail offers an immediate visual representation of the 
building, excessive complexity can overload visualisation systems within the framework. 
Regarding information detail, a higher level allows for more in-depth assessments, yet a 
well-curated selection of key data may be sufficient to access critical insights unavailable 
through other systems quickly. However, ensuring data reliability—its accuracy and 
trustworthiness—remains essential. 

Particular attention has been paid to investigating the possible display of the phe-
nomenon, as it is considered essential for an easy and immediate understanding by users. 
By numerically—but most importantly visually—representing hazard, vulnerability, and 
exposure factors, computed using data from a combination of the different domains ad-
dressed above, within a 3D model, several concrete benefits emerge. School administra-
tors and facility managers can use these outputs to identify high-risk zones within the 
school—particularly vulnerable functional spaces (e.g., classrooms, labs)—and evaluate 
in advance the possible reallocation of functions in the event of a critical event. If the prob-
ability of a room being flooded is high, consideration should be given to ensuring that no 
equipment or material is present that may deteriorate in contact with water. This could 
enable the formulation of more targeted evaluation procedures as well as careful resource 
allocation to reduce potential flood damage and safeguard users. The identification of crit-
ical structural or architectural components (e.g., doors, windows, walls with low eleva-
tion) most susceptible to flood events can represent a valid support for local authorities 
and decision makers to prioritise retrofitting actions or adjustments to interior layouts. 
This kind of approach can support public policies aimed at mitigating the potential long-
term impacts of flood events on public facilities, like the one from the current case study, 
reducing repair costs over time and enhancing resilience. 

This study provides an example related to possible interactions with a centralised 
database, that can become part of a multi-risk management system, where several types 
of risk can be considered. These would become system modules, further reinforcing the 
robustness of the proposed framework. Finally, since the system connects to real-time data 
sources, the framework carries out continuous updates to hazard parameters, allowing 
stakeholders to perform near real-time risk estimations. This also means being able to 
monitor how risk factors might evolve over time, during the life cycle of a building or 
infrastructure. 

However, integrating multi-domain data streams remains a challenge. Studies on 
BIM-GIS integration [18,27] focus on data interoperability, semantic transformations, and 
lifecycle applications, but lack real-time hazard tracking, which is crucial for disaster re-
sponse. Similarly, BIM-IoT research [37,43] explores sensor-based monitoring and auto-
mation but remains largely conceptual or prototype-based, struggling with scalability, in-
teroperability, and bidirectional real-time updates. 



Smart Cities 2025, 8, 27 24 of 29 
 

Hazard management requires both spatial intelligence and real-time responsiveness, 
yet existing studies fail to integrate dynamic hazard modelling with sensor-driven real-
time data. BIM-GIS provides urban-scale context but lacks real-time adaptation, while 
BIM-IoT offers real-time sensing but remains fragmented. These disconnects hinder an 
effective hazard response. This shows a clear gap addressed by the TERIMAAS method-
ology, and tested via a case study, attempting to deliver impactful results that advance 
disaster management strategies, as follows: 

• Seamless integration across scales: GIS-driven territorial data and BIM-based build-
ing models are harmonised within a centralised PostgreSQL database, enabling com-
prehensive multi-scale analyses. 

• Dynamic risk monitoring and assessment: real-time IoT updates enhance the evalu-
ation of hazards, vulnerabilities, and exposures, ensuring proactive and adaptable 
risk assessments. 

• Enhanced decision making: the integration of static and dynamic data supports a 
digital twin approach, empowering stakeholders with actionable insights for both 
territorial and building-level resilience. 

• Proven effectiveness: the case study demonstrated the framework’s ability to link re-
gional hazard data with building-specific vulnerabilities, validating its utility in real-
world applications. 

• Scalability and adaptability: a modular design enables the framework to address di-
verse hazards and geographic contexts, making it a versatile tool for multi-hazard 
resilience planning. 

While the TERIMAAS framework shows significant promise, several challenges and 
limitations must be addressed. First, implementing the method requires substantial re-
sources, including technical expertise, robust data infrastructure, and high-quality GIS, 
BIM, and IoT datasets. These requirements may pose barriers for resource-constrained 
regions or organisations. Additionally, data privacy, uncertainty, and security concerns 
associated with the centralised repository and real-time IoT inputs must be managed to 
ensure compliance with regulations, clear communication and maintain stakeholder trust. 
Second, the framework’s scalability and adaptability to other hazard types and regions 
warrant further exploration. Although the study focuses on flood risk assessment, its ap-
plicability to other hazards, such as earthquakes, landslides, or wildfires, should be inves-
tigated. Similarly, evaluating its performance in diverse geographic and socio-economic 
contexts is essential to establishing its broader utility. Finally, while integrating GIS and 
BIM offers substantial benefits, managing and processing such diverse datasets involves 
significant complexity. Developing standardised workflows and tools to streamline these 
processes will be critical for the widespread adoption of the TERIMAAS framework. 

By leveraging GIS for spatial risk analysis and BIM for detailed building-level assess-
ments, the study offers actionable insights for stakeholders. Specifically, four potential 
users have been identified that may benefit from this kind of platform, both for manage-
ment and training/education purposes: 

• Policymakers and urban planners: the insights can inform decisions on infrastructure 
investments and resilience strategies. Given the dynamic nature of vulnerability 
across hazard cascade scenarios, it is essential to understand the potential implica-
tions on housing or infrastructure developments [46]. 

• Critical infrastructure players: by overcoming spatial and temporal scales barriers, 
players like facility managers and operators gain a deeper understanding of the on-
going works, maintenance procedures, and safety protocols, supplementing with in-
formation that returns the current operations of the infrastructure in real-time, and 
cast about the characteristics and conditions of the territory in which they are located. 
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This allows them to tailor risk mitigation measures to the specific needs of individual 
structures. 

• Emergency management and disaster risk reduction practitioners and policymakers: 
simplifying complex data through visualisation schemes empowers these stakehold-
ers to anticipate and respond to hazards at various levels. Specifically, it provides 
valuable insights for detailed building-specific information, enhancing preparedness 
and response strategies. 

• Scientific community: this research provides a mechanism for contextualising single-
hazard studies within the broader scope of multi-hazard scenarios. [46]. The frame-
work fosters improved communication between hazard specialists and critical infra-
structure experts, encouraging a more interdisciplinary approach. By continuously 
refining the TERIMAAS framework, it is possible to equip communities and deci-
sion-makers to better anticipate, mitigate, and respond to the growing challenges 
posed by natural hazards and environmental risks. 

4.2. Future Works 

Future research and development should focus on several technical advancements to 
enhance the TERIMAAS framework. A critical area of exploration is comparing central-
ised and decentralised databases for managing sensitive data. Centralised databases, cur-
rently in use, offer unified data management and streamlined access but pose risks related 
to data security and single points of failure. Future work should investigate implementing 
advanced security measures and redundancy protocols to mitigate these risks. Addition-
ally, exploring decentralised databases, such as blockchain or distributed ledger technol-
ogies, can enhance data security and resilience, ensuring data integrity and availability 
even in localised failure scenarios. 

Expanding the framework to incorporate multi-hazard assessment capabilities is es-
sential. The system’s design is scalable and modular, enabling new risk assessment mod-
ules to be added without disrupting existing functionality. Future research should de-
velop algorithms and models capable of dynamically assessing and prioritising risks from 
various natural hazards, including earthquakes, wildfires, and landslides, alongside 
floods. This integrated approach will facilitate a transition from single to multi-hazard 
analysis, providing a more comprehensive risk assessment and enabling more effective 
mitigation strategies and optimised resource allocation. 

Integrating open source BIM tools into the TERIMAAS framework is another crucial 
area of future work. While proprietary tools provide extensive out-of-the-box functional-
ities, they can be restrictive due to cost and limited flexibility. Open source BIM solutions 
offer significant customisation options and allow developers to manage their projects bet-
ter and adapt them over time. Evaluating the performance and interoperability of various 
open source BIM tools within the existing framework will be vital for broad adoption and 
flexibility. 

Incorporating AI techniques, such as machine learning (ML) and deep learning (DL), 
can significantly enhance the analytical capabilities of the TERIMAAS framework. Using 
ML algorithms on datasets will enable the accurate forecasting of extreme events, allow-
ing for a comprehensive assessment of their environmental, economic, and social impacts. 
For instance, it will be possible to evaluate necessary actions based on the specific charac-
teristics of building occupants and equipment concerning flooding events. This approach 
recognises that an event’s impact is determined by the extremeness of a climate or weather 
variable and by people’s exposure and vulnerability. Future research should focus on de-
veloping and integrating these AI techniques to enhance predictive analytics and decision 
support systems, thereby improving the efficiency and effectiveness of resilience planning 
and disaster management. 
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By addressing these areas, future research can build on the foundations laid by this 
study, driving forward the capabilities and impact of integrated risk management sys-
tems. 

5. Conclusions 
The research highlights the significance of data interoperability by creating a central-

ised repository that harmonises and automates diverse data formats while integrating 
both past and real-time IoT-derived inputs. This approach enables the TERIMAAS frame-
work to perform dynamic risk assessments that adapt to changing environmental condi-
tions across multiple scales, as demonstrated in the case study. Incorporating real-time 
IoT data further enhances the system’s responsiveness, continuously updating vulnera-
bility and risk scores to reflect evolving hazards. This adaptability is particularly crucial 
in the context of climate change, where the increasing frequency and severity of natural 
disasters demand more proactive risk management solutions. 

In conclusion, this study introduces a novel and effective approach to natural hazard 
risk assessment, providing valuable insights for disaster risk management and infrastruc-
ture resilience planning. By addressing key challenges and broadening its scope, the TER-
IMAAS framework presents a scalable methodology with potential for improving risk 
analysis and mitigation strategies across various environmental and geographic contexts. 
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