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A feedback control approach to
convex optimization with inequality constraints

V. Cerone, S. M. Fosson, S. Pirrera, D. Regruto∗

Abstract— We propose a novel continuous-time algorithm
for inequality-constrained convex optimization inspired by
proportional-integral control. Unlike the popular primal-dual
gradient dynamics, our method includes a proportional term to
control the primal variable through the Lagrange multipliers.
This approach has both theoretical and practical advantages.
On the one hand, it simplifies the proof of the exponential
convergence in the case of smooth, strongly convex problems,
with a more straightforward assessment of the convergence rate
concerning prior literature. On the other hand, through several
examples, we show that the proposed algorithm converges
faster than primal-dual gradient dynamics. This paper aims
to illustrate these points by thoroughly analyzing the algorithm
convergence and discussing some numerical simulations.

I. INTRODUCTION

Primal-dual gradient dynamics (PDGD) is a well-
established continuous-time algorithm that solves con-
strained optimization problems. Introduced in [1], [2], it
consists of a primal-descent, dual-ascent gradient method
achieving the saddle point of the Lagrangian of the problem.

In the last years, we have witnessed a renewed interest
in PDGD thanks to its effectiveness in several engineering
applications and control problems, e.g., game theory [3],
power systems [4], [5] and model predictive control [6]. A
particular focus is on its use in distributed optimization; see,
e.g., [7], [3], [8], [9]. Gradient-based algorithms are notably
well-suited for implementation over decentralized networks.

In the recent literature, several works have addressed
the study of the stability and convergence of PDGD. This
algorithm is globally exponentially convergent for smooth,
strongly convex problems (see, e.g., [10], [11], [12]) and
for problems that combine strongly and non-strongly convex
terms in [13], [14]. In [15] and [16], the authors study
the asymptotic convergence for general saddle functions
not directly related to constrained optimization. In [17]
and [18], the analysis envisages also nonsmooth composite
optimization problems. Among the mentioned works, [11]
and [14] consider equality-constrained problems, while [12]
and [10] also consider inequality constraints.

This paper proposes a novel continuous-time algorithm
for smooth, strongly convex problems with inequality con-
straints. By starting from the definition of a suitable aug-
mented Lagrangian, the key idea is to control the dynamics
of the primal variable through the Lagrange multipliers of
the problem by implementing a feedback control method

∗ Corresponding author. The authors are with the Dipartimento di
Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi
24, 10129 Torino, Italy; e-mail: diego.regruto@polito.it.

inspired by proportional-integral (PI) control. The contribu-
tion of the paper is twofold. On the one hand, we prove the
exponential convergence of the proposed method for strongly
convex functions. On the other hand, we show its practical
effectiveness through numerical simulations. In particular, we
analyze its behavior when compared to PDGD.

This work partially extends the framework proposed in
[19], where we develop a feedback control approach for
equality-constrained problems, specializing in PI control and
feedback linearization. In this paper, we retrieve the key ideas
of the PI control algorithm proposed in [19], and we develop
a novel PI approach for the case of inequality constraints.
In particular, this extension requires a novel convergence
analysis starting from a peculiar augmented Lagrangian.

We organize the paper as follows. Section II states the
problem and reviews its solution through PDGD. In Section
III, we develop the proposed algorithm while we study its
convergence in IV. Section V shows the effectiveness of
the proposed method through numerical experiments, with
particular attention to the convergence speed. Finally, Section
VI concludes the paper.

II. PROBLEM STATEMENT AND RELATED WORK

Let f : Rn → R be a smooth, strongly convex function.
We consider the constrained optimization problem

min
x∈Rn

f(x)

s.t.

h(x) = Cx− d ≤ 0

(1)

where C ∈ Rm,n, d ∈ Rm and “≤” denotes the compo-
nentwise inequality. As in [10], we consider the following
augmented Lagrangian

L(x, λ) = f(x) + g(x, λ) (2)

where we define g : Rn × Rm → R as

g(x, λ) =

m∑
j=1

gj(x, λj) with

gj(x, λj) =

=


λjhj(x) +

ρ

2
h2
j (x) if hj(x) ≥ −λj

ρ
;

− 1

2ρ
λ2
j otherwise

(3)

where ρ > 0 is a design hyperparameter.
The function gj(x, λj) : Rn+1 → R penalizes the

constraint violation. We notice that it is continuous and has



a continuous gradient for each (x, λj) ∈ Rn+1. As shown in
[10, Eq. (9)], PDGD for problem (2)-(3) corresponds to the
dynamic system

ẋ = −∇xL(x, λ) = −∇f(x)−∇xg(x, λ)

λ̇ = η∇λg(x, λ)
(4)

for some η > 0. Let Jh(x) ∈ Rm,n be the Jacobian matrix
of h, i.e., Jh(x) = C in the linear case. Then,

∇xgj(x, λj) = max{ρhj(x) + λj , 0}(Jh(x))⊤j
∂gj
∂λj

(x, λj) =
max{ρhj(x) + λj , 0} − λj

ρ
.

(5)

PDGD in (4) is a system switching between two modes for
each j. In the first mode, i.e., when hj(x) ≥ −λj

ρ , the
Lagrange multipliers λ(t) control the dynamics of the state
x(t), in order to push the system towards the feasible set
h(x) ≤ 0. In the second mode, i.e., when the constraint is
satisfied, x(t) is not controlled and evolves based on the
gradient of f ; contextually, λ(t) converges to zero.

We remark that (2) is not the standard Lagrangian for
inequality-constrained problems used, e.g., in [7], [12]. As
noticed in [10], the standard Lagrangian gives rise to a PDGD
with a discontinuous projection step, which creates numerical
issues when implementing the algorithm. Moreover, using
the standard Lagrangian makes the convergence analysis
more challenging, and only stability is proven; the authors of
[10] conjecture that this discontinuous PDGD is not globally
exponentially stable.

As noticed in [10], the saddle point of (2)-(3) corresponds
to the saddle point of the standard Lagrangian; see, e.g., [20,
Chapter 3] for details.

The first-order Karush-Kuhn-Tucker (KKT) conditions for
problem (1) are as follows, see, e.g., [21, Section 11.8]:

Theorem 1 (KKT first-order conditions): Let x⋆ ∈ Rn be
a minimum of f subject to the constraints h(x) ≤ 0. Then,
there exists a unique λ⋆ ∈ Rm such that

∇f(x⋆) + Jh(x
⋆)⊤λ⋆ = 0

λ⋆⊤h(x⋆) = 0

λ⋆ ≥ 0.

(6)

Proposition 1 in [10] states that PDGD has a unique equi-
librium point (x⋆, λ⋆), and it satisfies the first-order KKT
conditions for problem (1). Furthermore, Theorem 2 in [10]
proves that PDGD is globally exponentially convergent.
The computed convergence rate τineq depends on several
constants arising from repeated upper/lower bounding of the
eigenvalues of the matrices involved in the proof; therefore,
it is difficult to explicitly assess τineq from the formula given
in Theorem 2 in [10]. The proof is rather technical because
it needs a non-diagonal quadratic Lyapunov function; see
[10, Eq. (10)].

As to strongly convex problems with h(x) = 0, in [19], we
show that PDGD corresponds to an integral control system
that regulates h(x) to zero, based on standard Lagrangian
for equality constraints problem, i.e., f(x) + geq(x, λ) with
geq(x, λ) = λ⊤h(x). In this system, the Lagrange multipliers

λ play the role of the control input. In [19], we design a PI
control, which usually has a faster convergence rate than
PDGD. This PI control system reads as follows:

ẋ = −∇xL(x, λ) = −∇f(x)−∇xgeq(x, λ)

λ̇ = Ki∇λgeq(x, λ) +Kp
d

dt
∇λgeq(x, λ)

(7)

where Ki and Kp are design hyperparameters. Since
∇λgeq(x, λ) = h(x), this a PI control regulating h(x) to
zero.

III. PROPOSED APPROACH

This section proposes a novel PI control approach to solve
(1). A natural extension of (7) to the case of inequality
constraints would be the application of (7) to the augmented
Lagrangian (2) with (3), i.e.,

ẋ = −∇xL(x, λ) = −∇f(x)−∇xg(x, λ)

λ̇ = Ki∇λg(x, λ) +Kp
d

dt
∇λg(x, λ)

(8)

We can interpret the dynamic system (8) as a PI controller
that pushes hj(x) towards zero whenever hj(x) ≥ 0 and
provides no control action when hj(x) ≤ 0, letting λj

converge to zero.
Even if (8) is a natural extension of (7), proving its expo-

nential convergence is challenging. In particular, we notice
that d

dt∇λgj(x, λj) is discontinuous, which also means the
right-hand side of the differential equation describing the
closed-loop system is discontinuous and, in turn, potentially,
the solution may be non-unique. For this motivation, we
modify (8) as follows:

ẋ = −∇xL(x, λ) = −∇f(x)−∇xg(x, λ)

λ̇ = Ki∇λg(x, λ) +KpJh(x)ẋ
(9)

where the involved gradients are explicitly computed in
(5). We replace d

dt∇λg(x, λ) by Jh(x)ẋ, which we can
interpret as taking a continuous approximation of (8). In (8),
λ̇ does not depend on ẋ when the constraints are satisfied.
In contrast, in (9), the dependence on ẋ is always present.

As observed for (4), PI in (9) is a system that switches
between two modes for each j. In the first mode, i.e., when
hj(x) ≥ −λj

ρ , the Lagrange multipliers λ(t) control the
dynamics of the state x(t) to achieve h(x) ≤ 0. In the second
mode, λ(t) does not control x(t). On the other hand, λ(t)
still depends on ẋ(t).

The difference between the proposed approach and PDGD
in (4) and (9) is the presence of the additional term
KpJh(x)ẋ in the dynamics of λ. To understand the rationale
of this term, we go through a feedback control interpreta-
tion, as introduced in [19] for the equality-constrained case.
By extending this feedback control framework to the case
h(x) ≤ 0, we can interpret PDGD as an algorithm with
integral control on λj representing a non-satisfied constraint.
On the other hand, in the presence of a satisfied constraint,
we do not control the system through λ.

In (9), we modify the dynamics of λ by adding KpJh(x)ẋ.
In the following, we show the benefits of this adjustment in



terms of convergence rate.
We remark that (9) is not the direct extension of the PI

method for h(x) = 0 reported in (7). Although feasible,
the use of (7) produces a non-causal system with switched
dynamics, creating issues in the proof of convergence. In
other words, through the term KpJh(x)ẋ, we control λ via
state feedback even when the constraints are satisfied. This
modification enhances convergence and simplifies analysis,
as shown in the following sections.

IV. CONVERGENCE ANALYSIS

In this section, we analyse the convergence of the dynamic
system (9). We define

z(t) := (x(t)⊤, λ(t)⊤)⊤ (10)

and
z⋆ := (x⋆⊤, λ⋆⊤)⊤ (11)

is the equilibrium point of (9), which corresponds to a saddle
point of L(x, λ). The following result holds.

Proposition 1: The equilibrium point of (9) satisfies the
KKT conditions (6) for problem (1).

Proof: Since at the equilibrium point the time deriva-
tives are null, i.e., ẋ⋆ = λ̇⋆ = 0, we have ∇λg(x

⋆, λ⋆) = 0,
i.e., for each j = 1, . . . ,m,

max{ρhj(x
⋆) + λ⋆

j , 0} = λ⋆
j ,

which implies λ⋆
j ≥ 0, hj(x

⋆) ≤ 0 and (hj(x
⋆))λ⋆

j = 0.
Finally,

∇xg(x
⋆, λ⋆) =

m∑
j=1

max{ρhj(x
⋆) + λ⋆

j , 0}C⊤
j

=

m∑
j=1

λ⋆
jC

⊤
j = C⊤λ⋆ = Jh(x)

⊤λ⋆

(12)

Therefore, ẋ⋆ = −∇f(x⋆) − ∇xg(x
⋆, λ⋆) = −∇f(x⋆) +

Jh(x)
⊤λ⋆ = 0.

As a consequence of the strong convexity of f(x), from
[10, Lemma 1], there exists a symmetric, positive definite
B = B(x) ∈ Rn,n such that

∇f(x)−∇f(x⋆) = B(x− x⋆). (13)

Theorem 2 (Global exponential convergence): Let us as-
sume that C is full rank and there exists 0 < c ≤ c such
that

cI ⪯ CC⊤ ⪯ cI. (14)

Let ρ < c−1. Then, there exist real positive constants α1 and
α2 such that

∥x(t)−x⋆∥2 ≤ α1e
− 1

2µt, ∥λ(t)−λ⋆∥2 ≤ α2e
− 1

2µt (15)

where

µ ≤ min

{
1

2
Kpc,

2Kig −Kpg
2

Ki

}
(16)

and 0 < g ≤ g are assessed in the proof.

Proof: We define the candidate Lyapunov function

V
(
z(t)

)
=

(
z(t)− z⋆

)⊤
P
(
z(t)− z⋆

)
(17)

where
P :=

(
σIn 0
0 Im

)
∈ Rm+n,m+n (18)

for some σ > 0. If

V̇
(
z(t)

)
≤ −µV

(
z(t)

)
(19)

then the theorem statement holds. Therefore, let us study the
conditions that guarantee (19).

Let us consider the diagonal matrix Γ = Γ(z) ∈ [0, 1]m,m

as defined in Lemma 3 in [10]. Since ∇xL(x⋆, λ⋆) =
∇λL(x⋆, λ⋆) = 0, Jh(x) = C and by using (13),

ẋ = −∇xL(x, λ) = −∇xL(x, λ) +∇xL(x⋆, λ⋆)

= −B(x− x⋆)− ρC⊤ΓC(x− x⋆)− C⊤Γ(λ− λ⋆)
(20)

as obtained for PDGD, see Sec. III-B in [10] for details.
Furthermore,

λ̇ =∇λL(x, λ) = ∇λL(x, λ)−∇λL(x⋆, λ⋆)

= KiΓC(x− x⋆) +
Ki

ρ
(Γ− I)(λ− λ⋆) +KpCẋ.

(21)

Equations (20)-(21) represent (9) in a “linear” form.

Let G1 := B + ρC⊤ΓC and G2 := C⊤Γ. Since B is
positive definite, G1 is positive definite; let gI ⪯ G⊤

1 ⪯ gI.
Then, we can rewrite (20)-(21) in a matrix form

ż(t) = G
(
z(t)− z⋆

)
(22)

where

G :=

(
−G1 −G2

KiG
⊤
2 −KpCG1

Ki

ρ (Γ− I)−KpCG2

)
(23)

Since

V̇
(
z(t)

)
= ż(t)⊤P

(
z(t)− z⋆

)
+

(
z(t)− z⋆

)⊤
P ż(t)

=
(
z(t)− z⋆

)⊤(
G⊤P + PG

)(
z(t)− z⋆

) (24)

a sufficient condition for V̇
(
z(t)

)
≤ −µV

(
z(t)

)
, see (19),

is
−G⊤P − PG− µP ⪰ 0. (25)

As a consequence, our next goal is to provide sufficient
conditions for (25). We have

−G⊤P − PG− µP =

(
Q1 Q2

Q⊤
2 Q3

)
. (26)

where

Q1 = 2σG1 − σµIn

Q2 = (σ −Ki)G2 +KpG
⊤
1 C

⊤

Q3 = KpCG2 +KpG
⊤
2 C

⊤ + 2
Ki

ρ
(I − Γ)− µIm

(27)



If Ki ≥ Kp, by applying [10, Lemma 6] for 1
ρ > c,

KpCG2 +KpG
⊤
2 C

⊤ + 2
Ki

ρ
(I − Γ) ⪰ 3

2
KpCC⊤. (28)

Thus,
Q3 ⪰ 3

2
KpCC⊤ − µIm ⪰ KpCC⊤ (29)

where the last step is a consequence of the assumption µ ≤
1
2Kpc.

To simplify the computations, we set Ki = σ. Then,

Q2 = KpG
⊤
1 C

⊤. (30)

In conclusion,

−G⊤P − PG− µP ⪰
(

2σG1 − σµIn KpG
⊤
1 C

⊤[
KpG

⊤
1 C

⊤]⊤ KpCC⊤

)
.

(31)

Since CC⊤ ≻ 0 is invertible from (14), we can apply the
Schur complement argument: the matrix in (31) is positive
semidefinite if and only if

2σG1−σµIn−KpG
⊤
1 C

⊤ (
KpCC⊤)−1

KpCG1 ⪰ 0. (32)

Since CC⊤ is invertible, then C⊤(CC⊤)−1C ⪯ I . There-
fore, a sufficient condition for (32) is

2σG1 − σµIn −KpG
⊤
1 G1 ⪰ 0. (33)

Finally, (33) holds if

2σg−σµ−Kpg
2 ≥ 0 (34)

which is equivalent to

µ ≤
2Kig −Kpg

2

Ki
, (35)

which completes the proof.
Remark 1: In the proof, we set Ki = σ to simplify the

computations. Other choices may enhance the convergence
rate.

Remark 2: A theoretical comparison of the convergence
rates µ and τineq in [10] is challenging because τineq depends
on many constants that are not easy to assess. Conversely,
we can estimate µ straightforwardly, given some knowledge
of the given optimization problem.

Remark 3: The proof of Theorem 2 of this manuscript is
more straightforward than the proof of Theorem 2 in [10]
because the diagonal form of the Lyapunov function (19)
reduces the computations when compared to the Lyapunov
function with cross terms in [10].

Theorem 2 also suggests some insights on the selection
of Ki,Kp. We notice that the ratio Kp must be kept small
to avoid reducing the convergence rate, while Ki plays the
same role of η in (4).

A. Example on the convergence rate of PI and PDGD

To conclude this section, we report an example to compare
the convergence rates of PDGD in (4) and PI in (9).

We consider the quadratic optimization problem

min
x∈R

1

2
wx2

s.t.
x ≤ 0

(36)

where w > 0.
Since the cost function is quadratic and the constraints

are linear, the closed-loop dynamics with the PI control
corresponds to a switched linear time-invariant system with
the following two modes:(

ẋ

λ̇

)
= A1

(
x
λ

)
,

(
ẋ

λ̇

)
= A2

(
x
λ

)
(37)

where

A1 =

(
−w − ρ −1

Ki −Kp(w + ρ) −Kp

)
A2 =

(
−w 0

−wKp −Ki

ρ

)
.

(38)

In the first mode, the control through λ is active; in the
second mode, x(t) satisfies the constraints and evolves
according to the derivative of the cost function.

Similarly, for PDGD, the dynamics correspond to a
switched linear time-invariant system of kind (37) with two
modes described by

Ã1 =

(
−w − ρ −1

η 0

)
, Ã2 =

(
−w 0
0 −η

ρ

)
(39)

which correspond to A1 and A2 with Kp = 0 and Ki = η.
Now, we notice that A2 and Ã2 have the same eigenvalues for
Ki = η, i.e., −w and −Ki

ρ . Therefore, PI and PDGD enjoy
the same convergence rate in the second mode. Concerning
the first mode, the eigenvalues of A1 are

−Kp − w − ρ±
√
(Kp + w + ρ)2 − 4Ki

2
. (40)

Therefore, if Ki is sufficiently large, the eigenvalues are
complex conjugate, and the convergence rate is Kp+w+ ρ.

On the other hand, the eigenvalues of Ã1 are

−w − ρ±
√
(w + ρ)2 − 4η

2
(41)

with the best convergence rate equal to w+ρ. In conclusion,
PI has a better convergence rate than PDGD, provided a
suitable Kp is selected. In particular, for PDGD, increasing
the convergence rate beyond w + ρ is impossible.

We remark that although it is always possible to increase
ρ both in (9) and (4), this may cause numerical issues during
the integration of the differential equations.

V. NUMERICAL RESULTS

In this section, we illustrate two numerical simulations
to support the effectiveness of the proposed algorithm (9)
compared to PDGD.



Fig. 1: Example 1: constraints violation.

Fig. 2: Example 1: distance from the optimum.

A. Example 1: Quadratic programming

In this simulation, we consider a strongly convex quadratic
programming (QP) in the following form:

x⋆ = arg min
x∈Rn

1

2
x⊤ (

I +W⊤W
)
x+ b⊤x

s.t.
Cx− d ≤ 0

(42)

where W ∈ Rn,n, b ∈ Rn, C ∈ Rm,n, d ∈ Rm are randomly
generated vectors or matrices, with independent, normally
distributed components. We set n = 50 and m = 45.

We solve the optimization problem using the proposed
algorithm (9) and PDGD. We integrate the differential equa-
tions (4) and (9) in the time interval [0, 30] s through the
ode45 MATLAB command to select the discretization step
size optimally. We set Ki = η = 1 and Kp = −0.7.

Fig. 1 shows the time evolution of ∥maxCx(k)− d, 0∥2,
where k is the current iteration. This metric represents the
violation of the constraints and is equal to zero when the
state x satisfies the constraints.

Fig. 2 shows the ℓ2 distance from the global optimum x⋆,
computed through the MATLAB package CVX [22].

We perform 100 random runs with different realizations of
W, b,C, d. PI requires fewer iterations than PDGD in all the
runs and, consequently, less computational time. In Table I,
we report some statistics that show the enhanced convergence
speed of PI with respect to PDGD.

Fig. 1 and Fig. 2, obtained from one randomly selected
run, show us that the proposed approach converges more
quickly than PDGD, either in terms of fulfilment of the

constraints and achievement of the minimum.

mean standard deviation worst case
N PDGD 8128.3 491.9 9361
N PI 6903.2 312.1 7613
T PDGD 1.23× 10−1 8.04× 10−3 1.53× 10−1

T PI 1.02× 10−1 4.74× 10−3 1.15× 10−1

TABLE I: Example 1: results over 100 random runs. N is
the required numbers of iteration; T the computational time
(in seconds).

B. Example 2: Linear system identification

We apply our approach to a problem of system identifi-
cation. We consider the problem of identifying an unknown
stable linear dynamic system H(z) using uncertain input-
output measurements {uk, ỹk}, for k ∈ {1, . . . , N}, where
ỹk = yk + ηk, yk is the k-th noise-free output sample and
ηk is the k-th sample of the noise sequence.

To perform the identification, we select a linear-in-the-
parameters model structure H̃(z, θ) of the form

H̃(z) =

P∑
i=1

θiBi(z), (43)

which is a standard choice in the context of system iden-
tification, and commonly considered choices of Bi(z) are
Laguerre or Kautz filters; see, e.g., [23],[24]. For the sake
of simplicity, in this example, we select Bi(z) to be first-
order transfer functions with poles uniformly distributed in
[−0.9, 0.9]. More precisely, we select

Bi(z) =
z

z − pi
, pi ∈ {−0.9,−0.85, . . . , 0.9}. (44)

To generate time-domain data, we simulate the randomly
selected system

H(z) =
−0.4z2 + 0.32z + 0.26

z3 − 1.9z2 + 1.21z − 0.259
(45)

excited by a random input uniformly distributed in [0, 1]. We
corrupt the output data with normally distributed noise with
variance σ2

η = 0.1.
We look for the value of the parameter θ that minimizes

the ℓ∞-norm of the simulation error

θ∗ = arg min
θ∈RP

∥yk(θ)− ỹk∥∞ . (46)

By adding a slack variable ∆ ∈ R, we recast problem (46)
to the following linear programming problem:

θ∗,∆∗ = arg min
θ∈RP ,∆∈R

∆

s.t.
−∆ ≤ Zkθ − ỹk ≤ ∆, k ∈ {1, . . . , N}

(47)

where Zk = [z1(k), . . . , zP (k)] ∈ RP , zi(k) =
Bi(q

−1)u(k).
We solve the optimization problem using the proposed PI

algorithm in (9) and PDGD in (4). We integrate the differ-
ential equations (4) and (9) in the time interval [0, 1000] s



Fig. 3: Example 2: validation of identified models

N T
PDGD 106 679.46
PI 5× 105 233.09

TABLE II: Example 2: N is the required numbers of
iteration; T the computational time (in seconds).

through the ode23 MATLAB command to select the dis-
cretization step size optimally. We set Ki = ν = 1 and
Kp = −0.5.

In Fig. 3, we compare the outputs of the true model and
the ones estimated using the PDGD and PI algorithms on
data not used for identification. The outputs of the three
models are almost exactly overlapped. We also evaluate the
validation performances of the two algorithms in terms of
the FIT index, defined as

FIT = 100

1−

√√√√ ∥yval − ŷval∥22∥∥yval −mval
y

∥∥2
2

 (48)

where yval is the true output, mval
y = 1

N

∑N
k=1 y

val
k and ŷval

is the response of the identified model. We obtain the same
value of FIT = 98.5% for both the identified models. Fig.
3 and the computed FIT values show that both algorithms
converge to the optimal solution as expected from the theory.
We report the comparison of the two algorithms in terms of
computational effort in Table II, where we show the required
number of iterations and computational time. Such results
show that the PI algorithm is about two times faster than
PDGD.

VI. CONCLUSION

This paper proposes a novel continuous-time algorithm to
solve smooth, strongly convex optimization problems with
inequality constraints. As for the primal-dual gradient dy-
namics, the proposed algorithm consists of a dynamic system
in the optimization variable and the Lagrange multipliers
of the problem. By elaborating on the feedback PI control
approach proposed for the equality-constrained case in [19],
we develop a variant of primal-dual gradient dynamics
in which an additional term adjusts the dynamics of the
Lagrange multipliers and enhances the convergence speed.
We prove that the proposed method is globally exponentially
convergent. Finally, examples and numerical simulations

show its effectiveness and velocity concerning the PDGD
algorithm. Current work envisages the relaxation of affinity
and smoothness requirements in the considered model.
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