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Abstract
Corrosion in steel transmission towers poses a challenge to structural integrity
and safety, requiring efficient detection methods. Traditional visual inspections
are unsustainable due to the complexity and volume of structures. Theirmanual,
qualitative, and subjective nature often leads to inconsistencies in maintenance
planning. This study proposes a deep learning-based approach for semantic seg-
mentation of corroded areas on steel towers. Using the DeepLabv3+model, the
network was trained and validated on 999 field photographs. MobileNetV2, serv-
ing as the feature extractor, was chosen for its optimal balance between accuracy
and computational efficiency, achieving a validation accuracy of 90.8% and a
loss of 0.23. The trained network was applied to real-world inspections using
orthomosaics derived from photogrammetric reconstructions of the South-East
tower at the Torino Eremo broadcasting center. These photogrammetric prod-
ucts not only enabled precise segmentation of corroded areas but also provided
the foundation for corrosion quantification with metrical accuracy, a critical
advantage for maintenance planning. Unlike traditional image segmentation
methods, which lack a spatial reference and precise scaling, the photogrammet-
ric approach ensures that the corrosion extent and distribution are quantified in
exact physical dimensions, enhancing the reliability of the analysis. The results
show that deep learning-based inspections can automate detection, providing
reliable data and reducing reliance onmanual inspections, enhancing efficiency,
safety, and accuracy.

1 INTRODUCTION

Structures and infrastructures, including bridges, tun-
nels, dams, energy plants, and telecommunications net-
works, are essential for human well-being and sustainable
development. Modern societies depend on the reliable
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original work is properly cited.
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and safe operation of these systems, as malfunctions
or service interruptions can cause significant losses and
prevent progress. Throughout their lifecycle, these struc-
tures face environmental risks, human-induced threats,
and performance deterioration, which can compromise
their reliability and integrity. Therefore, it is crucial to
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2 SAVINO et al.

implement effective control systems and consistent main-
tenance strategies to ensure efficient monitoring and
management of structural integrity.
Visual inspection is currently the primary method used

globally to assess the physical and functional conditions
of most assets. It serves as the foundation for planning
monitoring and maintenance activities, providing a pre-
liminary evaluation of safety and structural conditions.
These activities are still conducted mainly manually, with
qualified inspectors examining on-site elements accord-
ing to an inspection protocol. However, this practice is
becoming increasingly unsustainable and costly on a large
scale, given the number and complexity of the structures to
be inspected. For example, in the case of telecommunica-
tions towers, inspectors often have to reach considerable
heights, exposing themselves to significant safety risks.
Additionally, the results of visual inspections tend to be
qualitative and subjective, leading to potential discrep-
ancies in inspection reports. The substantial volume of
data generated necessitates an efficient information man-
agement system (Pezeshki et al., 2023). A maintenance
management system should integrate a wide range of
information, including drawings, inspection reports, man-
uals, and checklists. Often, this information is in text for-
mat and stored on paper documents, further complicating
the process. These challenges can lead to a lack of cru-
cial data for effective asset management and inadequate
decision-making during the operation and maintenance
phases. The series of challenges outlined above has driven
academia and industry to develop a wide range of comput-
erized tools to support structural inspections. Innovative
technologies such as artificial intelligence (AI), laser scan-
ning, unmade aerial vehicle (UAV), building information
modeling, virtual reality, augmented reality, and mixed
reality (MR) are advancing the digitalization of informa-
tion management, processing, and visualization. Their
application enables the resolution of various technical and
complex tasks, including those related to the organiza-
tion and management of constructions at all stages of the
lifecycle.
One emerging technology that is gaining significant

interest is the use of UAVs in construction and transporta-
tion engineering. Applications include traffic monitoring
and surveillance (Belcore, Di Pietra, et al., 2022; Irizarry
et al., 2014), road condition inventory and inspection (Bar-
fuss et al., 2012), topographic surveying and mapping
(Brooks et al., 2015), construction progress and status
monitoring (Lin et al., 2015), earthwork volume estima-
tion (Hugenholtz et al., 2015), and monitoring unstable
slopes (Belcore, Piras & Pezzoli et al., 2022; Niethammer
et al., 2010). This technology can effectively replace visual
inspections of structures, offering significant advantages in
terms of speed, safety, cost, and efficiency. It also facilitates

instant information sharing with multiple stakeholders
and the ease of maneuvering through automated flights.
Specialized inspectors can safely conduct inspections by
monitoring UAV video transmissions or accessing col-
lected images and video later, eliminating the need to reach
difficult locations as required in conventional procedures.
UAV inspections provide a significant economic advan-
tage by utilizing compact, portable, and low-cost devices,
compared to the equipment needed for inspectors to phys-
ically access hard-to-reach investigation sites. The sensors
mounted on drones, such as Red-Green-Blue (RGB), mul-
tispectral, thermal, or LiDAR, enable the collection of large
amounts of inspection data, paving the way for increased
digitalization of monitoring and inspection processes.
Moreover, metrical accurate spatial information (e.g.,
dimensions, areas, volumes) can be derived from remote
sensing data and enhanced with the spectral response of
the objects under inspection. In recent years, there has
been significant development in new inspection methods
using UAVs, as highlighted in the literature. For example,
Mandirola et al. (2022) proposed a practical approach for
detecting and assessing bridges using aerial photogramme-
try. Pinto et al. (2020) demonstrated a visual inspection and
detection of two bridges usingUAVs and the structure from
motion (SfM) technique to build 3D models. Marchewka
et al. (2020) presented a framework for monitoring steel
bridges by measuring rivet displacement and corrosion
using UAVs and image processing techniques. Sankaras-
rinivasan et al. (2015) utilized UAVs and image processing
procedures to identify cracks and assess degraded areas
in civil infrastructures. Reagan et al. (2016) proposed a
method for reconstructing the surface deformation state
of bridges using images captured by UAVs and 3D digital
image correlation. Phung et al. (2017) developed a system
for the automatic detection of cracks in bridges. UAV-
captured images are processed with a peak detection algo-
rithm for clustering and a thresholding technique for crack
detection. Truong-Hong et al. (2018) proposed a method to
extract a point cloud of a bridge deck from images captured
by low-cost UAVs and to identify pavement cracks by com-
paring point cloud deviations with the flat surface of the
deck. Khaloo et al. (2018) presented a case study of visual
inspection of the Brighton Dam in Maryland, integrating
UAV digital image acquisitions and photogrammetry for
3D point cloud reconstruction. Das and Woolsey (2019)
proposed an algorithm for UAV inspection path planning
for truss structures, such as steel bridges, based on a simpli-
fied model of the structure and the addition of navigation
points around joints. On the same topic, Jeon et al. (2024)
introduced the use of 3D LiDAR for autonomous flight
to inspect transmission tower. The dense point cloud vox-
elization is used to plan theUAV’s flight path andmaintain
alignment with transmission lines.
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SAVINO et al. 3

S. Chen et al. (2019) compared UAV-SfM with terrestrial
laser scanning for image acquisition and 3D reconstruc-
tion of a bridge, finding significant advantages of UAV-SfM
in terms of accuracy, cost, and survey time. Gillins et al.
(2018) conducted a cost–benefit analysis of UAV struc-
tural inspections and estimated an average saving of about
$10,000 per bridge inspection and a cost–benefit ratio of
9 when implementing a UAV bridge inspection program.
Furthermore, the evolution ofUAVs, combinedwith signif-
icant advancements in deep learning techniques in recent
years, has increased the efficiency and accuracy of the
inspection process. In the context of inspecting power
transmission lines, a flight planning strategy has been
developed to inspect both tower and transmission lines
while maintaining a safe distance due to electromagnetic
interference (Cui et al., 2017). To enhance operational effi-
ciency and ensure greater safety inUAVcontrol, Diniz et al.
(2022) developed a deep learning-based strategy for detect-
ing and tracking power transmission lines, along with a
system to facilitate assisted control during UAV landing.
Barbosa (2020) introduced a deep learning-based method
for the automated inspection of electrical infrastructures
using UAVs, enabling the identification and estimation
of the position and size of various components such
as insulators, poles, and transmission towers, ensuring
comprehensive mapping of the structures. For residen-
tial building inspections, Shin et al. (2023) presented
an integrated UAV-AI process that includes preliminary
assessment, data acquisition, defect identification, and 3D
model reconstruction. Chen et al. (2022) proposed a Build-
ing Information Modeling (BIM) assisted SfM pipeline to
extract the structure of interest from aerial photographs
and filter out irrelevant non-concrete areas to be forwarded
to aU-Net with a VGG16 backbone for crack segmentation.
For defect inspection in sewer pipelines, Ma et al. (2024)
developed a complete system to create two digital replicas,
including an attention mechanism for defect detection, a
depth estimation network for generating depth maps, and
2D-to-3D mapping algorithm to transform segmentation
results into 3D spaces. In the context of bridge inspections,
AI applications have expanded significantly in recent
years. These advancements include the classification of
concrete surface defects (Aliyari et al., 2021; Jang et al.,
2023; Savino & Tondolo, 2021), object detection models
(Jiang et al., 2024), and pixel-level semantic segmenta-
tion (Jiang et al., 2023; Li et al., 2019; Savino & Tondolo,
2023; Yang et al., 2018; Zhang et al., 2023). Regarding dam-
age detection based on the 3D reconstruction of bridges
inspected by UAVs, Li et al. (2024) emphasize the impor-
tance of multi-sensor data integration for achieving high-
resolution reconstructions, which significantly enhance
the capability to detect surface damages. To address chal-
lenges in bridge crack segmentation, L. Sun et al. (2024)

proposed CCSNet, an integration–competition network.
This model incorporates grayscale-oriented adjustment
to mitigate high-frequency light issues, an integration–
competition mechanism to separate complex backgrounds
and crack grayscale features, and an attention mechanism
to enhance the extraction of shallow features in tiny cracks.
Additionally, W. Sun et al. (2024) introduced a two-step
rapid inspection method for underwater concrete bridge
structures that combines sonar imaging, camera data, and
deep learning techniques. This approach utilizes sonar
data to localize potential areas of damage, which are sub-
sequently inspected in detail using camera imaging and
a deep learning model for defect classification and seg-
mentation. Recent studies have proposed integratingUAVs
for data collection, employing deep learning methods for
corrosion segmentation on steel bridges, and applying
MR for digital visualization (Montes et al., 2023). Hattori
et al. (2024) developed a method for measuring the posi-
tion and area of corroded sections on the underside of
steel box girder bridges using semantic segmentation. The
detected data are then integrated into a 3D BIM model
by assigning area and coordinates in text format to a rep-
resentative icon. For tunnel inspections, recent research
has introduced innovative AI models. Q. Zhou et al. (2022)
developed theYOLOv4-EDmodel, combining EfficientNet
and depthwise separable convolution to detect water leak-
age, cracks, and exposed rebar. Z. Zhou et al. (2023) further
refined crack identification for tunnel lining by integrat-
ing Swin Transformer and convolutional neural network
(CNN) in a hybrid semantic segmentation model. Shim
et al. (2023) developed a comprehensive automated tun-
nel inspection system, featuring a robot that autonomously
navigates tunnels, defects concrete surface damage using a
deep learning-based sensor fused with Generative Adver-
sarial Network (GAN), and operates with a specifically
designed manipulator. In the field of asphalt pavement
inspections, deep learning models like U-Net and its vari-
ants have been widely utilized for crack segmentation.
To address the challenges of pixel-level detection for thin
cracks on road surfaces, Siriborvornratanakul (2023) intro-
duced a new variant of a CNN named ThinCrack U-Net,
demonstrating a significant improvement in performance,
compared to existingU-Net variants. Yao et al. (2024) intro-
duced a model incorporating a pyramid region attention
module within the U-Net framework, leveraging Residual
Network (ResNet)-34 for fast and high-precision segmen-
tation. To reduce computational costs for deployment on
robotic platforms, Zhu et al. (2024) proposed a novel net-
work structure that uses a hybrid attention block to remove
redundant feature channels and depth-wise separable con-
volutions. Similarly, Huang et al. (2024) introduced a
lightweight feature attention fusion network, combining
FasterNet as the backbone with a receptive field block to
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4 SAVINO et al.

mitigate crack information loss and a feature fusion mod-
ule to combine decoder outputs with encoder low-level
features. For identifying underwater cracks in dams, Zhu
et al. (2024) proposed a machine vision-based intelligent
segmentation method integrating a swarm optimization
algorithm and deep learning techniques. Their approach
also incorporates a semantic compensation module in the
decoder to fuse channel and spatial attention, improving
multi-scale detail representation. In order to detect and
assess fire damage in reinforced concrete structures, Wang
et al. (2024) introduced an enhanced YOLOv5s-D network,
incorporating a ShuffleNet module, an adaptive atten-
tion module, and a feature enhancement module. These
innovations led to reduced network parameters, improved
inference speed, and enhanced detection capabilities, par-
ticularly in complex backgrounds.
The advancement of UAV and AI technologies has

opened new frontiers in the inspection and management
of infrastructure, enabling the collection of detailed, real-
time data more efficiently as well as remote sensing data
from satellites (Belcore et al., 2020; Entezami et al., 2024).
However, despite the progress highlighted in the literature,
there are still challenges and limitations to be addressed.
Most studies have primarily focused on the visual inspec-
tion of bridges and concrete structures, often neglecting
damage detection for telecommunications towers. Addi-
tionally, while there have been numerous contributions
regarding bridge inspectionusingUAVs andAI algorithms,
few studies address the management of fragmented UAV
images to achieve a comprehensive view of structural
health.
In this context, this study addresses key gaps in the

application of pretrained segmentation models for detect-
ing and quantifying corrosion in transmission towers.
To the knowledge of the authors, the performance of
pretrained semantic segmentation models for detecting
and quantifying corrosion in transmission towers has not
been investigated. Unlike previous studies that primarily
focused on other types of structures, this work specif-
ically addresses the unique challenges associated with
transmission towers, such as their complex geometries,
environmental variations, and distinct corrosion patterns.
Moreover, no prior research has investigated the general-
ization capabilities of such models on orthomosaic, which
differ significantly from the used training datasets. Based
on these gaps, this research proposed a DeepLabv3+ seg-
mentation model to perform the semantic segmentation
of images containing corrosion areas in steel transmission
towers. The first objective was to train a robust neural
network that is not affected by variations in image qual-
ity and is effective across a different set of UAV images
and radiometric products. To achieve this, a dataset of 999
images with varying resolutions, collected from on-field
tower inspections, was used to develop the neural network.

The second objective was to identify the most suitable pre-
trained neural network for corrosion detection tasks using
transfer learning technique. Finally, the practical utility
of the proposed approach for on-site transmission tower
inspections was also demonstrated by introducing a metri-
cally accurate and user-friendly quantification procedure,
simplifying the corrosion measurement process to priori-
tize ease of use and computational efficiency for practical
applications. Semantic segmentation was applied to ortho-
mosaics derived from the photogrammetric reconstruction
process following UAV inspections. The results validate
the trained model’s ability to generalize well to unseen
datasets, including orthomosaics, despite their distinct
characteristics, compared to the training data. By bridg-
ing these gaps, the research contributes a novel framework
for reliable, scalable, and practical corrosion detection in
transmission towers, offering a significant advancement
over existing techniques.

2 METHODS

2.1 Pixel-wise classification through
neural networks

Neural networks, inspired by the human brain, are com-
putational models composed of interconnected layers of
nodes or “neurons.” These networks are trained to recog-
nize patterns and make predictions based on input data.
Among the various architectures, CNNs are particularly
well-suited for tasks involving spatial hierarchies, such
as image classification, object detection, and image seg-
mentation. CNNs operate by applying convolutional filters
to the input images to create feature maps that capture
edges, textures, and other patterns, progressively extract-
ing higher-level features through multiple layers. While
CNNs form the backbone of many computer vision tasks,
they can also be extended for pixel-wise classification
in semantic segmentation tasks. Semantic segmentation
involves classifying each pixel of an image into a specific
category to generate a segmentation map. While CNNs
are often used as encoders for feature extraction, addi-
tional architectural elements like decoders are added to
reconstruct spatial information in semantic segmentation
tasks. In an encoder–decoder architecture, the encoder
reduces the spatial dimensions while capturing high-level
features, and the decoder upsamples the feature maps
to restore the original resolution. Skip connections are
often used to combine low-level spatial information from
the encoder with high-level semantic information in the
decoder, refining segmentation boundaries.
One of the most effective models for semantic segmen-

tation tasks is DeepLabv3+ (L. -C. Chen et al., 2018),
which includes the advantages of depthwise separable
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SAVINO et al. 5

convolution, atrous spatial pyramid pooling (ASPP), and
encoder–decoder structures in the DeepLab series algo-
rithms (L. -C. Chen et al., 2016, 2017).

2.1.1 Atrous separable convolution

The atrous separable convolution, a key innovation in
DeepLabv3+, combines the advantages of atrous convolu-
tionwith those of depthwise separable convolution. Atrous
convolution introduces the concept of dilation rate to stan-
dard convolution operations, allowing the convolutional
filter to have gaps between its weights. This dilation rate
controls the spacing between the filter weights, enabling
it to cover a larger receptive field without increasing the
number of parameters or the amount of computation.
Mathematically, for an input feature map 𝑥 and a filter 𝑤
with a dilation rate 𝑟, the atrous convolution output 𝑦[𝑖] is
defined as

𝑦 [𝑖] =
∑
𝑘

𝑥 [𝑖 + 𝑟 ⋅ 𝑘] ⋅ 𝑤 [𝑘] (1)

This operation effectively allows the network to cap-
ture multi-scale contextual information without expensive
computational cost, which is particularly useful in tasks
where understanding the context at various scales is
important, such as image segmentation.
Depthwise separable convolution, on the other hand,

decomposes the standard convolution operation into two
simpler operations: depthwise convolution and pointwise
convolution. The depthwise convolution applies a single
filter per input channel (depth), thus significantly reduc-
ing the computational cost. Following this, the pointwise
convolution (1 × 1 convolution) combines the outputs of
the depthwise convolution. The combination of these two
operations results in amore computationally efficient con-
volution, reducing both the number of parameters and
the computational load, whilemaintaining the representa-
tional power of the network. Atrous separable convolution
integrates these two techniques, applying atrous convolu-
tion in the depthwise part.

2.1.2 ASPP

A critical component of DeepLabv3+ is the ASPP module,
which captures multi-scale contextual information using
parallel atrous convolutions with different dilation rates
and global context pooling. This allows the network to
effectively expand the receptive field without losing spatial
resolution. The ASPP includes one convolution with ker-
nel size 1 × 1, three convolutions with kernel size 3 × 3 and
dilation rates 6, 12, and 18, alongside a global pooling layer

that captures context from the entire input. The result-
ing features from the ASPP module are concatenated and
passed through 1× 1 convolution to forma featuremap that
combines diverse contextual information (Figure 1a). By
integrating these features, ASPP enhances the network’s
ability to perceive objects and their surroundings at mul-
tiple scales, thus improving segmentation accuracy and
performance.

2.1.3 Model architecture

DeepLabv3+ employs an encoder–decoder structure
designed to capture fine details and preserve spatial
information (Figure 1b). In the encoder, the input image
is processed by a deep convolution backbone network,
extracting high-level features.
The ASPP module then captures features at multiple

scales by applying parallel atrous convolutions with dif-
ferent dilation rates. This approach enables the network
to handle objects of varying sizes effectively. The decoder
module integrates low-level features from earlier layers of
the backbone with the ASPP output, providing fine spa-
tial details necessary for accurate boundary delineation. A
series of convolutional layers in the decoder further refine
the segmentation mask. The refined feature map is then
upsampled to the original input image size, ensuring that
the output segmentation mask matches the input image
dimensions. The final 1 × 1 convolution layer produces
the output segmentation mask, and the softmax activation
function is applied pixel-wise to generate class probabili-
ties. For a pixel at position 𝑖 in the output feature map 𝑦,
softmax is computed as

𝜎(𝑦)𝑖 =
𝑒𝑦𝑖∑𝐾

𝑗=1
𝑒𝑦𝑖,𝑗

(2)

where 𝐾 is the number of classes. The softmax function is
followed by cross-entropy loss, calculated between the pre-
dicted probability distribution �̂�𝑖,𝑐 (obtained from softmax)
and the ground truth label 𝑝𝑖,𝑐:

𝐿𝑜𝑠𝑠 = −

𝐾∑
𝑐=1

𝑝𝑖,𝑐 log
(
�̂�𝑖,𝑐

)
(3)

During training, the objective is tominimize the average
cross-entropy loss across all pixels in the training set. This
process trains theDeepLabv3+model to output probability
distributions (via softmax) that closely match the ground
truth labels for each pixel. Based on the DeepLabv3+
semantic segmentation network, this paper proposes a
pixel-wise defect segmentation algorithm.
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6 SAVINO et al.

F IGURE 1 (a) Atrous spatial pyramid pooling. (b) Architecture of DeepLabv3+ with backbone network.

2.1.4 Backbone networks

To enhance the performance of the proposed pixel-wise
defect segmentation algorithm, various pretrained deep
CNNs (DCNNs) were evaluated as backbone models
within the DeepLabv3+ framework using transfer learn-
ing techniques (Torrey & Shavlik, 2010). This involves
leveraging pretrained DCNN models that have been pre-
viously trained on large datasets and fine-tuning them
for specific tasks such as defect segmentation. The idea
is to transfer the knowledge captured by these pretrained
models, which includes hierarchical feature representa-
tions learned through numerous layers of convolutional
operations. These learned features are generic and broadly
applicable across different computer vision tasks due to
their ability to recognize edges, textures, and higher-level
visual patterns. This approach typically leads to faster
training convergence, requires less labeled data for the tar-
get task, and generally results in better performance, com-
pared to trainingmodels from scratch. In this study, several
state-of-the-art DCNN-based backbone architectures were
evaluated, namely, ResNet-50 (He et al., 2016), VGG-16
(Simonyan & Zisserman, 2015), VGG-19 (Simonyan & Zis-
serman, 2015),MobileNetV2 (Sandler et al., 2018), Xception
(Chollet, 2017), and InceptionResNetV2 (Szegedy et al.,
2017). Each of these backbones brings unique strengths to
the task.
ResNet-50, for instance, is a member of the ResNet fam-

ily designed to address the vanishing gradient problem in
very deep networks. It consists of 50 layers, including con-
volutional layers, batch normalization layers, activation
functions, and shortcut connections (residual connec-
tions). The network starts with a 7 × 7 convolutional
layer with 64 filters, a stride of 2, and padding to main-

tain spatial dimensions. This is followed by a max-pooling
layer with a 3 × 3 kernel, a stride of 2, and padding. The
core of ResNet-50 is built from a series of residual blocks,
each containing convolutional layers and shortcut con-
nections. These blocks are grouped into four stages, each
with varying numbers of blocks: Stage 1 contains three
residual blocks, each with 64, 64, and 256 filters; Stage 2
contains four residual blocks, each with 128, 128, and 512
filters; Stage 3 contains six residual blocks, each with 256,
256, and 1024 filters; and Stage 4 contains three residual
blocks, each with 512, 512, and 2048 filters. Each resid-
ual block consists of three convolutional layers. The first
layer is a 1 × 1 convolution that reduces the dimension-
ality, the second layer is a 3 × 3 convolution, and the
third layer is another 1 × 1 convolution that restores the
dimensionality. Batch normalization and Rectified Linear
Unit (ReLU) activation functions follow each convolution.
Shortcut connections directly connect the input of a block
to its output, bypassing the intermediate convolutional lay-
ers. This helps mitigate the vanishing gradient problem,
allowing for the training of much deeper networks. After
the residual blocks, the network includes a global aver-
age pooling layer that reduces each feature map to a single
value by averaging, thus reducing the overall size. The final
layer is a fully connected layer with 1000 units, followed
by a softmax activation function to produce the output
probabilities for the 1000 classes in the ImageNet dataset.
VGG-16 and VGG-19 are deep CNNs known for their

uniform architecture. VGG-16 consists of 16 weight layers,
including 13 convolutional layers and three fully con-
nected layers. It has five convolution blocks: The first
two blocks contain two convolution layers each, while
the next three blocks contain three convolution layers
each. Each convolution operation uses a 3 × 3 kernel that
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SAVINO et al. 7

automatically extracts features from the images. A ReLU
activation function is applied after each convolution layer.
Each convolution block is followed by amax-pooling layer,
resulting in a total of five pooling layers. Each pooling oper-
ation uses a 2 × 2 kernel with a stride of 2 and no padding.
At the end of the network, there are three fully connected
layers; the first two layers have 4096 channels each, and
the last layer has 1000 channels, corresponding to the num-
ber of classes in the ImageNet dataset. VGG-19 is a variant
of the VGG architecture with 19 weight layers, including
16 convolutional layers and three fully connected layers.
It also has five convolution blocks: The first two blocks
are identical to VGG-16, each containing two convolution
layers, while the last three blocks each contain an extra
convolution layer, compared to VGG-16, making a total of
four convolution layers per block. The activation functions,
max-pooling layers, and fully connected layers in VGG-19
are identical to those in VGG-16.
MobileNetV2 is a CNN architecture designed for

mobile devices and embedded system where computa-
tional resources and power consumption are limited.
MobileNetV2 introduces two key innovations: depthwise
separable convolutions and inverted residuals with linear
bottlenecks. The network begins with a standard convolu-
tional layer followed by a series of bottleneck layers. Each
bottleneck layer consists of a 1 × 1 pointwise convolution
that expands the input channels, a depthwise convolution
that performs spatial filtering independently on each input
channel, and another 1 × 1 pointwise convolution that
projects the expanded channels back to a smaller number
of output channels. This sequence is known as an inverted
residual block because it starts with expanding the number
of channels before reducing them, contrary to the tra-
ditional residual block. After the depthwise convolution,
instead of using a non-linear activation function, a linear
activation is applied. This helps in preserving information
and avoiding the problem of non-linear transformations
that can cause loss of useful information, especially in low-
dimensional space. Another significant innovation is the
shortcut connection used in the inverted residual blocks.
This connection skips the intermediate layers and adds
the input directly to the output of the bottleneck layer,
which helps in preserving gradient flow during training.
MobileNetV2 is designed to be efficient with respect to
both the number of parameters and the computational
cost. The architecture is modular, consisting of a series
of these bottleneck layers with different number of filters,
expansion factor, and stride to adapt to various tasks. The
final part of the network includes a global average pooling
layer, followed by a fully connected layer with 1000 units
and a softmax activation function for classification.
Xception, short for “Extreme Inception,” is a DCNN

architecture that builds upon the Inception model by
incorporating depthwise separable convolutions. This

design is inspired by the hypothesis that cross-channel
correlations and spatial correlations can be entirely decou-
pled, a principle that guides the construction of the
network. Xception begins with an entry flow consisting
of standard convolutional layers followed by depthwise
separable convolutions. The entry flow starts with two
convolutional layers with a kernel size of 3 × 3 and an
increasing number of filters. These layers are followed by
a series of residual blocks that use depthwise separable
convolutions. Each residual block in the entry flow con-
tains a 1× 1 pointwise convolution followed by a depthwise
convolution. This is repeated with a gradually increasing
number of filters and downsampling using strided con-
volutions. The middle flow of the network consists of
multiple identical residual blocks that use depthwise sep-
arable convolutions. Each block includes a 1 × 1 pointwise
convolution followed by a depthwise convolution and then
another 1 × 1 pointwise convolution. This series of opera-
tions allows the network to capture intricate features while
maintaining computational efficiency. In the exit flow, the
network transitions from feature extraction to classifica-
tion. It includes several residual blocks with depthwise
separable convolutions, similar to themiddle flow butwith
an increased number of filters. This is followed by a global
average pooling layer that reduces each feature map to a
single value by averaging, thus reducing the overall size of
the output feature map. The final layer is a fully connected
layer with 1000 units, followed by a softmax activation
function to produce the output probabilities for the 1000
classes in the ImageNet dataset.
InceptionResNetV2 is a deep CNN that integrates the

feature extraction capabilities of Inception modules with
the training advantages of residual networks. The net-
work begins with an initial convolutional layer followed
by several Inception-ResNet modules. These modules are
designed to capture multi-scale features using parallel
convolutional layers with different kernel sizes, pooling
operations and residual connections that add the input
of the module to its output within the same module.
The outputs from these parallel operations are concate-
nated, allowing the network to capture diverse features
from the input data. This design helps in maintaining the
gradient flow during backpropagation, thus enabling the
training of very deep networks without suffering from the
vanishing gradient problem. The architecture of Incep-
tionResNetV2 can be divided into three main parts: the
stem, the middle flow, and the reduction blocks. The stem
consists of initial convolutional and pooling layers that
process the input image into a lower resolution and higher
dimensional featuremap. Following the stem, the network
includes several Inception-ResNet-Amodules, followed by
the first reduction block (Reduction-A), which reduces
spatial dimensions while increasing the depth of the fea-
ture maps. The middle flow of the network consists of
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8 SAVINO et al.

TABLE 1 Pretrained networks properties example.

Networks Depth Size (MB)
Parameters
(millions)

ResNet-50 50 96 25.6
VGG-16 16 515 138
VGG-19 19 535 144
MobileNetV2 53 13 3.5
Xception 71 85 22.9
InceptionResNetV2 164 209 55.9

multiple Inception-ResNet-B modules that continue to
extract features with residual connections, allowing the
network to learn complex patterns. Subsequently, another
reduction block (Reduction-B) further reduces spatial
dimensions. The final part of the network includes sev-
eral Inception-ResNet-C modules that further refine the
extracted features. This is followed by a global average
pooling layer that reduces each feature map to a single
value by averaging. The final layer is a fully connected layer
with 1000 units, followed by a softmax activation function
to produce the output probabilities for the 1000 classes in
the ImageNet dataset. Table 1 provides additional details
on the network architectures used in this study. Depth
refers to the number of successive convolutional or fully
connected layers from the input to the output layer.
These backbones were integrated into the DeepLabv3+

framework, and their performance was evaluated based
on their ability to accurately segment defects at the pixel
level. The comparative analysis focused on identifying the
backbone that provides the optimal balance between seg-
mentation accuracy and computational efficiency, thereby
improving the overall performance of the defect segmen-
tation algorithm.

2.2 Corrosion metric quantification

Accurately measuring small corroded surface areas on
steel transmission towers is crucial for assessing struc-
tural integrity and planningmaintenance strategies.While
image processing techniques andAI have beenwidely used
for corrosion detection, they often do not deal with pro-
viding precise localization and metric quantification of
corroded surfaces within complex structures. This limita-
tion stems from the reliance on single-image processing
and per-pixel analysis, which typically results in corro-
sion being quantified as a percentage of the total image
area, with the area merely expressed in pixel units. Even
when UAVs are employed for acquiring multiple images,
the redundancy of visual data is primarily utilized to
enhance the robustness of classification models rather
than to achieve accurate metric measurements (Fei et al.,

2021). Consequently, there is a need formethodologies that
not only detect corrosion but also provide reliable metric
assessments of its extent and distribution across intricate
structural geometries.
UAV photogrammetry provides a more comprehensive

solution to the challenges of corrosion quantification and
localization in complex structures (Wu et al., 2023). By gen-
erating accurate 3D models and georeferenced data, UAV
photogrammetry overcomes the limitations of traditional
image processing techniques. The application of SfM from
multiple aerial images enables the resolution of projective
geometrical constraints between the 2D images captured
by a moving camera and the 3D object in the real world.
This approach, supported by positioning techniques, like
GNSS and topographic land surveying, allows for precise
metric measurements and detailed spatial analysis, ensur-
ing that the corroded areas are not only detected but also
accurately quantified and localized locally within the intri-
cate geometries of steel transmission towers and globally
among the earth (Liu et al., 2020).
Several methods are available to compute the surface

areas of real objects from photogrammetric products, each
with its strengths depending on the specific application
and level of detail required. One widely used approach is
the triangulated irregular network (TIN) method, which
divides the surface into non-overlapping triangles (facets).
This method is particularly effective for accurately rep-
resenting complex terrains, including steep slopes and
uneven surfaces, as it calculates the total surface area by
summing the areas of all the individual triangles. The
TINmethod is especially advantageous in scenarios where
the surface geometry is highly irregular or where detailed
topographic information is critical.
Another commonly used technique is the grid-based

method, which relies on the digital surface model (DSM)
generated through photogrammetric procedures. In this
method, each pixel or cell of the DSM represents an
orthorectified portion of the object’s surface. The slope of
each cell is computed and used to adjust the planimetric
area covered by the same cell.
In traditional land surveying, where aerial photogram-

metry originated, adjusting the planimetric area based on
slope is often deemed unnecessary due to the high res-
olution of DSMs and orthomosaics, typically with pixel
sizes on the order of a few centimeters. In such cases,
ensuring the validation of the orthophoto against ground-
truth measurements, the difference between the adjusted
and planimetric areas is within the uncertainties inherent
to the photogrammetric process, making the adjustment
negligible.
The same principle is true for close-range applications

of UAV photogrammetry, such as communication tower
inspections. In these scenarios, the proximity of the UAV
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SAVINO et al. 9

F IGURE 2 Workflow for corroded
surface areas quantification on a steel
transmission tower using UAV-based
photogrammetry. The process begins with
unmade aerial vehicle (UAV) imagery
captured at different time intervals, followed
by the creation of a digital surface model
(DSM) and an orthomosaic. The corroded
surface areas are then automatically detected
through the analysis of these photogrammetric
products. The final step involves quantifying
the identified corroded regions, enabling
precise localization, and assessment.

to the structure, combined with the high resolution of
modern digital cameras, often results in DSMs with cell
resolutions of just a few millimeters. As a result, the dis-
crepancy between the adjusted and planimetric surface
areas is minimal, falling within the inherent uncertainties
of the photogrammetric procedure (Figure 2).
However, for vertical surfaces like transmission towers,

planar orthomosaics inherently introduce approximation
errors due to local surface curvature and irregularities of
the corroded surface. For relatively flat or single-curved
surfaces, these errors are minimal, but for highly irregular
or double-curved geometries, the error can be significant.
The error can be quantified by considering three main
factors:
Local surface curvature 𝐾: The curvature-induced error

(Δ𝐴𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒) arises because the planar orthomosaic flat-
tens the 3D geometry. This can be expressed as

Δ𝐴𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 ≈ ∫
𝑆

𝐾

2
𝑑𝐴 (4)

where S is the corroded surface area, and 𝐾 is obtained
from the partial derivatives of the surface height 𝑧(𝑥, 𝑦)
as

𝐾 =

√(
𝜕2𝑧

𝜕𝑥
2

)2
+

(
𝜕2𝑧

𝜕𝑦
2

)2
(5)

Resolution 𝑟: The resolution of the orthomosaic affects
how accurately it captures the details of the corroded sur-
face. Smaller resolution reduces error. The resolution error
is expressed as

Δ𝑟 ≈
𝑝 ⋅ 𝑟

𝐴
(6)

where 𝑝 is the corroder area perimeter, and 𝐴 is the real
3D surface.
Noise and artifacts: imperfections in orthomosaic gen-

eration process can also contribute to deviations but are

negligible with respect to the resolution and the curvature
induced error.
Given these errors factors, the orthomosaic approxima-

tion error is computed as

𝜀 =
Δ𝐴𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 + Δ𝑟

𝐴3𝐷
(7)

This error grows with the curvature increasing and
decreases with finer resolution. Considering a planar pro-
jection of the DSM into an orthorectified map, the 3D area
of the corroded surface can be expressed as

𝐴3𝐷 = 𝐴𝑜𝑟𝑡ℎ𝑜 + 𝜀 (8)

Despite these sources of error, the high resolution of
modern UAV orthomosaics (e.g., with cell sizes of a few
millimeters) and the relatively flat geometry of the tower
beams ensures that the discrepancies are generally within
acceptable limits for practical applications. Consequently,
the 𝜀 can be considered equal to zero and the corroded sur-
face area is computed by summing the area of each pixel
identified in the tower orthomosaic. The result is a planar
surface area 𝐴𝑜𝑟𝑡ℎ𝑜 calculated as

𝐴𝑜𝑟𝑡ℎ𝑜 = ∫
𝑆

𝑑𝑥𝑑𝑦 =

𝑀∑
𝑖=1

𝑁∑
𝑗=1

Δ𝑥Δ𝑦 (9)

where𝑀 and𝑁 are the number of grid cells (pixels) in the
orthomosaic in the 𝑥 and 𝑦 directions, respectively.Δ𝑥 and
Δ𝑦 represent the dimensions of each grid cell in the 𝑥 and
𝑦 directions, expressed in real-world units. This formula
sums the area of all the pixels representing the corroded
region.
However, it is important to consider that in cases where

sub-millimeter level precision is required, or where the
surface geometry is highly complex, even these small
discrepancies could become significant.
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10 SAVINO et al.

3 TRAINING PROCESS

In this study, a DeepLabv3+ model was utilized for pixel-
wise classification of images depicting steel transmission
towers, with a specific focus on identifying and segmenting
corroded areas. The networkswere trained usingmanually
labeled images, where each pixel was annotated as either
“corrosion” or “background.” Through iterative optimiza-
tion, the network learned to accurately predict the class
of each pixel. By leveraging transfer learning, pretrained
models on large image datasets were employed to enhance
the network’s performance. This strategy allowed the net-
work to benefit from previously learned features, thereby
reducing the required amount of training data and com-
putational resources. The neural network’s output is a
segmentation map that provides a detailed and quantita-
tive assessment of corrosion on the transmission towers.
This pixel-wise classification enables precise localization
and measurement of defects, thereby facilitating more
effective monitoring and maintenance strategies.
To define the most effective architecture for the auto-

matic identification of corroded areas on transmission tow-
ers, the study was conducted in two phases. The first phase
aimed to identify the optimal neural network architecture
through comparative analysis using a limited dataset of
images. The second phase focused on hyperparameter tun-
ing to optimize the performance of the network selected
in the first phase, utilizing the entire dataset. The exper-
iments were conducted with MATLAB (R2023a) platform
functions on aWindows 10 PC equippedwith an Intel Core
i7-10750 processor, RAMof 32GB, and anNVIDIAGeForce
GTX 1650Ti graphical processing unit (GPU).

3.1 Corrosion dataset

The performance of a neural network is closely related
to the quality of its training dataset. To develop a robust
dataset for training neural networks effective in segment-
ing images acquired by drones, it is essential to use real
images captured during on-site inspections of transmis-
sion towers. Using realistic on-site images allows the
dataset to capture the variability and operational chal-
lenges of actual inspection conditions, enhancing the
ability of the model to generalize effectively. The collected
images for this study encompass a range of conditions,
including various angles, resolutions, lighting environ-
ments, paint conditions, and noise factors, all of which
reflect the complexities of real-word inspections.
Figure 3 illustrates examples of these scenarios, show-

casing the diversity typically encountered in visual inspec-
tions of transmission towers. This dataset is tailored to
the requirements of transmission tower inspections, and it

F IGURE 3 Examples of images collected from on-site
inspection, used to build the datastore, representing: (a) the
complexity and varying resolutions of analyzed area, (b) different
types of backgrounds and steel elements, and (c) varying lighting
conditions.

differs from other applications, such as steel bridge inspec-
tions or rebar corrosion detection in several key aspects.
The image backgrounds vary significantly as transmission
towers are typically located in open or rural environments,
whereas bridges are often in urban or industrial settings.
The structures themselves also differ: transmission tow-
ers tend to exhibit more complex geometry, compared
to bridges or rebar frameworks. Additionally, the paint
on transmission towers is distinctive, often employing
specialized coatings for aviation visibility and extreme
weather conditions, which differs from the paints com-
monly used for bridges. Furthermore, transmission towers
often experience oxide flow caused by water percolation
that creates irregular corrosion patterns. In contrast, corro-
sion on bridges or rebar is generally more localized, often
forming in specific areas. These structural, environmen-
tal, and material differences underscore the relevance of
this dataset for the specific task of detecting and quantify-
ing corrosion on transmission towers. The dataset images
had varying resolutions, ranging from aminimumof 640×
480 pixels to a maximum of 5312 × 2988 pixels, presenting
a realistic challenge for the neural networks. All images
were carefully selected to ensure that the dataset reflects
the diversity of real-world scenarios encountered during
transmission tower inspections. The final dataset consists
of 999 images from different sensors, referred to different
communication tower located all around Italian territory
and acquired from different angle and distance. The data
were provided by the personnel in charge of inspect the
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SAVINO et al. 11

infrastructure and were acquired in different period of the
year along several years. The characteristic of the dataset
ensures the required heterogeneity to train a model able to
be generalized in every environmental condition, provid-
ing a robust foundation for training and validating the deep
learning models. The data were partitioned such that 80%
was used for training and 20% for validation. This parti-
tion allowed the performance of the model to be evaluated
on unseen data, thus reducing the risk of overfitting. To
prevent data leakage and ensure a robust evaluation, spa-
tial and temporal independence was maintained, ensuring
that same images were not shared between the training
and validation sets.
Using a fixed input image size is crucial to ensure that

the model learns features in a consistent and standardized
manner, regardless of the original image dimensions. In
computer visionmodel training, resizing images to smaller
dimensions is a common practice to reduce the compu-
tational cost associated with processing large images. In
this research, to optimize the use of the available database
while preserving the rich information contained in high-
resolution images, an alternative approach was adopted.
Instead of resizing images to a lower resolution, a crop-
ping process was implemented. This involved extracting
several lower-resolution images from each original high-
resolution image. This strategy is particularly effective in
preserving the amount of information, as it maintains the
total pixel count of the original resolution.
Considering that neural networks such as ResNet-50,

VGG-16, VGG-19, and MobileNetV2 require input images
of size 224 × 224, while Xception and InceptionResNetV2
operate with input images of size 299 × 299, two distinct
databases were created. Both databases were constructed
by cropping images from a total of 500 high-resolution
images in order to reduce the computational cost and train-
ing time for the first phase of comparative analysis aimed at
detecting themost effective architecture. The first database
includes 60,567 images tailored for networks with an input
size of 224 × 224, while the second database comprises
32,801 images suited for networks requiring an input size
of 299 × 299. For the second phase of the study, aimed at
hyperparameter tuning of the most effective architecture,
cropping was performed on all 999 images, resulting in a
third dataset of 105,754 images with 224 × 224 resolution.
Ideally, all classes should have the same number of

observations. However, a common problem in datasets
is the presence of a higher number of background pix-
els, compared to those of the object being classified. This
occurs because the background typically occupies a larger
portion of the image. If this imbalance is not adequately
addressed, it can bias the learning process in favor of the
dominant classes, thereby neglecting the minority class.
To achieve a more equitable balance between classes, only

TABLE 2 Dataset properties.

Dataset
Images
resolution

Images
number

Pixel
“corrosion”

Pixel
“background”

1 224 × 224 14,397 179,324,264 540,153,576
2 299 × 299 9811 175,629,089 698,620,084
3 224 × 224 33,584 408,705,736 1,268,900,144

images containing pixels related to corrosionwere selected
from the previously defined databases, while those con-
taining only the “background” class were discarded. This
process resulted in the creation of three databases with
final sizes of 14,397, 9811, and 33,584 images. Table 2
provides the details of the resulting databases.
As shown in Table 2, despite the application of the fil-

tering operation, an imbalance remains in favor of the
“background” class, with a ratio of 3:1 in the first and last
databases, and a ratio of 4:1 in the second database. To
address this, the median frequency balancing method was
used to improve the training, where the weights of the
classes were calculated as

𝑐𝑙𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠 =
𝑚𝑒𝑑𝑖𝑎𝑛 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
(10)

where frequency is the number of pixels for a class divided
by the total number of pixels. This method assigns higher
weights to minority class samples and lower weights to
majority class samples when calculating the loss function.
In this way, the model focuses more on the minority class,
thereby improving predictions for this category.

3.2 Experiment and result analysis

Once the dataset was constructed and the model archi-
tecture defined, the model hyperparameters must be con-
figured to start the training process. As these are external
to the networks, their values cannot be estimated directly
from the data but can be set using heuristics. Thus, for
the first phase of the preliminary comparative analysis,
a fixed number of five epochs, a mini-batch size of eight
images, a learning rate of 0.1, a momentum of 0.9, and an
L2 regularization of 0.0001 were considered for the train-
ing process of each network. Gradient descent was used
as the optimizationmethod, iteratively optimizing weights
and biases through the partial derivatives of the loss
function.
A comparative study was first carried out by evaluating

how well the trained neural network models performed
on the validation dataset. This was done by taking into
account the validation loss and calculating the percentage
of correctly classified pixels according to:
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12 SAVINO et al.

TABLE 3 Neural networks performance.

Network Validation loss Validation accuracy Intersection over union Training time (min)
ResNet-50 0.37 80.4% 64.8% 144
VGG-16 0.31 83.8% 70.6% 190
VGG-19 0.38 89.1% 75.7% 236
MobileNetV2 0.31 87.9% 75.9% 92
Xception 0.26 89.2% 78.4% 221
InceptionResNetV2 0.31 90.8% 78.6% 504

𝐺𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11)

where 𝐺𝐴 is the global accuracy, 𝑇𝑃 is the number of
true positives, 𝑇𝑁 is the number of true negatives, 𝐹𝑃
is the number of false positives, and 𝐹𝑁 is the number
of false negatives. In addition to validation accuracy and
validation loss, which are metrics related to prediction
accuracy and reliability, the intersection over union (IoU)
metric was also used to evaluate the performance of the
models without the influence of classes distribution. IoU,
defined as the area of overlap between predicted segmen-
tation and the ground truth divided by the area of their
union, provides a more comprehensive understanding of
how well the model predicts the spatial arrangement of
pixels. Training time was also considered as a benchmark
for evaluating computational efficiency. Reduced training
time is particularly valuable in production environments
with iterative development workflows, where models may
need to be retrained frequently. In addition, the size of
the model can impact both inference time and memory
requirements, making it an important consideration for
deployment in environments with limited resources or
memory. Therefore, Table 3 provides a summary of the
metrics considered for the comparative analysis of the
models, including validation loss, validation accuracy, IoU,
and training time.
As reported in Table 3, InceptionResNetV2 and Xcep-

tion emerged as the top performers, achieving validation
accuracies of 91.8% and 91.0%, with validation losses of 0.31
and 0.26, respectively. They also demonstrated high IoU
scores of 78.6% and 78.4%, indicating high performance
in accurately delineating object boundaries. However, the
MobileNetV2 network was 2.8% less accurate than the
most accurate InceptionResNetV2 network but had the
shortest training time among the evaluated networks, com-
pleting in just 92 min. In addition, the smaller model
size of MobileNetV2 contributed to reduced memory
requirements, making it more suitable for use in resource-
constrained environments. Therefore, MobileNetV2 was
chosen as the reference architecture for this study, balanc-
ing performance and efficiency and memory usage. As an

example, Figure 4 shows the comparison of the segmenta-
tions performed by the neural networks listed in Table 3.
This analysis is performed on a test image that was not
previously used to train the networks.
The example shown in Figure 4 confirmed the specific

performance of each network, demonstrating lower accu-
racy in the cases of ResNet-50 and VGG-16 (Figure 4a,b),
while superior performance was highlighted for VGG-
19, MobileNetV2, Xception, and InceptionResNetV2
(Figure 4c–f). Once the architecture for segmenting the
corroded area was defined, empirical hyperparameter
tuning was performed to optimize the performance of
the MobileNetV2 network on Dataset 1 as detailed in
Table 2. An extensive search was performed to define the
best setting of these parameters. In order to determine
the effect of each of these parameters, they were varied
one at a time while keeping the other constant. The final
configuration of tuned hyperparameters, which ensured
the convergence behavior and avoided overfitting, resulted
in a learning rate of 0.01 with a drop of 0.1 after a period
of four epochs, a momentum of 0.9, a regularization of
0.0001, seven epochs and a mini-batch size of 32. The final
validation loss and validation accuracies obtained after a
training period of about 3 h were 0.22 and 90.6%, respec-
tively. In the final phase of this research, the network
defined in the previous phases was trained using the entire
image dataset, according to Dataset 3 as defined in Table 2.
The training process used the same set of hyperparameters
defined in the previous experiment. Overall, the process
required a training time of about 9 h and resulted in a
validation accuracy of 90.8% (Figure 5) and a validation
loss of 0.23 (Figure 6).
To evaluate the performance of the trained and validated

network, Figure 7 shows some examples of segmented
images that were never seen during the training process.
The first row shows the original images, the second

row shows the ground truth labels, and the third row
shows the prediction of the network. This visual com-
parison highlights the strengths and potential weaknesses
of the network’s performance, providing valuable insight
into its practical applicability for tower monitoring and
maintenance. By comparing the ground truth labels with
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SAVINO et al. 13

F IGURE 4 Example of semantic
segmentation performed with (a) ResNet-50,
(b) VGG-16, (c) VGG-19, (d) MobileNetV2, (e)
Xception, and (f) InceptionResNetV2 network.

F IGURE 5 Accuracy of the network during training progress
of the final experiment.

F IGURE 6 Validation loss of the network during training
progress of the final experiment.

the network predictions, the effectiveness of the network
in accurately segmenting corroded areas can be assessed.
There is a remarkable agreement between the identified
corroded areas, even in caseswith complex thin areas, such
as those surrounding bolts in the first example and the
railings in the fourth. In some cases, the neural network
outperforms manual labeling by detecting areas that were
missed during manual labeling as can be seen on the bolt
cap in the second image and around the first bolt in the last
example. Conversely, there are cases where the neural net-
work failed to detect certain corroded regions labeled in the
ground truth, particularly noticeable in the sixth image,
where corrosion along the edges of diagonal braces was
overlooked. It is possible that the network interpreted this
consistent deterioration along edges as part of the structure
rather than as corrosion Furthermore, there are a few cases

where the network misclassified background regions as
corrosion, primarily in the first, second, and final images.
This misclassification could be attributable to the crop-
ping operation used during the construction of the dataset,
which refines the network’s ability to detect detailed fea-
tures, but may disrupt the spatial relationship between
corroded areas and the background. The missed regions
along the diagonal braces may have significant practical
implications, as such areas often represent critical points
of structural vulnerability. Overlooking these regions could
lead to underestimation of the overall corrosion extent,
potentially affecting maintenance planning and prioriti-
zation. Additionally, misclassifications in the background,
though less critical, might introduce noise into the quan-
tification process, necessitating manual verification in
certain cases. While detection failures are challenging to
eliminate entirely due to dataset imbalance and annotation
uncertainties, background misclassifications will benefit
from the proposed method, where the integration of the
3D information helps to resolve spatial ambiguities.
In Section 4.3, the benefits of the UAV photogram-

metric reconstruction in addressing this aspect will be
described. In summary, the performance of the network
can be considered acceptable, especially considering the
complexity of the task, which involves irregular areas with
no clearly defined boundaries for detection, often further
complicated by oxide percolation.

4 EXPERIMENT OF CORROSION
DETECTION IN TRANSMISSION TOWER

In the practical application phase of this research, the
trained neural network has been used for the seman-
tic segmentation of corrosion on a transmission tower.
The structure to be analyzed is the South-East tower of
the Torino Eremo broadcasting center, located at Strada
Comunale di Pecetto, 311/15, 10131–Torino, which belongs
to Ray Way S.p.A. and support the Italian public radio
television broadcasting. The Torino Eremo is a significant
historical site as it represents the starting point of public
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14 SAVINO et al.

F IGURE 7 Examples of predictions generated by the proposed network.

F IGURE 8 Study site and UAV inspection of the south-east
steel transmission tower located at the Rai Way Transmitter Center
of Torino Eremo, Italy. The map on the left provides a geographical
context of the study area within the Piedmont region. The central
aerial view highlights the northern and southern towers, with the
southern tower (height = 120 m) marked for detailed inspection. On
the right, an image captures the UAV in action during the structural
inspection of the southern tower.

broadcasting in the country. Approximately 120 m high
and currently out of service, the tower is protected by a
white and red coating, making it an excellent case study
for this analysis (Figure 8). In this real-world scenario, the
network was used to accurately identify and segment areas
affected by corrosion from high-resolution photogrammet-
ric products, originated by the processing of tower pictures
taken by drone under different lighting conditions and
angles.

4.1 Flight planning

The preliminary steps of the drone survey involved several
important tasks. First, it was essential to confirm that the

structure to be surveyed was not located within a no-fly
zone. This was followed by a preliminary site inspection to
identify potential risks and obstacles that could affect the
survey. Subsequently, a detailed topographical survey was
conducted to gather the necessary data for georeferencing
and reconstruction error assessment. Extensive documen-
tation and data collection were then performed to ensure
all the necessary information was gathered. A number of
criteria were used to select the UAV, including appropriate
size for the environment, stable flight capability, obstacle
proximity sensors, Real TimeKinematic (RTK) positioning
accuracy, compatibility with different camera and equip-
ment types, high autonomy, high-resolution cameras, and
sufficient storage capacity. For this survey, the Matrice
300 RTK drone coupled with the ZENMUSE P1 camera
was selected. The ZENMUSE P1 camera features a 45 MP
CMOS optical sensor with a 35 mm lens, providing high-
resolution imaging capabilities suitable for detailed aerial
inspections and photogrammetric analysis.
However, the central aspect of the planningwas the defi-

nition of the flight path, which is directly related to the fun-
damental principles of photogrammetric reconstruction.
Planning the flight trajectorywith an unmanned aerial sys-
tem is a crucial step to ensure that the derived products
meet the required project specifications due to its direct
connection to the theoretical principles of photogrammet-
ric reconstruction. Research in the field has led to the
development of specific geometric acquisition schemes
that are both metrically valid and energy-efficient (mini-
mizing energy consumption during flight). These schemes,
widely recognized and implemented in specialized algo-
rithms, are traditionally applied to nadiral acquisition
patterns aimed at surveying flat or large land areas.
The most important parameters and formulas for pho-

togrammetric mission planning are well-documented in
the literature (Kraus, 2007), with specific flight planning
parameters summarized by Eisenbeiss (2009).
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SAVINO et al. 15

However, when surveying elevated structures, such as
telecommunication towers, modern acquisition schemes
are required. These advanced schemes are not yet fully
implemented in most flight planning software and are
particularly tailored to capturing vertical or irregularly
shaped objects. The two primary acquisition schemes
suitable for these applications are the spiral acquisition
scheme and the ascending/descending trajectory scheme.
In the first, the drone follows a helical path around the
structure, capturing images from varying angles and dis-
tances, ensuring uniform coverage. In the second, the
drone moves vertically along the structure in a systematic
pattern, with the camera oriented forward (perpendicular
to the tower’s surface) to capture detailed images of the
vertical geometry.
For the telecommunication tower in this study, the

ascending/descending trajectory scheme was chosen due
to its suitability for tall, linear structures. The flight path
was manually planned by leveraging the expertise of
both the Unmanned Aerial System (UAS) pilot and the
photogrammetry specialist to adapt the scheme to the
unique characteristics of the structure. This collaborative
approach ensured that the flight parameters (e.g., hori-
zontal distance, overlap, and altitude) were optimized to
maintain a consistent ground sample distance (GSD) of
approximately 1 cm/pixel, critical for detailed inspection
and analysis. Moreover, the camera orientation was fixed
forward-facing, directly targeting the tower’s surface, to
maximize the resolution of the captured features. The
trajectory provided sufficient coverage of the entire struc-
ture, including protruding and inclined components, by
adjusting the drone’s flight path dynamically during the
survey.
The survey must be planned to meet the project’s spec-

ified accuracies 𝜎𝑟 and tolerances 𝑇𝑟. The key planning
parameter to consider is the GSD, which must satisfy the
following condition:

𝐺𝑆𝐷 ≤ 𝜎𝑟 (12)

The calculation of the GSD is performed using the
following simplified formula:

𝐺𝑆𝐷 =
𝐻 ⋅ 𝑑𝑝𝑖𝑥

𝐹𝑅
(13)

where 𝐻 is the flight distance from the object façade, 𝑑𝑝𝑖𝑥
is the pixel size of the specific camera, and 𝐹𝑅 is the focal
length of the camera optic. Considering the operational
scenario and flight safety conditions, a minimum distance
from the tower of 10 m is assumed (𝐻 = 10m). The sen-
sor to be used for the photogrammetric survey is selected,
and the parameters 𝑑𝑝𝑖𝑥 and 𝐹𝑅 are determined. Consid-

ering the Zenmuse P1 optical sensor, the focal length is
𝐹𝑅 = 35 mm and the pixel size is 𝑑𝑝𝑖𝑥 = 4.4 μm. The the-
oretical (nominal) GSD is calculated using Equation (13).
Thus, the nominal GSD for this survey is 0.126 cm/pixel.

4.2 Photogrammetric reconstruction

The photogrammetric survey aimed to acquire high-
resolution RGB images for the radiometric and geometric
reconstruction of the 3D object. Close-range aerial pho-
togrammetry was employed, using SfM algorithms to
reconstruct a digital model of the observed object from
the 2D image content. This objective was achieved by
accurately determining the camera positions during data
acquisition (external orientation parameters), thus estab-
lishing the spatial relationship between the images and
the object under analysis. All photogrammetric analyses
were carried out using Agisoft Metashape v2.0.3 software,
following a sequential procedure that included image
matching, relative camera orientation, absolute block ori-
entation via ground control point or image geotag, dense
matching, and finally products generation. For each of
these steps, photogrammetric outputs are produced like
point clouds (sparse or dense), triangulated 3D mesh,
textured 3D models (Figure 9a).
In addition, DSMs and orthophotos were also gener-

ated to provide an accurate representation of the surveyed
area geometrically corrected. The topographic survey, per-
formed with the integration of GNSS and Total Station,
allows to validate the orthomosaic against ground-truth
measurements with a root mean square error of 0.87 mm.
This orthmosaic is critical for semantic segmentation of
the corroded area, ensuring accurate representation for
detailed analysis and inspection purposes. The orthomo-
saic was produced with a pixel resolution of 3 mm, about
two times the theoretical GSD. With the same pixel res-
olution has been produced the DSM (Figure 9b). In this
study, four high-resolution orthomosaics were generated,
one for each façade of the transmission tower. The analy-
sis was specifically concentrated on the outer surfaces of
the structural beams, as these areas are most exposed to
environmental factors and therefore more prone to corro-
sion. This focused approach ensured precise quantification
of the corroded areas while minimizing interference from
less relevant structural components. From a computa-
tional perspective, the photogrammetric processing was
conducted on a workstation equipped with an Intel Core
i7-7800X CPU (3.50 GHz, 12 cores), 96 GB of RAM, and
two GPUs: an Intel UHD Graphics 630 (24 compute units,
19,600 MB global memory, OpenCL 2,1) and an NVIDIA
Quadro P1000. The processing of 3182 images, each with a
resolution of 8192 × 5460 pixels, required 7 h and 30 min
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16 SAVINO et al.

F IGURE 9 On the left: Photogrammetric products derived from a UAV-based survey. (a) A sparse point cloud. (b) A triangulated mesh.
(c) Detailed close-up views of critical components, including the tower’s joints. On the right: Comparative visualization of orthomosaic and
DSM of the tower, (d) an orthomosaic showing the southern façade of the structure in high resolution; (e) a high-resolution orthomosaic
developed in a cylindric projection. (f) A color-coded DSM illustrating the spatial distribution and distance of structural elements again in a
cylindric projection.

for alignment, 10 h and 50min for generating the 3D trian-
gulatedmodel, and an additional 9 h and 15min to produce
an 8K texture for the entire communication tower.

4.3 Corrosion area calculation

Currently, the need and urgency formaintenance are often
determined in an approximate and qualitative manner
through rapid surveys of infrastructure. Each defect on
the structure is assessed for its extent and intensity using
constant coefficients without quantitative analysis. The
complexity, level of detail, and cumbersome nature of tra-
ditional surveys are inversely related to the number of
infrastructures to which they are applied and the certainty
of the results. In the proposed approach, orthophotos gen-
erated from photogrammetric reconstruction were used,
and the trained neural network was directly applied to seg-
ment the corroded areas on the transmission tower. Each
orthophoto was processed to accurately identify and label
the corroded areas. The duality between orthorectification
and 3D reconstruction is demonstrated in Figure 10 where
the segmented texture have been applied to the 3D model.
Once the damage was detected, it could be possible to
extract morphological information to determine durabil-
ity, exposure conditions, and define economic and safety
implications.
The segmented orthomosaics were then analyzed to cal-

culate the total area affected by corrosion. This calculation
involved summing the pixel areas classified as corroded
and converting this sum into real measurements based on
the scale and resolution of the orthophotos (Figure 10).

As stated in Section 2.2, Equation (9) has been used to
compute the corroded surface area. To this purpose, the
software QGIS 3.40.1 has been used. The orthomosaic pro-
vides all the required metrical and radiometrical content
to perform a quantification of the pixel corroded. In partic-
ular, the pixels labeled as corroded have been statistically
analyzedwith the r.univar tool fromGeographic Resources
Analysis Support System integrated inQGISS. The tool cal-
culates univariate statistics from the non-null cells of a
raster map (i.e., the corroded pixels) and in particular the
sum of pixels of the cells inside a specific section. Being
the orthomosaic georeferenced, it is possible to extract the
coordinates of the cells labeled as corroded, and automatic
vectorization procedure can provide the centroid of each
corroded area with attached coordinates.
Additionally, since the communication tower was mod-

eled through photogrammetry, the resultingDSMhas been
used to orthorectify the orthomosaic, ensuring an accu-
rate projection of the structure. This approach effectively
removes the background, as the orthomosaic focuses solely
on the tower’s geometry and features, effectively eliminat-
ing the risk of background misclassification. The results
provided a quantitative assessment of the extent of corro-
sion, which is crucial for planningmaintenance and repair
strategies. Table 4 lists the amount of corroded area iden-
tified by the neural network for the locations shown in
Figure 10.
While orthomosaics have been proven robust for surface

measurements and areal quantification on quasi-nadiral
object, they intrinsically deform complex 3D geometries
during the 2D re-projections on a cartographic surface.
The presence of DSM products, resulting from the SfM
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SAVINO et al. 17

F IGURE 10 On the left: Texturized 3D model of the transmission tower at Torino Eremo. The sliding window visualization allows to
compare the original model with the segmented one for corroded area identification. On the right: Detailed inspection of a steel transmission
tower highlighting corroded areas. The image is divided into sections (T_1_1 to T_2_3), with green polygons indicating regions of corrosion
detected through automated analysis. The enlarged views on the right side provide a closer inspection of specific corroded sections.

TABLE 4 Quantification of the corroded area.

Tassel Tassel size Structure pixel count Corrosion pixel count Corrosion percentage Corrosion area
T_1_1 1003 × 1817 pixels 1,027,850 pixels 5094 pixels 0.50 % 0.046 m2

T_2_1 1003 × 1817 pixels 435,743 pixels 1601 pixels 0.37 % 0.014 m2

T_3_1 1003 × 1817 pixels 887,330 pixels 427 pixels 0.05 % 0.004 m2

T_2_1 1003 × 1817 pixels 852,535 pixels 3080 pixels 0.36 % 0.028 m2

T_2_2 1003 × 1817 pixels 84,119 pixels 129 pixels 0.15 % 0.001 m2

T_2_3 1003 × 1817 pixels 648,039 pixels 3703 pixels 0.57 % 0.033 m2

approach, mitigate partially these effects taking into
account relief displacement and standardizing the scale.
Additionally, with DSM-derived products, such as slope
and aspect maps, it is possible to implement curvature
correction algorithm in case of limited irregular geome-
tries. Reticular steel communication towers, like the one
analyzed in this study, predominantly consist of regular
geometric structures with flat beams and minimal cur-
vatures. These characteristics are advantageous for our
analysis, allowing for accurate estimation ofmost corroded
areas while ensuring comprehensive and consistent cover-
age of the pre-allocated orthophoto’s projected space. An
accurate design of the projection space is also required to
avoid occlusion problems i.e. situations where objects in
foreground block the view of objects in background.
However, the proposed methodology may face limita-

tions when applied to part of the structures with highly
irregular geometries or double-curved surfaces, such as
connections, joints, or complex brackets often present in
intricate steel frameworks. In such cases, the orthorectifi-
cation algorithm as well as the interpolationmethods used
to map the pixel colors from the image coordinate system
to the orthophoto coordinate system, introduces inac-

curacies. Possible solutions include employing advanced
algorithms for curvature-aware surface correction or esti-
mating corroded areas directly on TIN, which could
significantly enhance the accuracy of the quantification
process.
The proposed deep learning-based inspection approach

not only automates the process but also provides valuable
data to reconstruct damage evolution without operator
error. The neural network’s ability to perform accurate seg-
mentation on high-resolution orthophotos demonstrates
its potential for practical applications in structural health
monitoring and maintenance of transmission towers.

5 CONCLUSION

Automatic corrosion segmentation and quantification is
a leading research topic driven by advances in computer
technology, particularly inAI. Despite significant progress,
it remains an unresolved issue in the context of steel
transmission towers. The challenges it poses for struc-
tural integrity and safety are substantial and ongoing.
This study addresses the pressing need for efficient and
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18 SAVINO et al.

accurate corrosion detection in steel transmission towers
by using advanced deep learning techniques. The proposed
approach uses a DeepLabv3+ model to achieve semantic
segmentation of corroded areas on steel transmission tow-
ers. The network was trained and validated using a robust
dataset of 999 field photographs of different resolutions,
ensuring themodel’s adaptability to different imaging con-
ditions. Among the various pretrained networks evaluated,
MobileNetV2 emerged as the optimal choice due to its
superior balance of accuracy and computational efficiency.
Fine-tuning of the hyperparameters resulted in an accept-
able validation accuracy of 90.8% and a validation loss of
0.23.
One of the major contributions of this research lies

in the integration of UAV-based photogrammetric prod-
ucts, such as DSM and orthomosaics, with deep learning
algorithms for corrosion detection and quantification. The
network was used to process orthopmosaics generated
from photogrammetric reconstructions of the south-east
tower of the Torino Eremo broadcasting center. Thanks to
the detailed and metrically accurate spatial representation
of the structure, the methods ensure accurate surface area
estimation. The accuracy of the orthomosaic was validated
against ground-truth measurements using a topographic
survey that integrated GNSS and Total Station, achiev-
ing a root mean square error of 0.87 mm. This high
level of accuracy ensures that the spatial data derived
from the orthomosaic is both reliable and accurate. The
3D model of the structure enables the neural network
to focus only on the structural elements while elimi-
nating background misclassification problems. Moreover,
being georeferenced, the classified orthomosaic enables
the extraction of corroded cells coordinates in a given refer-
ence system. This capability is highly advantageous for the
development of geospatial databases and the creation of
digital twins, providing precise spatial information essen-
tial for advanced analysis and monitoring. This practical
application demonstrated the network’s ability to accu-
rately segment corroded areas in high-resolution images,
providing a detailed and quantitative assessment of corro-
sion. Such precise measurements are essential for effective
maintenance and repair strategies to improve the longevity
and safety of critical infrastructure.
The automated nature of this deep learning-based

inspection approach offers several advantages over tra-
ditional methods. It reduces the dependency on man-
ual inspections, which are often time-consuming, labor-
intensive, and subject to human error. By providing
reliable and consistent data, the proposed method facil-
itates better decision-making and resource allocation in
maintenance operations. Furthermore, the ability to mon-
itor damage evolution over time without operator error
is a significant step forward in the field of structural

health monitoring. UAVs are capable of quickly captur-
ing high-resolution images of hard-to-reach areas, offering
comprehensive coverage of large and complex structures
such as transmission towers. These images can then be
analyzed by deep learning algorithms, enabling rapid
and automated assessments across the entire asset. In
contrast to traditional inspections, which require exten-
sive preparation, such as scheduling personnel, gathering
equipment, and ensuring site-specific safety measures,
UAVs can be deployed with minimal setup, primarily
involving flight path planning and sensor calibration. The
imagery collected by the UAVs is processed either in
real-time or post-flight using cloud-based or onboard sys-
tems, providing near-instantaneous feedback and offering
immediate insights into the asset’s condition. This allows
for faster decision-making and more accurate assessments
of structural health. With this new framework, the role
of personnel evolves from traditional manual inspections
to a more technical, supervisory, and analytical capac-
ity. They now focus on overseeing the UAV and deep
learning systems to ensure optimal performance, verifying
data accuracy, generating detailed reports, and supporting
informed decision-making.
However, some limitations of the presented procedure

have emerged, opening up new areas of research that
need to be explored. While the automation of estimating
corrosion areas represents a crucial achievement, future
research should focus on estimating corrosion in terms
of volume reduction. This advancement could enable the
estimation of cross-section reduction and provide insights
into the impact on the bending capacity of structural ele-
ments. Another critical challenge lies in segmenting the
edges of corroded areas. Unlike defects in other struc-
tures, such as cracks in reinforced concrete, the boundaries
of corrosion are often diffuse and poorly defined. This
issue is further exacerbated in some cases where the sur-
face is coated with red paint. To address these challenges,
future work will explore the integration of hyperspec-
tral imaging alongside traditional RGB data. Hyperspectral
imaging captures information across a wider range of
wavelengths, providing a richer dataset that could improve
neural networks’ ability to differentiate corroded areas
more effectively, even under challenging conditions. By
leveraging this enhanced data, it is possible to achieve
greater accuracy and reliability in corrosion detection,
paving the way for further innovations in structural
health monitoring. Deployment of UAV-based systems
faces challenges, including regulatory restrictions on flight
operations, weather dependency, and limitations in flight
autonomy or payload capacity. However, the use of pho-
togrammetric models mitigates several of these challenges
by reducing prolonged flight durations and decreasing
risks associated to manual piloting. Additionally, accurate
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SAVINO et al. 19

and potentially automated flight planning can optimize
data acquisition, ensuring that sufficient information is
collected for post-processing analysis while reducing oper-
ational time and maintaining compliance with stringent
regulatory requirements.
In conclusion, the integration of UAV-based photogram-

metry and deep learning techniques represents a signif-
icant advancement in the inspection and maintenance
of steel transmission towers. The successful application
of the proposed neural network to real-world scenarios
highlights its potential for wider adoption in structural
health monitoring and maintenance programs. The evo-
lution of personnel roles from inspectors to technical
supervisors further underscores the transformative impact
of this framework. This study lays the groundwork for
a more efficient, accurate, and automated approach to
maintaining the vital infrastructure that supports modern
society.
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