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Abstract

This thesis is focused on the study of curvature properties of balanced and SKT metrics.
More in details, as regards balanced metrics, we use gluing techniques to show that the blow-up of

a compact Chern-Ricci flat orbifold at a finite number of smooth points admits constant Chern scalar
curvature balanced metrics, even obtaining a control on the balanced class of the constructed metrics.

In the case of SKT metrics, we proceed in a systematic study of the generalized Ricci flow with
symmetries, adapting the bracket flow technique by Lauret in the context of generalized Geometry. This
allows us to prove long-time existence of the homogeneous generalized Ricci flow on any solvmanifold.
Using then the equivalence between said flow and the pluriclosed flow, we are able to deduce long-time
existence of the pluriclosed flow on any SKT solvmanifold.

Finally, we focus our attention on hyperHermitian Geometry. In this setting, we prove an incompat-
ibility result between strong HKT metrics and balanced hyperHermitian ones, providing an evidence of
the validity of the Fino-Vezzoni conjecture in the hyperHermitian setting.
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Introduction

Motivated by theoretical physics and by the advances in the understanding of the connection between
canonical Kähler metrics and stability conditions, the interest in the study of special non-Kähler metrics
has grown enormously throughout the last decades.

Since the Kähler condition is a strong condition per se, imposing many restrictions, for instance, on
the topology of the manifold, the rise of special Kähler metrics happened naturally. The main idea is
to combine the Kähler condition with some other conditions on the curvature of the metric. Among
the latter, the most famous and well-understood is the Einstein condition, giving rise to Kähler-Einstein
metrics. The existence problem for Kähler-Einstein metrics, starting from the works by Aubin [34]
and Yau [338], was concluded recently in the works by Chen, Donaldson and Sun, see [74, 75, 76],
characterizing the existence of such metrics in the Fano case in terms of K-polystability of the anti-
canonical bundle.

On the other hand, Kähler-Einstein metrics are a particular instance of the so-called extremal Kähler
metrics introduced by Calabi in [67], defined as critical points of the Calabi functional. The latter is
the functional associating to any Kähler metric in a fixed Kähler class the L2-norm of the scalar curva-
ture. As a matter of fact, extremal Kähler metrics are those Kähler metrics whose scalar curvature has
holomorphic (1, 0)-part of the gradient. Stemming from this characterization, constant scalar curvature
Kähler metrics, or cscK, attracted the attention of many authors and they are now regarded as canonical,
being minimizers of the Calabi functional. The importance of cscK metrics has then increased due to
the moment map formulation of the scalar curvature by Fujiki and Donaldson, see [137, 90], and to the
Yau, Tian, Donaldson conjecture, see [91, 316, 339] and [293] for the proof of one implication. Great
effort was put to construct examples of extremal Kähler metrics throughout the last years, we refer to
[31, 88, 108, 109, 311, 313, 340] for some constructions.

On the other hand, in the last decades, many special geometries, such as Sasakian or G2 Geometry,
turned out to be relevant in the study of string theory and black holes. Focusing our attention on
the complex side, non-Kähler models were proposed by many theoretical physicists, highlighting and
promoting the need for a better mathematical understanding of non-Kähler Geometry. A remarkable
example is the Hull-Strominger system, see [190, 308], originally arising in heterotic string theory, which
has nowadays attracted great attention, mainly due to the belief that its solutions may geometrize the
non-Kähler Calabi-Yau condition. We refer to [143] for an introductory account of the system and to
[15, 20, 21, 66, 83, 102, 103, 104, 106, 107, 114, 134, 136, 135, 145, 147, 148, 252, 261, 262, 263, 264, 265]
for explicit solutions and properties of the system.

Other interesting non-Kähler geometries arise from the study of (2, 0) and (4, 0)-supersymmetric
sigma models with Wess-Zumino term, see [150, 189], giving rise to the so-called Kähler with torsion and
hyperKähler with torsion geometries. Other physical situations where these geometries appeared can be
found in [101, 162, 176, 180, 181, 241].

Besides their physical interest, both the examples are highlighting an important difference, from the
mathematical point of view, between Kähler and non-Kähler Geometry. This discrepancy is the presence
of multiple connections preserving the Hermitian structure. In particular, the anomaly cancellation
equation in the Hull-Strominger system involves the curvature of the Chern connection associated to the
metric, namely the unique Hermitian connection whose torsion has vanishing (1, 1)-part. On the other
hand, targets of (2, 0) and (4, 0)-supersymmetric sigma models with torsion are naturally endowed with
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iv INTRODUCTION

a connection preserving the Hermitian structure with totally skew-symmetric torsion, which, nowadays,
is known as the Strominger or Bismut connection, see [52, 308].

Since they have non-vanishing torsion, these two connections identify naturally two types of special
Hermitian metrics by imposing conditions on their torsion. More in details, balanced metrics are those
Hermitian metrics whose Chern connection has traceless torsion. On the other side, Strong Kähler with
Torsion, or SKT for short, metrics are those Hermitian metrics whose Bismut connection has d-closed
torsion. Remarkably, these two conditions on the torsion can be equivalently written as cohomological
conditions on the fundamental form associated to the Hermitian metric. More precisely, given (Mn, J, ω)
a Hermitian manifold, the metric ω is balanced if and only if

dωn−1 = 0

while ω is SKT if and only if
∂∂̄ω = 0 .

Furthermore, hyperKähler with torsion, or HKT for short, metrics sit in the stricter framework of hy-
perHermitian Geometry. More specifically, given (M, I, J,K, g) a hyperHermitian manifold, i.e. I, J,K
are integrable complex structures such that

K = IJ = −JI

and g is Hermitian with respect to I and J , g is called HKT if the Bismut connections associated to
(I, g), (J, g) and (K, g) coincide. Equivalently, this condition can be rephrased as

∂Ω = 0 , Ω :=
ωJ +

√
−1ωK

2
, ωJ(·, ·) := g(J ·, ·) , ωK(·, ·) := g(K·, ·) ,

where ∂ is induced by the splitting of d with respect to I. Moreover, we will say that a HKT metric g is
strong HKT if ωI is SKT.

It is now fairly easy to see that both the balanced and the SKT condition are weaker than the Kähler
one while the HKT condition is straightforwardly generalizing the hyperKähler one, which is equivalent
to dΩ = 0. Moreover, as in the Kähler case, both balanced, SKT and HKT metrics define natural
cohomology classes in appropriate cohomology rings. For instance, the balanced class of a balanced
metric ω is defined as:

[ωn−1]BC ∈ Hn−1,n−1
BC (M) :=

ker ∂ ∩ ker ∂̄ ∩ Λn−1,n−1M

Im ∂∂̄ ∩ Λn−1,n−1M
,

while the HKT class of a HKT metric Ω is

[Ω]qBC ∈ H2,0
qBC(M) :=

ker ∂ ∩ ker ∂J ∩ Λ2,0
I M

Im ∂∂J ∩ Λ2,0
I M

,

where ∂J := J−1∂̄J and Λ2,0
I M is the set of (2, 0)-forms with respect to I.

Besides being the building blocks for some physical models, balanced and SKT metrics have also
attracted great attention due to the so-called Fino-Vezzoni conjecture, see [125, Problem 3]. In [14],
it was showed that a Hermitian metric cannot be both balanced and SKT, unless Kähler. The Fino-
Vezzoni conjecture is a natural generalization of the aforementioned result, stating that the co-existence
of balanced and SKT metrics forces the manifold to be Kähler.

Conjecture A. Let (M,J) be a compact complex manifold admitting a balanced and a SKT metric.
Then, M is Kähler.

Evidences of the validity of Conjecture A can be found in the works of many authors, see [70, 79,
80, 113, 119, 125, 126, 128, 133, 167, 234, 266]. A counterexample in the non-compact case was found
by Freibert and Swann in [128]. Even if Conjecture A was proved to hold in many classes of manifolds,
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the proofs of most of the results are investigating structural restrictions on the manifold imposed by
the existence of balanced and SKT metrics, for instance conditions on the structural equations of the
Lie algebra or the existence of specific currents, ultimately obstructing the co-existence of them, in the
non-Kähler case.

The fil rouge of the present thesis is the study of Conjecture A from a more curvature-based point
of view, trying to extrapolate information on the manifold from the study of canonical balanced or SKT
metrics.

From a more analytic perspective, the nature itself of the balanced and SKT conditions highlights a
substantial difference in the approaches adapted to study curvature conditions on such metrics. While in
the Kähler case, the elliptic approach, with the study of Monge-Ampère equations and the cscK equation,
and the parabolic one, with the Kähler-Ricci flow and the Calabi flow, see [67, 77], are intimately related
and proved to be both successful, in the non Kähler setting, these two approaches turned out to be more
well-suited when used on particular types of Hermitian metrics.

Focusing on the elliptic approach, balanced metrics are the main objects in the so-called balanced
Gauduchon conjecture, see [314, 320], stating that on a compact balanced manifold the first Chern-Ricci
form can always be prescribed within the balanced class of any balanced metric. Later, in [130], the
conjecture was equivalently reformulated in terms of the so-called Form-Type Calabi-Yau equation, which
is a Monge-Ampère type equation for (n− 1, n− 1)-forms. Moreover, the latter equation has the natural
purpose to produce, on suitable compact manifolds, balanced Chern-Ricci flat metrics within any balanced
class, promoting balanced Chern-Ricci flat metrics as canonical representatives of the balanced class, as
Kähler Ricci-flat metrics are in the Kähler Calabi-Yau case.

On the other hand, due to a result by Angella, Calamai and Spotti in [24], we cannot impose a
balanced metric to be first Chern-Einstein with non-zero Chern scalar curvature in a non-Kähler manifold.
Motivated by this and following the Kähler case, one may wonder if balanced constant Chern scalar
curvature metrics might be good candidates to be canonical representatives of a fixed balanced class.

One of the main theorems of this thesis proceeds in this direction. An outstanding result by Arezzo
and Pacard in [31] ensures that the blow-up in a finite number of smooth points of a cscK orbifold with
isolated singularities and no non-trivial holomorphic vector fields admits cscK metrics in Kähler classes
which make the volume of the exceptional divisors small. The following theorem is a generalization of
the result by Arezzo and Pacard in the balanced Chern-Ricci flat case.

Theorem B. Let (Mn, ω̃) be a compact balanced Chern-Ricci flat manifold or orbifold with isolated
singularities. Then, given p1, . . . , pk ∈ M and a1, . . . , ak > 0, there exists ε0 > 0 such that the blow-up
of M at p1, . . . , pk admits a balanced negative constant Chern scalar curvature metric

ωn−1
ε ∈ π∗[ω̃n−1]BC − ε2n−2

k∑
i=1

an−1
i [Ei]

n−1
BC ,

where [Ei]BC is the first Bott-Chern class of the line bundle associated to the exceptional divisor Ei of
the blow-up at pi and ε ∈ (0, ε0).

Regarding the parabolic approach, a flow of balanced metrics was proposed by Bedulli and Vezzoni
in [48], generalizing the Calabi flow. As far as the author knows, very few results are known concerning
this flow. In [48], the authors proved short-time existence and studied the behaviour of the flow on the
Iwasawa manifold. Later, the flow was studied by Fino and Paradiso in [119] on 6-dimensional almost
abelian solvmanifolds. Analytically speaking, the flow introduced by Bedulli and Vezzoni is of fourth
order which makes it really hard to work with, due to a poor understanding of fourth order elliptic
equations.

On the other hand, the parabolic approach turned out to be successful for SKT metrics. Streets and
Tian in [302] introduced the pluriclosed flow as the following evolution equation:

∂

∂t
g = −S +Q , g(0) = g0 ,
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where S is the second Chern-Ricci tensor while Q is an appropriate quadratic expression in the torsion
of the Chern connection. It was proved in [302] that the pluriclosed flow preserves the SKT condition
and it can be rewritten as an evolution equation of (1, 1)-forms as follows:

∂

∂t
ω = −(RicB(ω))1,1 , ω(0) = ω0 ,

where RicB(ω) is the Bismut-Ricci form of ω, which closely resembles the structure of the Kähler-Ricci
flow. Besides not having the same good analytic properties of the Kähler-Ricci flow, such as the reduction
to a flow of potentials, many results concerning the pluriclosed flow are known, see [32, 33, 37, 38, 54,
99, 111, 118, 122, 125, 146, 198, 272, 294, 295, 296, 297, 298, 299, 300, 304, 305, 307, 341, 342]. Among
these, one of the most important is the gauge-equivalence of the pluriclosed flow with the generalized
Ricci flow, which is the following coupled system of evolution equations:{

∂
∂tg = −2Ric(g) + 1

2H
2 g(0) = g0 ,

∂
∂tH = ∆gH H(0) = H0 ,

where H0 is a closed 3-form, Ric(g) is the classical Ricci tensor and the symmetric (2, 0)-tensor H2 is
defined by:

H2(X,Y ) := g(ιXH, ιYH) , X, Y ∈ Γ(TM) .

Besides being a straightforward generalization of the Ricci flow, the generalized Ricci flow arises naturally
in the context of Hitchin’s generalized Geometry, see [84, 82, 144, 149, 177, 208, 236, 281, 282, 283], as a
flow of generalized metrics.

Having the equivalence between the pluriclosed flow and the generalized Ricci flow in hand, we focused
our study on the behaviour of the generalized Ricci flow to obtain information on the pluriclosed flow,
especially on solvmanifolds, i.e. quotients of solvable Lie groups by a discrete subgroup.

Our main theorem in this direction is stating that the homogeneous generalized Ricci flow has long-
time existence on any solvmanifold.

Theorem C. Any invariant solution to the generalized Ricci flow on a solvmanifold exists for all positive
times.

More generally, we characterise the maximal existence time for the invariant generalized Ricci flow on
any Lie group G in terms of the blow-up behaviour of the generalized scalar curvature, see Theorem 3.2.33.
An invariant solution is simply a solution to the generalized Ricci flow on G/Γ that lifts to a left-invariant
solution on G.

As a straightforward corollary of Theorem C, we obtain the long-time existence of the homogeneous
pluriclosed flow on any solvmanifold endowed with a left-invariant SKT structure.

Corollary D. Any invariant solution to the pluriclosed flow on a solvmanifold endowed with a left-
invariant SKT structure exists for all positive times.

Surprisingly, the elliptic and parabolic approach are both well-suited for the study of canonical HKT
metrics. Nowadays, a great source of interest towards the HKT world is represented by the quaternionic
Calabi conjecture, firstly formulated by Alesker and Verbitsky in [9]. Mimicking the Calabi conjecture
in Kähler geometry, the quaternionic Calabi conjecture states that we can always prescribe the complex
volume or, equivalently, the first Chern-Ricci form of the given manifold within the HKT class of a
fixed HKT metric. This conjecture can also be reformulated as the problem of finding solutions to the
so-called quaternionic Monge-Ampère equation. Even though the quaternionic Calabi conjecture is still
open, partial results of the validity of the conjecture were proved in [7, 89, 157, 158, 159]. Furthermore,
a parabolic approach, using the parabolic quaternionic Monge-Ampère equation, was used to prove the
known results regarding the quaternionic Calabi conjecture, see [46, 47, 160]. Although both approaches
are suitable, to prove the existence part of the quaternionic Calabi conjecture, some technical difficulties
are arising in the proof of a priori estimates, mainly due to the geometric situation. A great source of
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complications is the fact that, in general, a hypercomplex manifold might not be locally isomorphic to
open sets of Hn, thus making it impossible to consider local quaternionic coordinates. Other issues are
arising from the presence of the derivatives of complex structures which might not be vanishing.

Mainly due to these obstacles, we focus our study on more curvature-related aspects of HKT and
other types of special hyperHermitian metrics. Specializing the attention on strong HKT metrics, we
managed to prove the following theorem, providing a strong evidence of the validity of Conjecture A in
the hypercomplex setting.

Theorem E. Let (M,H,Ω) be a compact strong HKT manifold, then there exists no balanced hyper-
Hermitian metric compatible with H, unless the manifold is hyperKähler.

The main property used in the proof of Theorem E is the fact that the J-anti-invariant part of the
first Chern-Ricci form of a strong HKT metric is positive semidefinite, but not identically vanishing,
unless the metric is hyperKähler, see Proposition 4.5.2.

The present thesis is structured as follows.
Chapter 1 is meant to be an introduction to all the different Geometries we will treat throughout the

thesis. In particular, we recall the basic knowledge in complex Geometry, together with the description
of the main properties of balanced and SKT metrics. Then, we move to the broader framework of
generalized Geometry, rewieving the preliminary definitions, necessary to introduce the generalized Ricci
flow. Finally, we restrict our attention to hypercomplex and hyperHermitian Geometry, discussing the
main concepts in these settings and the definitions of HKT and other types of hyperHermitian metrics.

Chapter 2 is focused on the proof of Theorem B, which consists in a classical gluing procedure. After
setting up the constant Chern scalar curvature equation and comparing the problem with the one arising
in Kähler Geometry, we perform a deformation argument which allows us to conclude. Moreover, we
prove a similar result when a suitable (n−2, n−2)-form is available and discuss some examples on which
such form exists.

Chapter 3 is divided in two main sections. In Section 3.1, we collect results on the behaviour of the
pluriclosed flow on Oeljeklaus-Toma manifolds, which are particular solvmanifolds endowed with a left-
invariant complex structure, generalizing the Inoue surfaces. In Section 3.2, we study the homogeneous
generalized Ricci flow on Lie groups. In order to prove Theorem C and, consequently, Corollary D, we
perform a systematic study of the generalized Ricci flow with symmetries by using the generalized bracket
flow, a suitable flow in the space of Dorfman brackets on a fixed exact Courant algebroid. We moreover
study the asymptotics of the generalized Ricci flow on nilmanifolds highlighting particular behaviours,
called generalized nilsolitons.

In Chapter 4, we give a detailed treatment of the properties of special hyperHermitian metrics,
providing necessary and sufficient conditions for their existence. Then, we focus on the study of curvature
aspects, especially, in the case of strong HKT metrics, ultimately proving Theorem E. Finally, we define
a relevant notion of hyperHermitian Einstein metric and discuss some examples.
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Chapter 1

Preliminaries

The first chapter of the present thesis serves the purpose of introducing and discussing all the necessary
and basic notions for the next chapters.

The starting point of all the treatment is the study of complex Geometry, in particular of special Her-
mitian structures on a given complex manifold. The presence of a complex structure on the fixed manifold
imposes many restrictions, for instance on the dimension of the manifold itself, but, at the same time, it
produces a wilder scenario from the differential and curvature point of view. The very first evidence of
this is the presence of many canonical connections preserving the complex and metric structure, at least
in the non-Kähler case. Then, as for the Levi-Civita connection in Riemannian Geometry, it is natural to
study the geometries of such connections. Especially in the case of the Chern and Bismut connection, the
geometries arising highlight preferred types of Hermitian metrics, usually defined through cohomological
conditions. The first section of this chapter has the objective to explain how these connections are defined
and how they define special Hermitian metrics as preferred metrics for their study. We then describe the
main properties of such metrics.

On the other hand, complex Geometry can be regarded as a special instance of a wider subject, called
generalized Geometry, which was introduced with the precise aim of unifying the treatment of complex
and symplectic Geometry. Among the most important facts defined and proved in generalized Geometry,
an analogue of the classical Ricci flow, called generalized Ricci flow, was proposed to study generalized
Geometry. The second section of this chapter discusses the main features in generalized Geometry towards
the definition of such flow, describing its properties and its, both analytic and geometric, structure. As a
direct connection with complex Geometry, the generalized Ricci flow has a strict relation with a geometric
flow of Hermitian metrics, called pluriclosed flow. We will explain how these two flows are related.

Looking from another point of view, one may ask for even stricter geometries than complex one. A
possibility one has is to require the given manifold to admit globally defined endomorphisms behaving
like the quaternionic units. As a matter of fact, this requirement is equivalent to ask for a pair of anti-
commuting complex structures on the manifold we are studying, giving rise to the so-called hypercomplex
Geometry. As for the complex case, the imposition of a stricter geometry has the effect of generating,
especially from the metric point of view, new features. The third section of this chapter serves the aim of
introducing the basics concepts in hypercomplex and hyperHermitian Geometry and that of discussing
the exclusive notions defined in this environment.

Finally, in the fourth and last section of this chapter, we define two types of convergences in the space
of Riemannian manifolds, namely the Gromov-Hausdorff and the Chegeer-Gromov convergence. These
two concepts turned out to be relevant in the study of geometric flows both from the topological and from
the differential point of view, giving quantitative notions of collapsing and smooth convergence modulo
diffeomorphisms.

1



2 CHAPTER 1. PRELIMINARIES

1.1 Basics in complex Geometry

This first section has the aim of presenting all the basic knowledge in complex and Hermitian Geometry
we will need throughout the thesis. The section is divided in three subsections. In Subsection 1.1.1
we quickly review some basic properties of complex manifolds, as, for instance, the splitting of the
complefixied bundle of differential forms and the definition of first Chern class. Moreover, we present
the classical blow-up procedure. Later, we recall general facts concerning the Hermitian geometry of
a fixed manifold, discussing the definition of Gauduchon connections and of the Ricci 2-forms. In the
last part, we present some definitions and results regarding complex orbifolds. In Subsection 1.1.2, we
give the definition of balanced metrics and state their principal properties both from a geometric and
analytical point of view. Finally, in Subsection 1.1.3, we give the definition of SKT metrics, describe the
Fino-Vezzoni conjecture and, lastly, define the pluriclosed flow, ending the section discussing some results
about the aforementioned flow.

1.1.1 Complex and Hermitian structures on manifolds and orbifolds

We start this subsection by recalling the main objects we want to study, i.e. complex manifolds.

Definition 1.1.1. Let M be a Hausdorff topological space. M is said to be a complex manifold of
complex dimension n if, for any point p ∈M , there exist a neighbourhood Up of p and a homeomorphism
φp : Up → φ(Up) ⊂ Cn such that, whenever Up ∩ Uq ̸= ∅, for some p, q ∈M , the map

φp ◦ φ−1
q : φq(Up ∩ Uq) → φp(Up ∩ Uq)

is a biholomorphism.

Example 1.1.2. Any open set of Cn is a complex manifold. Thus, Cn\{0} is a complex manifold.
As in the smooth category, if we have a Lie group G acting holomorphically, i.e. for any g ∈ G, the

map p 7→ g · p is holomorphic, freely and properly on a complex manifold M , then, the orbit space M/G
inherits a unique structure of complex manifold such that the projection onto the quotient

π : M →M/G

is holomorphic. This gives rise to many examples. For instance, the complex projective space CPn =
Cn+1\{0}

C∗ is a complex manifold, where, of course, the action on C∗ is defined by λ · z = λz, for all λ ∈ C∗

and z ∈ Cn+1\{0}. The complex structure on CPn defined in this way coincides with the usual complex
structure defined using affine open sets.

Before discussing other examples, we want to explore in a better way what a complex manifold
structure allows us to define. Let Mn be a complex manifold. For any p ∈ M , we can find holomorphic
coordinates {z1, . . . , zn} around the point p. On the other hand, we can write zi = xi +

√
−1yi, for any

i = 1, . . . , n, and infer that

∂

∂zi
:=

1

2

(
∂

∂xi
−
√
−1

∂

∂yi

)
,

∂

∂z̄i
:=

1

2

(
∂

∂xi
+

√
−1

∂

∂yi

)
.

Thus, for any point p ∈M , we can define Jp ∈ End(TpM) such that

Jp
∂

∂xi
:=

∂

∂yi
, Jp

∂

∂yi
:= − ∂

∂xi
.

One can easily check that Jp does not depend on the choice of the coordinates we did and thus defines
J ∈ End(TM) such that J2 = −Id. Moreover, the action of J can be extended by C-linearity to the
complexified tangent bundle

TMC := TM ⊗ C .
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Now, since J2 = −Id, we obtain two eigenbundles of TMC

T 1,0M := ker(J −
√
−1Id) , T 0,1M := ker(J +

√
−1Id) ,

such that
TMC = T 1,0M ⊕ T 0,1M ,

which are respectively called holomorphic and anti-holomorphic tangent bundle of M . One can easily
check that

Γ(T 1,0M) ≃ {X −
√
−1JX | X ∈ Γ(TM)} , T 1,0M = T 0,1M . (1.1)

It is easy to show that, if J is induced by a complex manifold structure on the manifold as above,

[Γ(T 1,0M),Γ(T 1,0M)] ⊆ Γ(T 1,0M) ,

i.e. T 1,0M is a subbundle of TMC. This last condition is, using (1.1), equivalent to ask for

NJ(X,Y ) := [X,Y ] + J([JX, Y ] + [X, JY ]) − [JX, JY ] , X, Y ∈ Γ(TM)

to be identically vanishing. The tensor NJ is called Nijenhuis tensor of J . Usually, J ∈ End(TM)
such that J2 = −Id is called almost-complex structure on M . While if NJ = 0, J is called integrable
almost-complex structure or just complex structure on M .
By Newlander-Niremberg Theorem, having an integrable almost-complex structure is equivalent to have
a complex manifold structure on M which induces J .

Theorem 1.1.3 ([245]). Let (M2n, J) be a smooth manifold endowed with J ∈ End(TM) such that
J2 = −Id. Then, J is induced by a complex manifold structure on M if and only if NJ = 0.

Throughout this thesis, we will be concerned only on integrable almost-complex structures. For this,
we will refer to J as the complex structure.
In view of Theorem 1.1.3, we can produce many more examples of complex manifolds.

Example 1.1.4. Let G be a Lie group endowed with an almost-complex structure J which is bi-invariant,
i.e. both left and right-invariant. Then, J is integrable, thus, G is a complex manifold. Moreover,
the multiplication rule and the inversion are holomorphic, giving G a structure of complex Lie group.
Conversely, any complex Lie group can be endowed with a bi-invariant complex structure.

Let G be a Lie group endowed with a complex structure J which is left-invariant. This guarantees
that (G, J) is a complex manifold. On the other hand, if we assume that Γ is a discrete subgroup of G
acting freely and properly discontinuous by left multiplication, then, J descends to the quotient G/Γ,
providing a complex structure on G/Γ.
An important example which will be central later is the Iwasawa manifold. We consider the Lie group

Heis(3,C) =


1 z1 z2

0 1 z3
0 0 1

 ∣∣∣∣∣∣ z1, z2, z3 ∈ C

 .

As one may check easily, the multiplication rule on Heis(3,C) turns out to be holomorphic, giving
Heis(3,C) a complex Lie group structure. This guarantees the existence of a complex structure J which
is bi-invariant. Now, we can consider the subgroup Heis(3,Z[

√
−1]) of Heis(3,C) which is a lattice. Then,

by the discussion above, we have a complex structure J on

M = Heis(3,C)/Heis(3,Z[
√
−1])

which is called Iwasawa manifold. M is a threefold which is usual discussed as the first example of a
non-Kähler complex manifold satisfying all the restrictions of Kähler manifolds on the Betti numbers.
Indeed, M fails to be formal in the sense of Sullivan, see [309], which is a necessary condition to be
Kähler, see [86].
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Other examples of complex manifolds are the so-called holomorphic fiber bundles over a given complex
manifold. These manifolds are, locally, biholomorphic to the product of an open set of the base manifold
with another complex manifold, called the fibre.

Definition 1.1.5. Let M be a complex manifold. A holomorphic fiber bundle with typical fibre F is a
complex manifold E, called total space, endowed with a holomorphic map

π : E →M

such that, for any p ∈M , there exist a neighbourhood U of p and a biholomorphism

ψ : U × F → π−1(U)

such that π ◦ ψ = pr1 where pr1 : U × F → U is the projection onto the first factor. If F is a complex
vector space of dimension k, then, E is called holomorphic vector bundle of rank k over M . In the special
case in which k = 1, E will be called line bundle over M .

Once the concept of line bundle is in hand, we can define the blow-up of a given complex manifold
in a point. This procedure allows us to produce a different complex manifold by, heuristically, replacing
a point of the starting manifold by a complex projective space. We start recalling the definition of the
blow-up of Cn at the origin.

Definition 1.1.6. The blow-up Bl0Cn of Cn at the origin 0 ∈ Cn is the total space of the line bundle
O(−1) over CPn−1.

The line bundle O(−1) is usually called tautological line bundle and its total space can be described
as follows:

O(−1) = {(ℓ, z) ∈ CPn−1 × Cn | z ∈ ℓ}

with the projection map
p : O(−1) → CPn−1

such that p(ℓ, z) = ℓ, for all (ℓ, z) ∈ O(−1). The zero section of p will be denoted with E ≃ CPn−1 and
it will be called exceptional divisor. On the other hand, we can consider the map

π : O(−1) → Cn

such that π(ℓ, z) = z, for all (ℓ, z) ∈ O(−1). Of course, π is holomorphic and restricts to a biholomorphism

π : Bl0Cn\E → Cn\{0} .

The map π is usually called blowdown map.
Then, the blow-up of a given manifold in a certain point consists in a connected sum between the

manifold and Bl0Cn via the blowdown map π.

Definition 1.1.7. Let Mn be a complex manifold and p ∈M . We identify a neighbourhood centered at
p with a ball B ⊂ Cn. The blow-up BlpM of M at p is constructed by replacing B with π−1(B) using
the biholomorphism

π : π−1(B\{0}) → B\{0} .

The blow-up of M at p is then a complex manifold endowed with a map

π : BlpM →M

which is a biholomorphism when restricted to

π : BlpM\E →M\{p}
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where E = π−1(p) ≃ CPn−1 is the exceptional divisor. The blow-up construction turned out to be
fundamental, especially in Algebraic Geometry. To give a glimpse of this fact, we remark that, besides
from CP2 and CP1×CP1, all the Fano surfaces, also known as Del Pezzo surfaces, are blow-ups of CP2 at
1 ≤ k ≤ 8 points, see [85] or [129, Theorem 5.16]. Another important theorem stressing the importance
of the blow-up is Theorem 1.1.41 that we will state later on in this section.

Let us now turn our attention to a more differential geometric point of view. From now on, let (M,J)
be a complex manifold. The splitting of the complexified tangent bundle gives rise to a splitting of the
complexified bundle of differential form in any degree:

ΛkM ⊗ C =
⊕
p+q=k

Λp,qM , Λp,qM := Λp(T 1,0M)∗ ⊗ Λq(T 0,1M)∗ , k ∈ N , (1.2)

where Λp,qM is called the bundle of (p, q)-forms. Moreover, we will denote with Λp,pR M the bundle of real
(p, p)-forms, i.e. those α ∈ Λp,pM such that α = α. Then, for any k ∈ N, we can consider the projection

πp,q : ΛkM ⊗ C → Λp,qM .

The presence of the above projections guarantees the splitting of the exterior differential: for any k ∈ N,

d = ∂ + ∂̄ , on Λp,qM , ∂ := πp+1,q ◦ d , ∂̄ := πp,q+1 ◦ d .

It is easy to prove, using that d2 = 0, that the following hold:

∂2 = 0 , ∂̄2 = 0 , ∂∂̄ = −∂̄∂ . (1.3)

Another interesting and useful differential operator on forms is the twisted exterior differential dc. In
order to define it, we extend the action of J on k-forms as follows:

(Jα)(X1, . . . , Xk) = α(JX1, . . . , JXk) , X1, . . . , Xk ∈ Γ(TM) . (1.4)

We remark here that the action of J in (1.4) might differ by a sign from that used by many authors in
literature.

Then, the twisted exterior differential is defined by

dc := J−1dJ .

An easy computation shows that dc =
√
−1(∂̄ − ∂). Using the latter expression and (1.3), we have that

ddc = 2i∂∂̄.
The relations (1.3) give rise to different cohomology rings respectively defined by:

H∂̄(M) :=
ker ∂̄

Im ∂̄
, HBC(M) :=

ker ∂ ∩ ker ∂̄

Im∂∂̄
, HA(M) :=

ker ∂∂̄

Im ∂ + Im ∂̄
.

The cohomology ring H∂̄ is called Dolbeault cohomology ring and it plays an important role in the study
of Hodge theory in Kähler Geometry, see [191, Corollary 3.2.12], while HBC and HA are respectively
called Bott-Chern and Aeppli cohomology rings. These two are characteristic of non-Kähler Geometry
and, respectively, they play important roles in the study of balanced and SKT metrics.

Let us now focus on the study of line bundles over a given compact complex manifold M . It can easily
be seen that the set of isomorphism classes of line bundles endowed with the tensor product is a group
which is classically called Picard group and denoted with Pic(M). On the other hand, making use of the
transition maps, one can infer that

Pic(M) ≃ H1(M,O∗
M ) ,

where O∗
M is the sheaf of nowhere vanishing holomorphic functions on M . Then, we can consider the

exponential exact sequence:

0 Z OM O∗
M 0e2π

√
−1

.
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This of course will give rise to a long exact sequence in cohomology:

. . . H1(M,Z) H1(M,OM ) Pic(M) H2(M,Z) . . .
c1 (1.5)

Definition 1.1.8. The first Chern class c1(L) of a line bundle L over M is the image of L via the
boundary map c1 in (1.5).

The splitting of differential forms gives rise to a special line bundle KM = Λn,0M over Mn which is
called canonical bundle of M . The canonical bundle has a really important role both in Differential and
Algebraic complex Geometry. Indeed, some of the most studied classes of complex manifolds are defined
in terms of properties of the canonical bundle. For instance, Calabi-Yau manifolds are complex manifolds
which have holomorphically trivial canonical bundle, while Fano manifolds are complex manifolds having
−KM which is ample. Even though a general complex manifold might be neither Calabi-Yau nor Fano,
classes of complex manifolds can be distinguished in terms of various invariants stemming from the
canonical bundle. The very first one is the first Chern class of the manifold.

Definition 1.1.9. Let M be a complex manifold. The first Chern class c1(M) of M is the first Chern
class of −KM , i.e.

c1(M) := c1(−KM ) ∈ H2
dR(M,Z) ∩H1,1

∂̄
(M) .

Even though the first Chern class is a holomorphic invariant, many compact complex manifolds can
have the same first Chern class. For instance, for a compact complex manifold, it is sufficient to have
topologically trivial canonical bundle to have vanishing first Chern class. Then, for example, any Lie
group endowed with a left-invariant complex structure has vanishing first Chern class. However, the first
Chern class of M is related to the curvature properties of the manifold itself, as we will see later.

Another invariant one can define using the canonical bundle is the Kodaira dimension.

Definition 1.1.10. Let M be a complex manifold. The Kodaira dimension of M is defined as

κ(M) := lim sup
k→∞

log dimH0(M,K⊗k
M )

log k
,

where κ(M) = −∞ if K⊗k
M has no non-trivial holomorphic sections, for any k ∈ N.

The Kodaira dimension turns out to be a birational invariant. Moreover, κ(Mn) ∈ {−∞, 0, 1, . . . , n}.
The Kodaira dimension was also found to be a useful tool to partially classify compact complex surfaces.

With all the basic definitions set, we now focus our attention on the metric properties of complex
manifolds.

Definition 1.1.11. Let (M,J) be a complex manifold and g a Riemannian metric on M . The metric g
will be called Hermitian if

g(JX, JY ) = g(X,Y ) , X, Y ∈ Γ(TM) .

A Hermitian metric g on a complex manifold M defines the so-called fundamental form ω associated
to g as follows:

ω(X,Y ) := g(JX, Y ) , X, Y ∈ Γ(TM) .

As one can check, ω ∈ Λ2M and Jω = ω, which, in turns, implies that ω ∈ Λ1,1
R M . By definition, ω

turns out to be positive definite, i.e.

ω(X, JX) > 0 , X ∈ TM , X ̸= 0 .

Moreover, by knowing 2 elements among g, J, ω, one can recover the third one. Indeed,

g(X,Y ) = ω(X, JY ) , JX = (ιXω)♯ , X, Y ∈ Γ(TM) .
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Thanks to this, as it is customary in complex Geometry, we will refer to ω as the Hermitian metric. In
what follows, we will be referring equivalently to the triple (M,J, ω) or to the pair (M,ω) as a Hermitian
manifold, possibly omitting the complex structure when no confusion is made.

Let us fix a Hermitian metric ω on M . We know that ω is positive definite, hence, ωn ∈ Λn,nR M is a
volume form on M . It is easy to check that, up to an appropriate constant, it coincides with the volume
form induced by the Riemannian metric:

ωn

n!
= Volg .

As in the Riemannian case, we can consider the Hodge star operator. We recall here its definition.

Definition 1.1.12. Let (Mn, ω) be a Hermitian manifold. We define the Hodge star operator ∗ as
follows:

α ∧ ∗β = g(α, β)
ωn

n!
, α, β ∈ ΛkM ,

where the inner product g on k-forms is the naturally induced one by the Hermitian metric.

On the other hand, the Hodge star operator can be C-linearily extended to

Λ•M ⊗ C :=
⊕
k∈N

(ΛkM ⊗ C) .

The resulting operator satisfies the following:

α ∧ ∗β̄ = g(α, β)
ωn

n!
, α, β ∈ ΛkM ⊗ C , (1.6)

where here g is the Hermitian extension of g to Λ•M ⊗C. In what follows, we will denote both the Hodge
star operator and its C-linear extension with the same notation, since no confusion will be possible.

The Hodge star operator satisfies many useful properties collected in the following proposition.

Proposition 1.1.13. Let (Mn, ω) be a Hermitian manifold. Then, then following hold:

1. ∗ : Λp,qM → Λn−q,n−pM ;

2. for any α ∈ ΛkM and β ∈ Λ2n−kM , we have that

g(α, ∗β) = (−1)k(2n−k)g(∗α, β) ;

3. ∗ is an isometry for g on Λ•M .

We refer to [191, Proposition 1.2.20] for the proof of Proposition 1.1.13.

An important operator one can define when a non-degenerate 2-form ω is in hand is the Lefschetz
operator Lω : ΛkM → Λk+2M such that

Lωα := α ∧ ω , α ∈ ΛkM .

Starting from the Lefschetz operator, one can define its adjoint operator with respect the inner product
on forms induced by the Hermitian metric.

Definition 1.1.14. Let (M,ω) be a Hermitian manifold. The adjoint Λω of the Lefschetz operator is
defined by:

g(Λωα, β) = g(α,Lωβ) , α ∈ Λk+2M , β ∈ ΛkM .

It is easy to verify that Λω = ∗−1L ∗ . A form α ∈ P k := ker Λω ∩ ΛkM is called primitive k-form.
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Frequently, when no confusion can be made, we will omit the dependence on the Hermitian metric ω
in both L and Λ.

In general, we do not have a precise expression for Λω. However, one can obtain it in some special
cases. The case we will use more frequently is that of (1, 1)-forms. Indeed, one can easily see that, if
α ∈ Λ1,1M , then,

Λωα = n
α ∧ ωn−1

ωn
. (1.7)

In the next sections, from time to time, we will refer to Λωα as the trace of α with respect to ω or, when
no confusion is possible, as the trace of α.

Proposition 1.1.15. Let (Mn, ω) be a Hermitian manifold. The following hold:

1. If H : ΛkM → ΛkM is defined by Hα := −(n − k)α, then the action of L,Λ and H determines a
sl(2,C)-representation on Λ•M , i.e.

[H,L] = 2L , [H,Λ] = −2Λ , [L,Λ] = H ;

2. We have the following orthogonal decomposition:

ΛkM =
⊕
i≥0

Li(P k−2i) ;

3. For any k > n, P k = 0 ;

4. Ln−k : ΛkM → Λ2n−kM is bijective, for any k ≤ n;

5. if k ≤ n, P k = kerLn−k+1 ∩ ΛkM ;

6. for any α ∈ P k, k ≤ n,

∗Ljα = (−1)
k(k+1)

2
j!

(n− j − k)!
Jα ∧ ωn−j−k .

We refer to [191, Proposition 1.2.26, Proposition 1.2.30, Proposition 1.2.31] for the proof of Proposi-
tion 1.1.15.

Let us now consider (M,ω) to be a compact Hermitian manifold. On M , we can define a inner product
on the whole algebra of differential forms which is usually known as the L2-inner product.

Definition 1.1.16. Let (M,ω) be a compact Hermitian manifold. The L2-inner product is defined by:

⟨α, β⟩L2 :=

∫
M

g(α, β)
ωn

n!
=

∫
M

α ∧ ∗β̄ , α, β ∈ ΛkM ⊗ C .

The L2-inner product defines a Hilbert space structure on the whole algebra of differential forms.
This allows us to define the formal adjoint operators of d, ∂ and ∂̄.

Definition 1.1.17. Let (M,ω) be a compact Hermitian manifold. The operators d∗, ∂∗ and ∂̄∗ are
defined, respectively, by the following:

⟨d∗α, β⟩L2 = ⟨α, dβ⟩L2 , ⟨∂∗α, β⟩L2 = ⟨α, ∂β⟩L2 , ⟨∂̄∗α, β⟩L2 = ⟨α, ∂̄β⟩L2 .

Moreover, we have that d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗, ∂̄∗ = − ∗ ∂̄∗ and d∗ = ∂∗ + ∂̄∗.

Then, with these operators, we can define various Laplacian operators.
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Definition 1.1.18. Let (M,ω) be a compact Hermitian manifold. The Hodge-Riemann Laplacian and
the complex Laplacians are defined, respectively, by:

∆d := [d, d∗] , ∆∂ := [∂, ∂∗] , ∆∂̄ := [∂̄, ∂̄∗] .

Here, we used the graded Lie bracket on the algebra of endomorphisms of Λ•M , i.e.

[A,B] := AB − (−1)degAdegBBA ,

where degA is defined as the integer such that

A : ΛkM → Λk+degAM .

Hence, with this in hand, for instance, we recover the classical expression of the Hodge-Riemann Laplacian
as

∆d = [d, d∗] = dd∗ + d∗d .

Another Laplacian can be defined on fuctions on a Hermitian manifold and it is called Chern Laplacian.

Definition 1.1.19. Let (Mn, ω) be a Hermitian manifold. The Chern Laplacian ∆ω is defined by:

∆ωf := Λω(
√
−1∂∂̄f) = n

√
−1∂∂̄f ∧ ωn−1

ωn
, f ∈ C∞(M,R) .

The relation between the Chern and the Hodge-Riemannan Laplacian was investigated by Gauduchon
in [152].

Theorem 1.1.20 ([152], Formula (4)). Let (Mn, ω) be a compact Hermitian manifold. Then, we have

2∆ωf = −∆df + g(df, θ) , f ∈ C∞(M,R) , (1.8)

where θ ∈ Λ1M is the Lee form of ω, defined by dωn−1 = θ ∧ ωn−1.

Even though the Lee form is defined implictly, we can recover an explicit expression in terms of J
and d∗ω. First of all, we note that θ is well defined thanks to Item 4 of Proposition 1.1.15. On the other
hand, using Item 6 of Proposition 1.1.15, one can infer that θ = −Jd∗ω.

Throughout all the thesis, we will be interested in study of Hermitian metrics satisfying some coho-
mological condition. Historically speaking, the first one appeared is the Kähler one.

Definition 1.1.21. Let (M,ω) be a Hermitian manifold. We say that ω is Kähler if dω = 0 .

The Kähler condition might be thought as the intersection between Riemmanian, complex and sym-
plectic Geometry and it plays an important role in the study of Differential and Algebraic Geometry.
Indeed, for instance, classical examples of Kähler metrics are the Fubini-Study metric on CPn and its
pullback to any smooth projective variety.

Example 1.1.22. Another example of Kähler metric is the Burn-Simanca metric ωBS on Bl0Cn. This
metric was defined in [227] and [285] and it is an asymptotically flat and scalar flat Kähler metric. The
asymptotic flatness, in a more formal way, is equivalent to require that there exist a compact subset
K ⊆ Bl0Cn, R > 1 and a biholomorphism φ : Cn\B(0, R) → Bl0Cn\K such that there exist λ > 1 and
τ > 0 so that

λ−1ωo ≤ φ∗ωBS ≤ λωo ,

where ωo =
√
−1∂∂̄|ζ|2 is the flat Kähler metric on Cn\B(0, R), and

φ∗ωBS = ωo + O(|ζ|−τ ) , |ζ| → ∞ .

Indeed, assuming n ≥ 3 and using the standard coordinates ζ on Bl0Cn\E ≃ Cn\{0}, ωBS can be written
as:

ωBS =
√
−1∂∂̄(|ζ|2 + γ(|ζ|)) , γ(|ζ|) = O(|ζ|4−2n) , |ζ| → ∞ , (1.9)

where E is the exceptional divisor of Bl0Cn.
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The Kähler condition allows to compute several commutation rules between the differential operators
d, ∂ and ∂̄ and their adjoints with the operators L and Λ.

Theorem 1.1.23. Let (M,ω) be a compact Kähler manifold. Then, the following hold:

1. [L, d] = 0 and [Λ, d∗] = 0;

2. [d∗, L] = −dc and [Λ, d] = −(dc)∗;

3. ∆∂ = ∆∂̄ = 1
2∆d .

For a proof of these identities, we refer to [191, Proposition 3.1.12] or to [155, Proposition 1.14.1].
Moreover, the Kähler condition is the right condition to impose on a Hermitian metric for the associated
Levi-Civita connection to preserve the complex structure.

Proposition 1.1.24. Let (M,J, ω) be a Hermitian manifold. Then, ω is Kähler if and only if

DJ = 0 ,

where D is the Levi-Civita connection associated to ω.

On the other hand, since we will be concerned the most on non-Kähler geometry, we will be focusing
on a special class of connections, called Hermitian.

Definition 1.1.25. Let (M,J, ω) be a Hermitian manifold. A connection ∇ is called Hermitian if

∇g = 0 , ∇J = 0 .

Gauduchon in [154] identified a line of special Hermitian connections, which are now called canonical
connections or Gauduchon connections.

Theorem 1.1.26 ([154], Proposition 2(ii), Definition 2). Let (M,J, ω) be a Hermitian manifold. Then,
for all t ∈ R, there exists a Hermitian connection ∇t characterized by the following:

g(∇t
XY,Z) = g(DXY,Z) +

t− 1

4
(dcω)(X,Y, Z) +

t+ 1

4
(dcω)(X, JY, JZ) , X, Y, Z ∈ Γ(TM) . (1.10)

In the case in which ω is Kähler, the Gauduchon connections all coincide with the Levi-Civita one.
On the other hand, if ω is not Kähler, the Gauduchon line is a proper line and the choice of different
connections in the line determines different geometries of the manifold. Among the Gauduchon connec-
tions, we can find two important Hermitian connections previously defined, respectively, by [78] and by
[52, 308].

Definition 1.1.27. Let (M,J, ω) be a Hermitian manifold. The Chern connection ∇ is the unique
Hermitian connection such that T 1,1 = 0, where T is the torsion of ∇, i.e.

T (X,Y ) := ∇XY −∇YX − [X,Y ] , X, Y ∈ Γ(TM) .

The Bismut connection ∇B is defined as the unique Hermitian connection such that

H := g(TB(·, ·), ·) ∈ Λ3M .

Respectively, the Chern and the Bismut connection correspond to the choice of the parameter t = 1
or t = −1 in the Gauduchon line. Then, using (1.10), one can infer that

H = dcω . (1.11)

The Chern and the Bismut connection play a natural role in the study of some special Hermitian
metrics. Before discussing them, we recall the definition of the Ricci 2-form and the scalar curvature of
the Gauduchon connections.
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Definition 1.1.28. Let (M,J, ω) be a Hermitian manifold. For any t ∈ R, we define the Ricci form of
∇t as follows:

Rict(ω) := −1

2
tr(JRt) , (1.12)

where Rt is the curvature tensor associated to ∇t. Moreover, the scalar curvature of ∇t is defined as:

st(ω) := ΛRict(ω) = n
Rict(ω) ∧ ωn−1

ωn
. (1.13)

In what follows, we will refer to RicCh(ω) := Ric1(ω) as the first Chern-Ricci form and to RicB(ω) :=
Ric−1(ω) as the Bismut-Ricci form as well as sCh(ω) and sB(ω) as, respectively, the Chern scalar curvature
and the Bismut scalar curvature.

We have an explicit expression of the Ricci forms of ∇t, for all t ∈ R, in terms of the first Chern-Ricci
form.

Lemma 1.1.29 ([170], Formula 8). Let (M,ω) be a Hermitian manifold. Then, for all t ∈ R, we have

Rict(ω) = RicCh(ω) +
t− 1

2
dd∗ω . (1.14)

Let us focus our study in the particular cases in which t = 1. As we remarked before, choosing the
parameter t = 1 is equivalent to study the Chern connection. Now, computing explicitly the components
of the curvature tensor of the Chern connection in local holomorphic coordinates, we have that

Rij̄kl̄ = − ∂2gkl̄
∂zi∂z̄j

+ gpq̄
∂gkq̄
∂zi

∂gpl̄
∂z̄j

.

Then, tracing as in (1.12), it is easy to check that locally

RicCh(ω) = −
√
−1∂∂̄ logωn ∈ Λ1,1

R M ,

giving that RicCh(ω) is d-closed and, hence, defining a De Rham cohomology class. We claim, that, up
to a factor, this cohomology class coincide with the first Chern class of M .

First of all, we know that any Hermitian metric on M induces a Hermitian metric h on the fibres
of −KM . Then, one can consider the Chern connection ∇ associated to h on −KM and produce its
curvature F∇ := (∇)2 ∈ Γ(M,Λ1,1M ⊗End(−KM , h)). Chern-Weil theory, see for instance [191, Section
4.4], then ensures that

c1(M) =

[√
−1

2π
trF∇

]
∈ H2

dR(M,R) ∩H1,1

∂̄
(M) .

On the other hand, in this specific case,
√
−1trF∇ = RicCh(ω). Then, this allows us to infer that the

Chern-Ricci form is a representative of the first Chern class of M , up to a factor 2π. On the other hand,
a different Hermitian metric h′ on −KM can be written as h′ = efh, for some f ∈ C∞(M,R). Then, the
trace of the curvature of the Chern connection associated to h′ will satisfy the following:

√
−1trF∇h′ =

√
−1trF∇h

+
√
−1∂∂̄f .

This guarantees that c1(M) does not depend on the choice of the metric on M . Moreover, it gives us
that 1

2πRicCh(ω) defines a class in H1,1
BC(M,R) which does not depend on the choice of the metric on M .

Definition 1.1.30. Let (M,ω) be a Hermitian manifold. The first Bott-Chern class cBC
1 (M) of M is

defined as

cBC
1 (M) :=

[
1

2π
RicCh(ω)

]
BC

∈ H1,1
BC(M,R) .

More in general, if L is a line bundle over M , we define the first Bott-Chern class of L as follows:

cBC
1 (L) :=

[√
−1

2π
trF∇

]
BC

∈ H1,1
BC(M,R) ,

where F∇ is the curvature of the Chern connection associated to any Hermitian metric on L.
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Example 1.1.31. Let Mn be a compact complex manifold and p ∈M . Then,

KBlpM = π∗KM + (n− 1)E ,

where π is the blowdown map and E is the exceptional divisor. This allows us to infer that

cBC
1 (BlpM) = π∗cBC

1 (M) − (n− 1)[E]BC , (1.15)

where [E]BC is the first Bott-Chern class of the line bundle associated to E in BlpM .

Remark 1.1.32. Assuming ω to be Kähler, we know that the Guaduchon line will collapse to the
Levi-Civita connection. This, in particular, gives us that, for all t ∈ R,

Rict(ω) = Ric(ω)

the classical Ricci form of ω. Using the ∂∂̄-Lemma, we can deduce that c1(M) = cBC
1 (M) when M is

Kähler. Moreover, using Theorem 1.1.23, we can recover the classical contracted second Bianchi identity :

d∗Ric(ω) = −idcs(ω) (1.16)

where s(ω) is the Riemannian scalar curvature, up to a factor 1
2 .

On the other hand, on non-Kähler manifolds, more precisely, on non ∂∂̄-manifolds, the first Chern
and the first Bott-Chern classes might be different, see for instance [167].

In addiction, using the Chern-Ricci form, one can define a geometric flow of Hermitian metrics, called
Chern-Ricci flow.

Definition 1.1.33 ([323]). Let (M,ω0) be a Hermitian manifold. The Chern-Ricci flow is the following
evolution equation:

∂

∂t
ω = −RicCh(ω) , ω(0) = ω0 .

As one may see directly from the equation, the Chern-Ricci flow is a generalization of the more
classical Kähler-Ricci flow and, as that, it is equivalent to a parabolic complex Monge-Ampère equation
for the potentials, see [164, 323]. The behaviour of the Chern-Ricci flow was studied in [27, 96, 100, 164,
225, 323, 322, 344]. We will study its behaviour on Oeljeklaus-Toma manifolds in Section 3.1 in more
details.

Related to the scalar curvature of the Chern connection, we can define another invariant of a line
bundle. Before doing that, we recall the definition of a Gauduchon metric.

Definition 1.1.34. Let (Mn, ω) be a Hermitian manifold. The metric ω is called Gauduchon if

√
−1∂∂̄ωn−1 = 0 ,

or, equivalently, if d∗θ = 0.

Gauduchon in [152] proved that Gauduchon metrics exist in any conformal class of a given Hermitian
metric on a compact manifold.

Theorem 1.1.35. Let (Mn, ω) be a compact Hermitian manifold. If n ≥ 2, then, there exists a unique
Gauduchon metric with unit volume in the conformal class {ω} = {efω | f ∈ C∞(M,R)} of ω.

We can now define the Gauduchon degree with respect to a given Hermitian metric of a line bundle
over a compact complex manifold as follows.
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Definition 1.1.36. Let (Mn, ω) be a compact Hermitian manifold and L be a line bundle of M . The
Gauduchon degree of L with respect to ω is

Γ(L, {ω}) :=

∫
M

γ ∧ ηn−1

(n− 1)!
,

where η is the unique Gauduchon metric in {ω} with unit volume while [γ] = 2πcBC
1 (L). If L = −KM ,

we will denote with Γ({ω}) := Γ(−KM , {ω}) and we have that

Γ({ω}) =

∫
M

sCh(η)
ηn

n!
=

∫
M

RicCh(η) ∧ ηn−1

(n− 1)!
. (1.17)

Γ({ω}) will be called Gauduchon degree of the conformal class of ω.

Let us conclude this section by discussing the basic concepts in the study of complex orbifolds.

Definition 1.1.37. Let X be a singular complex manifold of dimension n. We say that X is a complex
orbifold if, for all x ∈ X, there exist a neighbourhood U ⊆ X of x and a finite subgroup Gx ⊂ GL(n,C)
such that U is isomorphic to Cn/Gx. The points in which Gx ̸= 1 are called orbifold points and Gx is
called orbifold group.

Examples of complex orbifolds can be constructed considering a finite group G acting holomorphically
and faithfully on a complex manifold M . Then, X := M/G is a complex orbifold where orbifold points
are precisely those in which Stab(x) ̸= 1 and Stab(x) is the orbifold group. On the other hand, not all
complex orbifolds arise from finite quotients of complex manifolds, as the following example shows.

Example 1.1.38. Let n ≥ 1 and a0, . . . , an ∈ N with no common factors. Then, we can define the
following action of C∗ on Cn+1\{0}:

λ · (z0, . . . , zn) := (λa0z0, . . . , λ
anzn) , λ ∈ C∗ , (z0, . . . , zn) ∈ Cn+1\{0} .

Then, the quotient

CPna0,...,an :=
Cn+1\{0}

C∗

is called weighted complex projective space. We refer to [202, p.135] for the proof that CPna0,...,an is a
complex orbifold. On the other hand, CPna0,...,an cannot be presented as a quotient of a complex manifold
under the action of a finite group.

One can give a precise definition of a metric on a orbifold.

Definition 1.1.39. Let Xn be a complex orbifold. A metric g on X is a genuine metric on the regular
part while, in a neighbourhood of a orbifold point x ∈ X with orbifold group Gx, it can identified with
a Gx-invariant metric near 0 in Cn. We will say that g is Kähler if it is Kähler both on the regular part
and near the orbifold points.

Especially in Chapter 2, we will be concerned on crepant resolutions of orbifolds. Crepant resolutions
can be defined generally on complex algebraic varieties.

Definition 1.1.40. Let X be a singular complex algebraic variety. A resolution (X̂, π) of X is a pair
consisting in a normal, see [175, p.177], smooth variety X̂ and a proper birational map π : X̂ → X. A
resolution is called crepant if

KX̂ ≃ π∗KX .

We should remark that, given a complex algebraic variety, it always admits a resolution which is
obtained by a finite sequence of blow-ups.
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Theorem 1.1.41 ([186, 187]). Let X be a complex algebraic variety. Then, there exists a resolution
π : X̂ → X which is the result of a finite number of blow-ups.

On the other hand, not all the resolutions are crepant. First of all, we turn our attention on quotient
singularities. Let G ⊂ GL(n,C) be a finite subgroup acting on Cn. We further assume that G acts freely
on Cn\{0} so that 0 is the unique singular point of Cn/G. Since we want the canonical bundle of Cn/G
to be well-defined and since g ∈ G acts on Λn,0Cn via multiplication by det(g), we need to impose that
G ⊂ SL(n,C). Now, any finite subgroup of SL(n,C) is conjugated to a subgroup of SU(n). Then, we will
suppose G ⊂ SU(n).

Remark 1.1.42. In view of Definition 1.1.39, for any finite subgroup G ⊂ SU(n), the flat Kähler metric
on Cn descend to a Käher metric on Cn/G.

Theorem 1.1.43 ([287, 275]). Let G ⊂ SL(n,C) be a finite group and n = 2, 3. Then, Cn/G admits a
crepant resolution. If n = 2, the crepant resolution is unique.

The scenario in higher dimensions is wilder. Given a finite subgroup G in SL(n,C), we can use a
criterion to check if Cn/G has no crepant resolutions, see [204, Theorem 7.3.3] and [244, Theorem 2.3].
Using this, we can actually prove that C4/{±Id} has no crepant resolutions.

Let us now turn our attention to general orbifolds. As we saw before, a necessary condition for an
orbifold to admit crepant resolutions is that all the orbifold groups are cointaned in SL(n,C). Moreover,
near the orbifold point x ∈ X, the crepant resolution will be isomorphic to a crepant resolution of Cn/Gx.
Then, another necessary condition is that Cn/Gx must have a crepant resolution, for all orbifold points
x ∈ X. Using Theorem 1.1.43, one can prove the following.

Theorem 1.1.44. Let X3 be a complex orbifold with orbifold group in SL(3,C). Then, X admits a
crepant resolution.

To conclude this part, we will overview some basic facts about ALE metrics.

Definition 1.1.45. Let (Mn, g) be a Riemannian manifold. We say that (M, g) is asymptotically locally
euclidean, or ALE, for short, to Rn/G, G ⊂ SO(n) acting freely on Rn\{0}, if there exist a compact set
K ⊆M , R > 0 and π : M\K → Rn/G such that

1. π is a diffeomorphism of M\K with {x ∈ Rn/G | r(x) > R}, where r is the distance induced by
the flat metric go of x from the origin;

2. for all k ≥ 0,
Dk(π∗g − go) = O(r−n−k) , on {x ∈ Rn/G | r(x) > R} ,

where D is the Levi-Civita connection of go.

We further say that a complex manifold (Mn, J, g) is Kähler ALE to Cn/G, G ⊂ U(n) acting freely on
Cn/{0}, if g is Kähler, Item 1 and Item 2 hold with respect to the flat Kähler metric go and, for all k ≥ 0,

Dk(π∗J − Jo) = O(r−2n−k) , on {x ∈ Cn/G | r(x) > R} ,

where Jo is the standard complex structure on Cn/G.

With this in mind, we can state the following theorem whose proof can be found in [202] or [203].

Theorem 1.1.46. Let G ⊂ SU(n) be a non-trivial finite group acting freely on Cn\{0} and let (X,π) a
crepant resolution of Cn/G. Then, any class of a ALE Kähler metric admits a Kähler Ricci-flat ALE
metric. Moreover, such metric ωALE satisfies the following: there exist R,A > 0 and γ ∈ (1− 2n, 2− 2n)
such that

π∗ωALE = ωo − 2A
√
−1∂∂̄(r2−2n) + O(rγ) , on {x ∈ Cn/G | r(x) > R} ,

where ωo is the flat Kähler metric on Cn/G.

With all this in mind, we can switch our attention to the study of some special cohomological con-
ditions on Hermitian metrics, generalizing the Kähler one. We will be mostly interested in the so-called
balanced and SKT condition. We firstly study balanced metrics.
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1.1.2 Balanced metrics

First of all, we recall the definition of balanced metric on a given complex manifold.

Definition 1.1.47. Let (Mn, ω) be a Hermitian manifold. The Hermitian metric ω is called balanced if
dωn−1 = 0 .

Historically, the balanced condition was firstly studied by Gauduchon in [151, 153] under the name
of semi-Kähler condition. Later, Michelsohn in [240] gave the name balanced to such metrics. A first
remark one can do is the following. The balanced condition is the unique condition among those of
type dωp = 0, for some p = 1, . . . , n − 1, which does not force the metric to be Kähler. This can be
easily viewed using Item 4 in Proposition 1.1.15. Another easy remark is that, on complex surfaces, the
balanced condition coincides with the Kähler one. So, since we will be concerned in the study of balanced
non-Kähler manifolds, we shall always assume that n ≥ 3. The balanced condition has many equivalent
conditions. We list all of them in the following proposition.

Proposition 1.1.48. Let (Mn, ω) be a Hermitian manifold. The following are equivalent:

1. ω is balanced;

2. d∗ω = 0;

3. dω ∈ P 3;

4. θ = 0.

Proof. We have that

d∗ω = − ∗ d ∗ ω = − 1

(n− 1)!
∗ dωn−1 ,

which gives the equivalence between Item 1 and Item 2. Using Item 5 of Proposition 1.1.15, we conclude
the equivalence between Item 1 and Item 3. Finally, recalling that θ is defined by dωn−1 = θ ∧ ωn−1, we
have the equivalence between Item 1 and Item 4.

Examples of balanced non-Kähler manifolds were provided by many authors. Abbena and Grassi in
[1] showed that a complex Lie group carries a left-invariant balanced metric if and only if it is unimodular.
This, for instance, guarantees that on SL(2,C) or on Heis(3,C) all left-invariant Hermitian metrics are
balanced. On the other hand, a complex Lie group is Kähler if and only if it is abelian. Then, SL(2,C) and
Heis(3,C) are balanced non-Kähler manifolds. In particular, the Iwasawa manifold inherits a balanced
metric, giving us a compact example of non-Kähler balanced manifold. The result by Abbena and Grassi
combined with the classical result by Wang in [336] ensures that all complex parallelizable manifolds,
i.e. such that T 1,0M is holomorphically trivial, are balanced manifolds. Other examples were found on
compact quotients of Lie groups, see for instance [18, 19, 43, 70, 73, 113, 118, 119, 120, 128, 167, 325, 326].

Regarding invariant examples, an important tool for the study of the existence and non-existence of
balanced metrics is the symmetrization process, introduced firstly by Belgun in [49]. We recall here the
main ideas.

Let G be a simply connected Lie group admitting a co-compact lattice Γ. In particular G is unimodular
and admits a bi-invariant volume form ν, see e.g. [242, Lemma 6.2], which we may normalize so that on
the compact quotient M = G/Γ we have

∫
M
ν = 1.

Definition 1.1.49. The symmetrization map µ sends a k-form on M to a left-invariant one by averaging
it against the bi-invariant volume:

µ(α)(X1, . . . , Xk) :=

∫
M

αx(X1|x, . . . , Xk|x)νx , α ∈ ΛkM .

The symmetrization map has many properties, which are listed in the following proposition.
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Proposition 1.1.50. Let M = G/Γ be a compact quotient of a Lie group endowed with a left-invariant
complex structure J . Then, the following hold:

1. if α ∈ ΛkM , k ≥ 0, is left-invariant, then µ(α) = α;

2. µ(α ∧ µ(β)) = µ(α) ∧ µ(β), for all α, β ∈ Λ•M ;

3. [d, µ] = 0;

4. [J, µ] = 0.

Using this process, one is led to prove the following.

Proposition 1.1.51. Let M = G/Γ be a compact quotient of a Lie group endowed with a left-invariant
complex structure J . Then, M admits a balanced metric if and only if it admits a left-invariant balanced
metric.

As for non-invariant examples, we should mention the work by Fu, Li and Yau [133] in which the
authors produce compact non-Kähler balanced manifolds via conifold transitions of smooth Kähler Calabi-
Yau threefolds. Giusti and Spotti in [168] proved that crepant resolutions of balanced orbifolds are
balanced. Moreover, Goldstein and Prokushkin in [169] gave a general procedure to produce, starting form
a given Hermitian manifold satisfying some mild assumptions, a T 2-principal bundle over the starting
manifold. If we specify, this construction for Calabi-Yau surfaces, or more generally, for hyperKähler
manifolds, we can produce Hermitian manifolds which carry balanced metrics. Finally, the twistor space
of a hypercomplex manifold is balanced, see [205, 318].

On the other hand, many general properties of compact balanced manifolds are known, essentially,
stemming from the characterization of the balanced condition by Michelsohn in terms of currents. We
recall it, together with other simple properties, in the next theorem.

Theorem 1.1.52 ([240], Proposition 1.9, Theorem 4.7). Let M and N be two complex manifolds. Then,

1. if M and N are balanced, then M ×N is balanced;

2. if M is balanced and f : M → N is a holomorphic submersion, then N is balanced;

3. M admits a balanced metric if and only if there are no non-trivial real, positive and d-closed (1, 1)-
currents.

As previously anticipated, stemming from Item 3 of Theorem 1.1.52, Alessandrini and Bassanelli
managed to prove that the class of balanced manifolds is closed under proper holomorphic modifications.

Theorem 1.1.53 ([10, 12, 13]). Let M and N be two complex manifolds. Moreover, let f : M → N be
a proper holomorphic modification, i.e there exists a complex submanifold Y of N such that

f : M\f−1(Y ) → N\Y

is a biholomorphism. Then, M is balanced if and only if N is balanced.

Theorem 1.1.53 guarantees that all Fujiki class C manifolds are balanced, since, by definition, they
are bimeromorphic to a Kähler manifold. Moreover, Theorem 1.1.53 highlights a stronger closedness
properties with respect to the Kähler case. Indeed, Hironaka in [185, 188] provided an example of a non-
Kähler compact manifold obtained by a Kähler (projective) manifold via a finite sequence of blow-ups
with smooth centers, proving the non-closedness of Kähler manifolds under proper modifications. In view
of Theorem 1.1.53, the latter will be balanced.
On the other hand, balanced manifolds are not open under small deformations, unlike the Kähler ones, see
[210]. Indeed, Alessandrini and Bassanelli in [11] provided a small deformation of the Iwasawa manifold
which does not admit any balanced metric.
Turning our attention on more analytic and curvature aspects, balanced metrics can also be characterized
by the coincidence of the Laplacians, as in the Kähler case, on smooth functions.
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Theorem 1.1.54 ([151], Proposition 1). Let (M,ω) be a compact Hermitian manifold. Then, ω is
balanced if and only if

∆∂ = ∆∂̄ =
1

2
∆d = −∆ω , on C∞(M,R) .

Theorem 1.1.54 allows us to work equivalently in the balanced case, as in the Kähler one, with the
Chern Laplacian instead of the Hodge-Riemannan one. This, referring also to Theorem 1.1.20, guarantees
that ∆ω = ∆∗

ω, i.e. ∆ω is self-adjoint.
From the curvature point of view, balanced metrics are the unique Hermitian metrics whose Ricci

2-forms coincide, using (1.14).

Proposition 1.1.55. Let (M,ω) be a compact Hermitian manifold. Then, ω is balanced if and only if

RicCh(ω) = Rict(ω) , t ∈ R .

Moreover, ω is balanced if and only if

sCh(ω) = st(ω) , t ∈ R .

We shall also remark that the same condition holds even in the almost-Hermitian case, see [335,
Corollary 3.3].

Every balanced metric is equipped with a Bott-Chern cohomology class which is usually called balanced
class:

[ωn−1]BC ∈ Hn−1,n−1
BC (M,R) .

With the balanced class in hand, one can easily observe that the Gauduchon degree of the conformal
class of ω, defined in (1.17), is completely depending on the balanced class and the first Bott-Chern class
of M . Indeed,

Γ({ω}) =

∫
M

RicCh(ω) ∧ ωn−1

(n− 1)!
=

2π

(n− 1)!
cBC
1 (M) · [ωn−1]BC . (1.18)

As it is classically known, the Kähler class of a Kähler metric is [ω] ∈ H1,1
dR (M,R). Thanks to the

∂∂̄-Lemma, any other form cohomologous to ω will be of the form:

ω +
√
−1∂∂̄f , f ∈ C∞(M,C) .

On the other hand, given a balanced metric ω, α ∈ [ωn−1]BC can be written as

α = ωn−1 +
√
−1∂∂̄φ , φ ∈ Λn−2,n−2M .

This fact is crucial when discussing the existence of balanced metrics with certain curvature properties
in a fixed balanced class. Indeed, the great amount of possible deformations of the fixed balanced metric
in its balanced class leads to the choice of ansatz in order to reduce the problem to an easier one. We
will see how this problem arises in analysing the existence of constant Chern scalar curvature balanced
metric on the blow-up of a fixed Chern-Ricci flat manifold, in Chapter 2.

1.1.3 SKT metrics

Let us now turn our attention on the SKT condition.

Definition 1.1.56. Let (M,ω) be a Hermitian manifold. The metric ω is called Strong Kähler with
torsion, or SKT, for short, if √

−1∂∂̄ω = 0 .

Equivalently, a Hermitian metric ω is SKT if the torsion of the Bismut connection H, see (1.11), is
d-closed.
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From a physical point of view, the SKT condition appeared to be relevant in type II string theory and
2-dimensional supersymmetric σ-model, see for instance [150, 196, 308]. From the mathematical point
of view, besides being a generalization of the Kähler one, the SKT condition is of particular interest in
generalized Kähler Geometry. Indeed, as proved by [28, 177], a generalized Kähler manifold is a quadruple
(M,J+, J−, g) where J± are complex structures and g is J±-Hermitian such that:

dc+ω+ = −dc−ω− , ddc+ω+ = 0 .

In [52], Bismut proved a local index theory for non-Kähler manifolds carrying a SKT metric. Using
Theorem 1.1.35 we know that any compact complex surface carries SKT metric in any conformal class of
a given Hermitian metric. Examples of compact quotients of Lie groups admitting a left-invariant SKT
structure were found in [18, 70, 81, 98, 116, 117, 118, 119, 120, 121, 124, 127, 174, 178, 238, 251, 253, 291].
As regards non-invariant ones, examples of SKT metrics are provided in [170] on some principal torus
bundle over Kähler surfaces, such as on (k − 1)(S2 × S4)#k(S3 × S3), for any k ≥ 1.

Fino and Tomassini in [123] proved that the SKT condition is preserved for blow-ups along complex
submanifolds. This, in particular, thanks to Hironaka’s Theorem on resolution of singularities, see The-
orem 1.1.41, implies that any complex orbifold endowed with a SKT metric admits a SKT resolution.
Arroyo and Nicolini in [33] gives a procedure to produce SKT nilpotent Lie algebras starting from a fixed
one. Barberis and Fino in [44] gives another procedure to construct strong HKT Lie algebras starting
from a given one via quaternionic representations. We will analyse these procedures in Subsection 4.7.1
and in Subsection 4.7.2 in the hypercomplex setting. Via a twisting construction, Swann in [310] pro-
duced new examples of SKT metrics starting from a compact simply connected SKT manifold satisfying
some mild assumptions. Other examples are constructed in [60, 61] via mapping tori of a product of a
3-dimensional torus or a 3-sphere and a (hyper)Kähler manifold.

SKT metrics are widely believed to be at the opposite pole with respect to the balanced ones, in the
non-Kähler setting. This is mainly due to the Fino-Vezzoni conjecture.

Conjecture 1.1.57 ([125], Problem 3). Let M be a compact complex manifold. If M admits a balanced
and a SKT metric, then M is Kähler.

Moreover, as in contrast with the balanced setting, where flow approaches are way more difficult and
not so well investigated, SKT metrics are preserved by a second-order parabolic flow which is called
pluriclosed flow, introduced by Streets and Tian in [302].

Definition 1.1.58. Let (M, g0) be a Hermitian manifold. The pluriclosed flow is the following evolution
equation:

∂

∂t
g = −S +Q , g(0) = g0 , (1.19)

where Sij̄ = gkl̄Rkl̄ij̄ is the second Chern-Ricci tensor while Qij̄ = gkl̄gmn̄Tikn̄Tj̄l̄m

The tensors R and T in Definition 1.1.58 are, respectively, the curvature tensor and the torsion tensor
of the Chern connection of the evolving metric.

The pluriclosed flow is part of a larger class of geometric flows, called Hermitian curvature flows, intro-
duced by Streets and Tian in [303], which share many common properties, such as short-time existence,
the preservation of Kählerianity along the flow and the stability of Kähler-Einstein metrics. However,
among the Hermitian curvature flows, the pluriclosed flow preserves the SKT condition.

Theorem 1.1.59 ([302], Theorem 3.4). Let (M, g0) be a Hermitian manifold endowed with a SKT metric.
Then, (g(t))t∈[0,T ) is a solution of the pluriclosed flow starting at g0 if and only if the family (ω(t))t∈[0,T )

of the fundamental forms associated to g(t) is a solution of

∂

∂t
ω = ∂∂∗ω + ∂̄∂̄∗ω − RicCh(ω) , ω(0) = ω0 .

Using (1.14), we have that
∂

∂t
ω = −(RicB(ω))1,1 , ω(0) = ω0 . (1.20)
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Moreover, the pluriclosed flow preserves the SKT condition.

Equation (1.20) highlights how the pluriclosed flow resembles the Kähler-Ricci flow, since it evolves
a given Hermitian metric in the direction of a certain Ricci form. The pluriclosed flow has gained much
importance in the last years, also due to its connection with generalized Kähler geometry. Moreover, it
is believed that the pluriclosed flow, also in view of the fact that SKT metrics always exist on compact
complex surfaces, recall Theorem 1.1.35, can be used as a tool to complete the classification of non-Kähler
compact surfaces, see [299] for the precise conjectural picture. In Section 3.2, we will be concerned in the
study of the generalized Ricci flow which is a geometric flow related to the pluriclosed flow. We refer to
Section 1.2 for the precise relation. On the other hand, we here recall the following proposition due to
Streets and Tian.

Proposition 1.1.60 ([305], Proposition 6.3, 6.4). Let (M,J, ω0) be a SKT manifold and let (ω(t))t∈[0,T )

be a solution of (1.20). Then,
∂

∂t
g = − Ric(g) +

1

4
H2 − 1

2
Lθ♯g ,

∂

∂t
H =

1

2
(∆gH − Lθ♯H) ,

where Ric(g) is the classical Ricci tensor of g, ∆g is the Laplace-Beltrami operator of g, H = dcω, θ♯ is
the Lee vector field and H2 is the symmetric 2-tensor defined as follows:

H2(X,Y ) := g(ιXH, ιYH) , X, Y ∈ Γ(TM) . (1.21)

The importance of Proposition 1.1.60 is that it connects, via a gauge transformation generated by the
Lee vector field of the time-varying metric, the pluriclosed flow with the coupled flow

∂

∂t
g = − Ric(g) +

1

4
H2 ,

∂

∂t
H =

1

2
∆gH ,

which is closely related to the generalized Ricci flow. This, in particular, shows that the pluriclosed flow
is gauge-equivalent to a gradient flow, see [250].

To conclude this section, let us briefly introduce and discuss pluriclosed solitons, which are particular
solutions of the pluriclosed flow evolving self-similarly. A deep treatment of such topic in the general case
can be found in [224].

Definition 1.1.61. Let (M,ω) be a SKT manifold. The metric ω is said to be a pluriclosed soliton if
there exist λ ∈ R and a holomorphic vector field X such that

(RicB(ω))1,1 = λω + LXω . (1.22)

Moreover, ω will be called expanding, steady or shrinking pluriclosed soliton if, respectively, λ < 0, λ = 0
or λ > 0.

Definition 1.1.61 can be considered as the “static” definition of pluriclosed solitons, since no flow is
involved in it. On the other hand, Definition 1.1.61 is equivalent to impose a precise behaviour on the
solution of the pluriclosed flow starting from ω, as the next lemma shows.

Lemma 1.1.62. Let (M,ω) be a SKT manifold. Then, ω is a pluriclosed soliton if and only if there
exist c(t) > 0, c(0) = 1 and φt ∈ Aut(M,J) such that the solution of the pluriclosed flow (ω(t))t∈[0,T )

starting from ω can be written as:

ω(t) = c(t)φ∗
tω , t ∈ [0, T ) . (1.23)

Proof. Clearly, if (1.23) holds, then it is sufficient to differentiate with respect to t and compute the result
in t = 0 to obtain (1.22). The converse is achieved by following the steps in [319, Proposition 1.2.1].
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As (1.23) highlights, pluriclosed solitons are precisely those SKT metrics that evolve under the pluri-
closed flow just by scalings and by the action of biholomorphisms. Despite having a quite simple evolution
and being straightforward generalizations of static metrics, see [303], the importance of solitons also arises
from the fact that they appear as models of the asymptotic behaviour of general solutions of the flow
considered, as in the celebrated works by Perelman for the Ricci flow, see [258, 259, 260]. This behaviour
was also observed in various works such as in [54] on some compact complex surfaces, in [32] on SKT
nilmanifolds and SKT almost abelian solvmanifolds, and in [141] on SKT Oeljeklaus-Toma manifolds.

1.2 Basics in generalized Geometry

This section is dedicated to describe the basic notions of generalized Geometry. We mainly follow [149].
In particular, we give the definition of exact Courant algebroids and study their first properties. Then,
we focus our attention on generalized metrics and on the generalized Ricci curvature on the generalized
tangent bundle. Then, finally, we introduce the generalized Ricci flow, discuss its classical formulation
and its gauge-fixed versions, ultimately showing that it is gauge equivalent to the pluriclosed flow, recall
Definition 1.1.58.

For additional motivation and details on exact Courant algebroids we refer the reader to [84, 177, 236,
281, 282, 283] and the references therein.

1.2.1 Generalized metrics and generalized Ricci flow

We start this subsection with the definition of the fundamental objects in generalized Geometry, namely
exact Courant algebroids.

Definition 1.2.1. Let Mn be a smooth manifold. An exact Courant algebroid, ECA, for short, is the
datum of a vector bundle E →Mn of rank 2n endowed with a non-degenerate, symmetric bilinear form
⟨ · , · ⟩ of signature (n, n), called the neutral inner product, a bracket [·, ·] on Γ(E), called the Dorfman
bracket and a bundle map π : E → TM , called the anchor map, such that, for all a, b, c ∈ Γ(E) and
f ∈ C∞(M), the following axioms are satisfied:

1. [a, [b, c]] = [[a, b], c] + [b, [a, c]];

2. π[a, b] = [πa, πb];

3. [a, fb] = f [a, b] + π(a)fb;

4. π(a)⟨b, c⟩ = ⟨[a, b], c⟩ + ⟨b, [a, c]⟩;

5. [a, b] + [b, a] = (π∗ ◦ d)⟨a, b⟩;

6. there is an exact sequence of vector bundles

0 −→ T ∗M
π∗

−→ E
π−→ TM −→ 0 . (1.24)

In the last two axioms we have abused notation and considered π∗ : T ∗M → E∗ as a map π∗ :
T ∗M → E, after composing with the isomorphism E∗ ≃ E given by ⟨ · , · ⟩. Notice also that d in Item 5
is the exterior differential in M , and the bracket in the right-hand-side of Item 2 is the Lie bracket
of vector fields in M . The Dorfman bracket is not necessarily skew-symmetric, but it does satisfy the
Jacobi identity, see [149, Lemma 2.5] for the proof. Although we will not be making use of it, it is worth
mentioning that, in the literature, the skew-symmetrization of the Dorfman bracket is called Courant
bracket and it is defined by:

[a, b]c :=
1

2
([a, b] − [b, a]) , a, b ∈ Γ(E) .
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Despite being skew-symmetric, the Courant bracket does not satisfy the Jacobi identity. Indeed, one can
show that the following

[a, [b, c]c]c + [c, [a, b]c]c + [b, [c, a]c]c =
1

3
d(⟨[a, b]c, c⟩ + ⟨[b, c]c, a⟩ + ⟨[c, a]c, b⟩)

holds, for all a, b, c ∈ Γ(E).
The first example of exact Courant algebroid is the generalized tangent bundle. On this, we can

consider different structures of exact Courant algebroids depending on the choice of a closed 3-form on
M .

Example 1.2.2. The generalized tangent bundle TM ⊕ T ∗M has a natural structure of exact Courant
algebroid, with data given by:

⟨X+ξ, Y +η⟩ := 1
2 (ξ(Y )+η(X)), [X+ξ, Y +η] := [X,Y ]+LXη− ιY dξ, π(X+ξ) := X, (1.25)

for X + ξ, Y + η ∈ Γ(TM ⊕ T ∗M).
Moreover, for any closed 3-form H ∈ Λ3M , we can consider another ECA structure on T ⊕ T ∗,

denoted by

(T ⊕ T ∗)H := (TM ⊕ T ∗M, ⟨ · , · ⟩, [·, ·]H , π).

Here, ⟨ · , · ⟩ and π are as in Equation (1.25), and [·, ·]H denotes the H-twisted Dorfman bracket defined
by:

[X + ξ, Y + η]H := [X,Y ] + LXη − ιY dξ + ιY ιXH, X + ξ, Y + η ∈ Γ(TM ⊕ T ∗M). (1.26)

Before we define the notion of isomorphism between two exact Courant algebroids, we recall the notion
of isomorphism between vector bundles.

Definition 1.2.3. Let E1 and E2 be two vector bundles over, respectively, M1 and M2. A vector bundle
isomorphism between E1 and E2 is a pair (f, F ) consisting in a diffeomorphism f : M1 →M2 and a map
F : E1 → E2 such that the following diagram

E1 E2

M1 M2

F

f

commutes and such that F restricts to a linear isomorphism on each fibre.

Now, we can specialize the notion of vector bundle isomorphism in the context of exact Courant
algebroids.

Definition 1.2.4. Let (Ei, ⟨ · , · ⟩i, [·, ·]i, πi) be two exact Courant algebroids over, respectively, Mi, i =
1, 2. An isomorphism of vector bundles (f, F ) is called isomorphism of exact Courant algebroids if, for
any a, b ∈ Γ(E1), we have:

1. ⟨Fa, Fb⟩2 = ⟨a, b⟩1;

2. [Fa, Fb]2 = F [a, b]1.

It follows from the second condition above that df ◦ π1 = π2 ◦ F , see for instance [208, Lemma 2.5]
for the detailed proof.
The next proposition guarantees that any exact Courant algebroid is isomorphic to one described in
Example 1.2.2.
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Proposition 1.2.5 ([149], Proposition 2.10 ). Let E be an exact Courant algebroid. Any isotropic
splitting σ of (1.24) induces an isomorphism of exact Courant algebroids

E ≃σ (T ⊕ T ∗)H .

Here H ∈ Λ3M is the closed 3-form given by

H(X,Y, Z) = 2 ⟨[σX, σY ], σZ⟩, X, Y, Z ∈ Γ(TM). (1.27)

Moreover, given another isotropic splitting σ̃, the corresponding isomorphism satisfies

E ≃σ̃ (T ⊕ T ∗)H+db ,

for some b ∈ Λ2M .

More generally, Ševera’s classification of exact Courant algebroids is the content of the following
theorem.

Theorem 1.2.6 ([281]). The isomorphism classes of exact Courant algebroids over M are in one-to-
one correspondence with H3(M,R)/Diff(M) = H3(M,R)/ΓM , where ΓM = Diff(M)/Diff0(M) is the
mapping class group of M .

Given the correspondence in Proposition 1.2.5, we can characterise automorphisms of any exact
Courant algebroid. Before stating the result itself, let us introduce two classes of maps which play
an important role in generalized Geometry. Any b ∈ Λ2M may be viewed as a map b : TM → T ∗M
and thus it gives rise to an endomorphism of the generalized tangent bundle which in matrix form is
represented by (

0 0
b 0

)
: T ⊕ T ∗ −→ T ⊕ T ∗.

We then set

eb :=

(
Id 0
b Id

)
∈ End(T ⊕ T ∗), b ∈ Λ2M.

The latter transformations are classically known as B-field transformations which appear naturally as a
generalization of the electromagnetic field in string theory.
Additionally, fixed f ∈ Diff(M), we can produce a bundle map of the generalized tangent bundle covering
f , as follows:

f̄ :=

(
df 0
0 (f−1)∗

)
: T ⊕ T ∗ → T ⊕ T ∗ .

Then, the group of automorphism of (T ⊕ T ∗)H , and then of any ECA, consists of bundle maps which
are composition of maps introduced above.

Theorem 1.2.7 ([149], Proposition 2.21). For any closed 3-form H ∈ Λ3M , the group of automorphisms
of the exact Courant algebroid (T ⊕ T ∗)H is given by:

Aut((T ⊕ T ∗)H) =
{(
f̄ eb, f

)
| f ∈ Diff(M), b ∈ Λ2M, f∗H = H − db

}
.

Moreover, the Lie algebra of Aut((T ⊕ T ∗)H) is

aut((T ⊕ T ∗)H) = {X + b ∈ Γ(TM) ⊕ Λ2M | LXH = −db}.

We refer the reader to [278] for a detailed study of the ILH Lie group structure on Aut((T ⊕ T ∗)H).
In the context of generalized Geometry, there is a natural generalization of classical Riemannian

metrics.
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Definition 1.2.8. A generalized metric on an ECA E is an orthogonal endomorphism G ∈ O(E, ⟨ · , · ⟩)
such that the bilinear form

(a, b) 7→ ⟨Ga, b⟩, a, b ∈ Γ(E),

is symmetric and positive definite. We call the pair (E,G) a metric Courant algebroid. A Courant
algebroid isomorphism (F, f) : (E1,G1) → (E2,G2) is a metric Courant algebroid isometry (or simply
isometry) if F ◦ G1 = G2 ◦ F .

The presence of a generalized metric on E allows us to consider a preferred isotropic splitting. We
quickly recall its construction since it will be useful in what follows. We refer the reader to [149, Section
2.3] for the detailed description. Since G2 = Id, we can consider the eigenbundles E± of E associated to
±1. It is not hard to see that π : E± → TM is an isomorphism of vector bundles. Then, we can define

σ± := (π|E±)−1 : TM → E± , τ±(X,Y ) = ⟨σ±X,σ±Y ⟩ , X, Y ∈ Γ(TM) .

With these ingredients, we can consider the following splitting:

σ = σ± − 1

2
π∗τ± .

It is easy to see that σ is isotropic and it does not depend on the choices of σ±, see [149, Lemma 2.29]
for the proof. Moreover, we have that

τ+(X,X) = ⟨Gσ+X,σ+X⟩ > 0 , X ∈ Γ(TM) , X ̸= 0 , (1.28)

thus determining a Riemannian metric g on M .

Proposition 1.2.9 ([149], Proposition 2.38). Let E be an ECA with isotropic splitting σ. Under the
isomorphism E ≃σ (T ⊕ T ∗)H , any generalized metric on E corresponds to a generalized metric on
(T ⊕ T ∗)H of the form

G(g, b) := eb
(

0 g−1

g 0

)
e−b,

where b ∈ Λ2M and g is a Riemannian metric on M . Moreover, the bundle map(
e−b, IdM

)
: ((T ⊕ T ∗)H ,G(g, b)) → ((T ⊕ T ∗)H+db,G(g, 0)) , (1.29)

is an isometry.

Remark 1.2.10. The isometry in (1.29) indicates that a generalized metric G on an ECA E with Ševera
class α ∈ H3(M,R) is equivalent to a choice of Riemannian metric g on M and a preferred representative
H ∈ α. This can be also be observed by considering the preferred isotropic splitting induced by G and
the corresponding isomorphism E ≃ (T ⊕ T ∗)H under which G corresponds to G(g, 0).

Furthermore, the existence of a preferred isotropic splitting induced by a generalized metric G allows
us to characterize generalized isometries on a fixed exact Courant algebroid.

Proposition 1.2.11 ([149], Proposition 2.41). The group of generalized isometries of the metric Courant
algebroid ((T ⊕ T ∗)H ,G(g, 0)) is given by:

Iso((T ⊕ T ∗)H ,G(g, 0)) =
{(
f̄ , f

)
| f ∈ Iso(M, g), f∗H = H

}
⊂ Aut((T ⊕ T ∗)H).

Once a generalized metric is available, one can hope to define, as in the classical case, a tensor which
is the equivalent version of the Ricci tensor in the context of generalized Geometry. We will just briefly
discuss the explicit expression of the generalized Ricci curvature in the case of ((T ⊕ T ∗)H ,G(g, 0))
which will be central in what follows. For a detailed investigation of the general definition, we refer



24 CHAPTER 1. PRELIMINARIES

to [82, 144, 149, 282, 283]. Before doing that, we recall that if (M, g) is a Riemannian manifold and
H ∈ Λ3M , there exist unique connections ∇±, called Bismut connections, such that

∇g = 0 , gT± = ±H ,

where the tensor T± is the torsion of ∇±. In what follows, we will abuse the notation denoting with

RicBg,H := Ric(g) − 1

4
H2

the symmetric part of the Ricci tensor of the Bismut connections ∇± associated to g and H. The
symmetric 2-tensor H2 is defined as in (1.21).
Then, following the notation in [149], the generalized metric G(g, 0) determines two eigenbundles as above,
which, in this particular case, takes the following form:

E± = {X ± g(X) : X ∈ Γ(TM)} .

Now, using [149, Definition 3.31] and [149, Proposition 3.30], it is easy to see that, for any X ∈ Γ(TM),

Rc+(X − g(X)) = g−1RicBg,HX − 1

2
g−1d∗gHX + RicBg,HX − 1

2
d∗gHX ,

Rc−(X + g(X)) = − g−1RicBg,HX − 1

2
g−1d∗gHX + RicBg,HX +

1

2
d∗gHX .

(1.30)

Rc(G) = Rc+ −Rc− =

(
g−1RicBg,H

1
2 g

−1 d∗gHg
−1

− 1
2d

∗
gH −RicBg,Hg

−1

)
.

In [282, Theorem 3], the authors prove the Aut(E)-equivariance of the generalized Ricci curvature which
will be extensively used in Section 3.2.

Now, since a generalized Ricci tensor is available, we can mimick the definition of the classical Ricci
flow to define a flow of generalized metrics which is called generalized Ricci flow.

Definition 1.2.12. A one-parameter family (G(t))t∈[0,T ) of generalized metrics on an ECA E is a solution
to the generalized Ricci flow if it satisfies

G−1 ∂

∂t
G = −2Rc(G). (1.31)

If we use the isotropic splitting σ0 associated to the initial metric G(0) to identify E ≃σ0
(T ⊕ T ∗)H0

,
then G(t) corresponds to G(g(t), b(t)), for some one-parameter families of Riemannian metrics g(t) and
two-forms b(t) on M . Then, Equation (1.31) is equivalent to the following coupled system:

∂

∂t
g = −2 RicBg,H ,

∂

∂t
b = −d∗gH,

(1.32)

where H(t) = H0 +db(t). Since H0 is closed, it follows that H(t) evolves accordingly to the classical heat
equation:

∂

∂t
H = ∆gH.

We should emphasize that Equation (1.32) firstly appeared in [69] as the renormalization group flow.
We refer to [296] for a detailed explanation of the relation between the renormalization group flow and
generalized Geometry.

Since the generalized Ricci curvature is Aut(E)-equivariant, the PDE system (1.31) defining the
generalized Ricci flow is only weakly parabolic. A suitable application of the DeTurck trick can be
applied to obtain short-time existence and uniqueness, provided M is compact, see [149, Theorem 5.6]
for details. The presence of the gauge group Aut(E) allows us to produce different but equivalent flows
starting from the generalized Ricci flow.
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Definition 1.2.13. A one-parameter family (G(t))t∈[0,T ) of generalized metrics on an ECA E solves the
gauge-fixed generalized Ricci flow if there exists a one-parameter family (Ft)t∈[0,T ) ⊆ Aut(E) so that

FtG(t)F−1
t is a solution to the generalized Ricci flow (1.31).

Using again the isotropic splitting σ0 induced by G(0) to obtain (E,G(t)) ≃σ0
((T ⊕ T ∗)H0

,G(g(t), b(t)))
as above, it can be seen that G(t) is a solution of the gauge-fixed generalized Ricci flow if only if there exists
a one-parameter family of generalized vector fields Xt+Bt ∈ aut((T ⊕ T ∗)H0

) such that (g(t), b(t))t∈[0,T )

is a solution of the following coupled system:

∂

∂t
g = − 2 RicBg,H + LXg ,

∂

∂t
b = − d∗gH −B + LXb .

(1.33)

It follows that H(t) will evolve by:
∂

∂t
H = ∆gH + LXH . (1.34)

A first remark we can do is that, using Proposition 1.1.60, up to a time reparametrization, a solution of
the pluriclosed flow is a solution of a gauged fixed generalized Ricci flow where the gauge is generated by
the generalized vector field −θ♯ − dθ + ιθ♯H0 + dιθ♯b ∈ aut((T ⊕ T ∗)H0).

Remark 1.2.14. Streets and Tian in [304, Corollary 3.3] proved that, given a SKT Hermitian manifold
(M,J, g), the generalized Ricci flow coupled with an evolution equation for J :

∂

∂t
J = ∆J + [J, g−1Ric(g)] + Q(DJ) , (1.35)

where Q(DJ) is an appropriate quadratic term in the covariant derivative of J with respect to the Levi-
Civita connection, see [304, (3.24)] for the precise expression of Q(DJ), preserves the SKT condition,
namely g(t) is J(t)-Hermitian and SKT for all times of existence. Then, gauging with the family of
diffeomorphisms generated by (−J(t)d∗g(t)ω(t))♯ the generalized Ricci flow coupled with (1.35) and using

[304, Proposition 3.1], we obtain a solution for the pluriclosed flow, up to a time reparametrization.

The generalized Ricci flow recently has gained much importance and many properties of the flow are
now known. For instance, we have the following.

Theorem 1.2.15 ([149], Theorem 5.23). Let E be a ECA over M . Assume that the solution of the
generalized Ricci flow starting from a given generalized metric G0 exists on the maximal time interval
[0, T ), T <∞. Then,

lim sup
t→T

sup
M×{t}

|Rm| = ∞ .

A better version of the above result was obtained by Streets and Tian in [305, Theorem 1.2] for the
pluriclosed flow. Following Perelman’s path, in [250] it was showed that the generalized Ricci flow is the
gradient flow of

λ1(g,H) := inf
{f | ||e−f ||L1=1}

F(g,H, f)

where

F(g,H, f) :=

∫
M

(
Rg −

1

12
|H|2 + |∇f |2

)
e−fVolg .

Other results can be found in [29, 30, 165, 166, 179, 228, 229, 233, 254, 269, 273, 296, 300, 301, 304, 306].
The Bismut flat spaces - which are particular fixed points of the generalized Ricci flow - were classified
by [71, 72, 337]. They are covered by compact Lie groups with bi-invariant metric, and the form H
given by the contraction of the Lie bracket with said metric. The very first and striking difference with
the classical Ricci flow is the presence of non-flat homogeneous fixed point of the generalized Ricci flow.
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Indeed, in view of [3], we know that any homogeneous Ricci flat manifold has to be flat. On the other
hand, examples of non-flat homogeneous Bismut-Ricci flat manifolds were found in [226, 267, 268]. In
[267] the authors construct an example of SO(3)-invariant steady, gradient generalized soliton on R3,
resembling the structure of the classical Bryant soliton for the Ricci flow, see [62].

1.3 Basics in hyperHermitian Geometry

This section is devoted to illustrate the basic features of hyperHermitian manifolds. The section is divided
in two subsections. In Subsection 1.3.1, we define what a hypercomplex structure is and how it affects
the geometry of the manifold. A twisted operator, formally replacing ∂̄, is taken into account allowing us
to produce new cohomology rings in the hypercomplex setting. Then, we define the notion of SL(n,H)-
manifold and study its relation with the holomorphic triviality of the canonical bundles of the given
manifold. In Subsection 1.3.2, we study hyperHermitian metrics and their basic properties. The presence
of such metrics allows to define a preferred (2, 0)-form on which is possible to impose cohomological
condition for the metric to be “special”. The HyperKähler and the HKT conditions are defined together
with other weaker ones, such as the quaternionic Gauduchon and quaternionic balanced condition.

1.3.1 Hypercomplex structures

Let us start recalling the definition of hypercomplex structure on a smooth manifold.

Definition 1.3.1. Let M4n be a smooth manifold. A hypercomplex structure (I, J) on M is a pair of
complex structure which anti-commutes, i.e.

IJ = −JI .

We will refer to n as the quaternionic dimension of M . We will then say that the triple (M, I, J) is a
hypercomplex manifold.

As in Section 1.1, we will always assume that both I and J are integrable.

Example 1.3.2. The very first example of hypercomplex manifold is Hn with the left multiplication by
i, j and k, the quaternionic units. Consequently, any open set A ⊆ Hn is again hypercomplex.
Thanks to a result by Boyer in [56], the unique 4-manifolds admitting hypercomplex structures are the
4-torus, K3 surfaces, i.e. the unique compact simply connected complex surfaces with holomorphically
trivial canonical bundle, and the quaternionic Hopf surfaces. We describe in details the latter.
Let q ∈ H, |q| > 1 and consider the compact quotient

M =
H\{0}
⟨q⟩

,

where ⟨q⟩ is the group of right multiplications generated by q. Clearly, the left multiplication by the
quaternionic units i and j commutes with the right action of q. Thus, it induces a hypercomplex struc-
ture on M . M endowed with the latter hypercomplex structure is called quaternionic Hopf surface.
Equivalently, we can regard M as (C2 \ {0})/ ∼ where the equivalence relation is given by:

(z, w) ∼ (az − b̄w, bz + āw) ,

where a + bj = q. The standard hypercomplex structure on the universal cover C2 \ {0} is given by
Jdz1 = −dz̄2 and it descends to M . Clearly, this construction can be generalized in any quaternionic
dimension.
Many other examples can be found in the literature. A hypercomplex structure was defined by Joyce
in [201] on suitable products of a torus and a compact semisimple Lie group, we refer to Subsection
4.7.3 for a precise description of these examples. Other examples and constructions can be found in
[16, 40, 41, 42, 43, 44, 57, 58, 59, 92, 93, 94, 110, 171, 172, 200, 232, 255, 256, 257, 289]
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On a hypercomplex manifold (M, I, J), we can define a new complex structure:

K := IJ

so that (I, J,K) behaves as the quaternionic units, i.e.

I2 = J2 = K2 = −Id , IJ = −JI = K .

The triple (I, J,K) induces a whole 2-sphere of complex structures

H := {aI + bJ + cK | (a, b, c) ∈ S2} .

Note that aI + bJ + cK and a′I + b′J + c′K anti-commute if and only if (a, b, c), (a′, b′, c′) are orthogonal
vectors in R3. We emphasize that the role of (I, J) is not preferential and we can replace it with any pair
of anti-commuting complex structures in H. For this, we will often refer to (M,H) as a hypercomplex
manifold, rather than (M, I, J). On the other hand, it will often be useful to think in terms of a fixed
basis (I, J,K) for H.

Obviously, for any complex structure in H, the graded algebra of differential forms on M will split
according to (1.2). Thus, in what follows, we will denote with Λp,qL M the space of (p, q)-forms on M with
respect to L ∈ H, emphasizing the complex structure we choose. Since I and J anti-commute, an easy
observation is the following:

JΛp,qI M ⊆ Λq,pI M ,

i.e. J interchanges the bi-degrees with respect to I, where the action of J on Λ•M is defined as in (1.4).

Moreover, the presence of multiple complex structures allows us to define a positivity and realness
condition adapted to the hypercomplex setting.

Definition 1.3.3. Let (M, I, J) be a hypercomplex manifold. A differential form γ ∈ Λ2p,2q
I M is called

q-real if Jγ̄ = γ and q-semipositive (resp. q-positive) if additionally

γ(Z1, JZ̄1, · · · , Zp, JZ̄p, Z̄p+1, JZp+1, . . . , Z̄p+q, JZp+q) ≥ 0 , (resp. > 0)

for every non-vanishing Z1, . . . , Zp+q ∈ Γ(T 1,0
I M). Equivalently,

γ(X1, JX1, . . . , Xp+q, JXp+q) ≥ 0 , (resp. > 0)

for any non-zero X1, . . . , Xp+q ∈ Γ(TM).

We should emphasize that the conjugation in the definition of q-realness is the one induced by the
complex structure I.

Moreover, it will be useful to observe the following well-known fact whose proof is essentially the same
as in [240, Proof of Theorem 4.7] adapted to the hypercomplex case.

Lemma 1.3.4. Let (Mn,H) be a hypercomplex manifold. Then, the (n− 1)-th wedge power is a bijective
correspondence between the cone of q-positive (2, 0)-forms and the cone of q-positive (2n − 2, 0)-forms
with respect to I.

Furthermore, having available two anti-commuting complex structures allows us to define a twisted
operator, firstly introduced by Verbitsky in [329].

Definition 1.3.5. Let (M, I, J) be a hypercomplex manifold and let d = ∂ + ∂̄ be the splitting of the
exterior differential induced by I. We define the twisted operator ∂J as follows:

∂J := J−1∂̄J : Λp,qI M → Λp+1,q
I M .
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As in the complex case, we have that

∂2J = 0 , ∂J∂ = −∂∂J , ∂̄∂J = −∂J ∂̄ . (1.36)

We refer to [89, Lemma 2.12] for the detailed proof. As a first difference from the complex setting, the
operator ∂J raises the same degree as ∂. On the other hand, it is the natural analogue of ∂̄ in the
hypercomplex setting, from both a cohomological and analytical point of view. Indeed, for instance, we
can define the quaternionic Bott-Chern and Aeppli cohomology as follows:

HqBC(M) :=
ker ∂ ∩ ker ∂J

Im ∂∂J
, HqA(M) :=

ker ∂∂J
Im ∂ + Im ∂J

.

We will see in Section 4.2 how one can use the quaternionic Bott-Chern cohomology to define, in analogy
with the complex case, the first quaternionic Bott-Chern class of a hypercomplex manifold.

An important tool to study the metric properties of a hypercomplex manifold is the following lemma
describing the correspondence between (1, 1)-forms and (2, 0)-forms with respect to I.

Lemma 1.3.6 ([8]). Let (M, I, J) be a hypercomplex manifold. Then, the map

Φ: Λ1,1
I M → Λ2,0

I M

given by

Φ(γ)(X,Y ) :=

√
−1γ(JX, Y ) − γ(KX,Y )

2
, γ ∈ Λ1,1

I M , X, Y ∈ Γ(TM) (1.37)

is bijective. Furthermore, Φ(γ) is q-real, respectively q-positive, if and only if γ is real, respectively
positive.

In Chapter 4, it will be useful to look at the J-anti-invariant parts of (1, 1)-forms with respect to I.
Thus, let γ ∈ Λ1,1

I M , then, using (1.37), we have:

Φ

(
γ − Jγ

2

)
(X,Y ) =

1

4

(√
−1γ(JX, Y ) +

√
−1γ(X, JY ) − γ(KX,Y ) − γ(X,KY )

)
, X, Y ∈ Γ(TM) .

Furthermore, Φ(γ−Jγ2 ) is q-real if and only if γ− Jγ is real, i.e. γ− γ̄ is J-invariant. When γ =
√
−1∂̄ψ,

we actually have Φ(γ−Jγ2 ) = 1
2∂Jψ as it is shown in the next lemma, whose proof can be adapted from

that of [47, Lemma 2.1] (cf. also [292, Remark 4.1]).

Lemma 1.3.7. Let (M, I, J) be a hypercomplex manifold. Then, for any ψ ∈ Λ1,0
I M , we have

∂Jψ(X,Y ) = −1

2

(
∂̄ψ(JX, Y ) + ∂̄ψ(X, JY ) +

√
−1∂̄ψ(KX,Y ) +

√
−1∂̄ψ(X,KY )

)
,

for all X,Y ∈ Γ(TM). In particular, ∂Jψ is q-real if and only if ∂̄ψ + ∂ψ̄ is J-invariant.

Before going into the discussion of the metric properties of a hypercomplex manifold, we shall recall
here the definition of a current on a hypercomplex manifold, which will be useful in Chapter 4.

Definition 1.3.8. Let (M, I, J) a hypercomplex manifold. The space Dp,q
I (M) of currents of bi-degree

(p, q) with respect to I on M is by definition the topological dual to the space of (2n− p, 2n− q)-forms
with respect to I with compact support endowed with the usual family of seminorms, see [87, (2.1) p.
13].

Example 1.3.9. As in the complex case, any

ψ
loc
=

∑
|P |=p ,|Q|=q

ψPQ̄dz
P ∧ dzQ̄ , ψPQ̄ ∈ L1

loc ,
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where P = (i1, . . . , ip), Q = (j1, . . . , jq) with i1 < . . . < ip, j1 < . . . < jq and dzP := dzi1 ∧ . . . ∧ dzip ,
defines a (p, q)-current Tψ given by integration:

Tψ(γ) :=

∫
M

ψ ∧ γ ,

for any compactly supported γ ∈ Λ2n−p,2n−q
I M .

The action of the hypercomplex structure H naturally extends to currents: L ∈ H acts on T ∈ Dp,q
I (M)

in the following way:
(LT )(γ) := T (Lγ) ,

for any compactly supported form γ ∈ Λ2n−p,2n−q
I M . Similarly, the differential operators ∂, ∂J : Dp,q

I (M) →
Dp+1,q
I (M) are extended to (p, q)-currents by duality:

(∂T )(γ) := (−1)p+q+1T (∂γ) , (∂JT )(γ) := (−1)p+q+1T (∂Jγ) ,

for any compactly supported γ ∈ Λ2n−p−1,2n−q
I M . Finally, if T ∈ Dp,q

I (M), we define the conjugate

T̄ ∈ Dq,p
I (M) as T̄ (γ) := T (γ̄), for any γ ∈ Λ2n−q,2n−p

I M with compact support.

Definition 1.3.10. A (2p, 2q)-current T is called q-real if JT̄ = T . If further T (γ) ≥ 0, for any q-positive
γ ∈ Λ2n−2p,2n−2q

I M , we say that T is q-positive.

We conclude this section by discussing the so-called SL(n,H) condition. In order to define it, we need
to introduce the Obata connection, the unique torsion-free connection which preserves the hypercomplex
structure.

Theorem 1.3.11 ([246]). Let (M,H) be a hypercomplex manifold. Then, there exists a unique torsion-
free connection ∇Ob, called Obata connection, such that

∇ObL = 0 , L ∈ H .

As a difference with the Levi-Civita connection, the Obata connection is intrisically related to the
hypercomplex structure rather than to the metric one. The explicit formula for the Obata connection can
be found, even in the non integrable case, in [4]. In the integrable case, the expression can be simplified
resulting in

∇Ob
X Y =

1

2
([X,Y ] + I[IX, Y ] − J [X, JY ] +K[IX, JY ]) , X, Y ∈ Γ(TM) ,

we refer to [288] for the proof of the above. The curvature of the Obata connection can be viewed as a
measure of how much the hypercomplex manifold fails to be locally isomorphic to open sets of Hn.

Theorem 1.3.12 ([290]). Let (M,H) be a hypercomplex manifold. Then, the Obata connection is flat if
and only if M has affine quaternionic transition maps.

By the Holonomy principle, we immediately have that

Hol(∇Ob) ⊆ GL(n,H) .

On the other hand, inside GL(n,H), we can define the quaternionic special linear group as follows.

Definition 1.3.13. The quaternionic special linear group SL(n,H) is defined as the commutator group
of GL(n,H), i.e.

SL(n,H) := [GL(n,H),GL(n,H)] .

We should remark that the quaternionic special linear group cannot be defined as the set of matrices
with determinant 1 as in the real case, due to an ambiguity on the definition of determinant in the
quaternionic case.
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Definition 1.3.14. Let (M,H) be a hypercomplex manifold. Then, (M,H) is called SL(n,H)-manifold
if

Hol(∇Ob) ⊆ SL(n,H) .

The SL(n,H) assumption is very helpful and often desirable. SL(n,H)-manifolds have been studied
extensively, see [9, 172, 197, 230, 231, 232, 333]. One of the main properties of SL(n,H)-manifolds is
the following. Since we can identify SL(n,H) = GL(n,H) ∩ SL(2n,C), one can see that if (M,H) is a
SL(n,H)-manifold, K(M,L) is holomorphically trivial, for all L ∈ H, see for instance [331].

Consequently, Verbitsky in [332] conjectures that, in the compact case, the SL(n,H) condition is
equivalent to K(M,I) being holomorphically trivial. Recently, Andrada e Tolcachier in [17, Example 6.3]
provided a counterexample to the above conjecture, which is a compact solvmanifold M admitting a
hypercomplex structure (I, J) such that K(M,I) is holomorphically trivial while K(M,J) is not. In view of
this, Andrada e Tolcachier posed the following question.

Question 1.3.15 ([17], Remark 6.4). Let (M,H) a hypercomplex manifold such that K(M,L) is holomor-
phically trivial, for all L ∈ H. Then, (M,H) is SL(n,H).

In order to address this question, we will need to consider hyperHermitian metrics, even though the
SL(n,H) condition is not related to those.

1.3.2 HyperHermitian metrics

To start this subsection, we immediately give the definition of hyperHermitian metric.

Definition 1.3.16. Let (M,H) be a hypercomplex manifold. A Riemannian metric g is called hyperHer-
mitian if it is Hermitian with respect to any complex structure in H. Then, the triple (M,H, g) will be
called hyperHermitian manifold.

Example 1.3.17. The flat metric on Hn is hyperHermitian with respect to the standard hypercomplex
structure on Hn. Moreover, as in the real case, it is invariant under traslations, descending to a hyper-
Hermitian metric on T 4n.
Let now consider M to be the quaternionic Hopf surface described in Example 1.3.2. The Hermitian
metric induced by

ωI =

√
−1

|z|2
(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2

)
∈ Λ1,1

I (C2\{0}) (1.38)

is hyperHermitian with respect to the standard hypercomplex structure on C2\{0} and it is invariant
under the action of ⟨q⟩, q ∈ H, |q| > 1. Thus, it descends to a hyperHermitian metric on M .
Any K3 surface is known to admit a hyperHermitian metric which is additionally hyperKähler, see
Definition 1.3.22.

As in the Hermitian case, for any L ∈ H, we can consider the fundamental form ωL ∈ Λ1,1
L M associated

to the Hermitian structure (g, L). A straightforward equivalent condition for a I-Hermitian metric on a
hypercomplex manifold to be hyperHermitian is the following.

Lemma 1.3.18. Let (M, I, J) be a hypercomplex manifold and let g be a I-Hermitian metric. Then, g
is hyperHermitian if and only if ωI is J-anti-invariant, i.e. JωI = −ωI .

Furthermore, the hyperHermitian structure can also be completely described in terms of a distin-
guished (2, 0)-form with respect to I. Indeed, one can apply the bijection Φ in Lemma 1.3.6 to ωI to
obtain

ΩI := Φ(ωI) =
ωJ +

√
−1ωK

2
, (1.39)

which is a q-real and q-positive (2, 0)-form with respect to I. Conversely, any (2, 0)-form with respect to
I which is q-real and q-positive induces a hyperHermitian metric. Rewriting (1.39) in terms of ωI , we
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have, for every X,Y ∈ Γ(TM),

ΩI(X,Y ) =

√
−1ωI(JX, Y ) − ωI(KX,Y )

2
.

As it is customary, in view of this correspondence, we shall often say that ΩI is a hyperHermitian metric,
by a slight abuse of language. Furthermore, for the sake of notation, if no confusion is possible we shall
omit the reference to the complex structure I and simply write Ω.

A straightforward observation is that the volume form induced by Ω coincides with the Riemannian
one. Indeed, one can easily check that:

Ωn ∧ Ω̄n

(n!)2
=

ω2n
I

(2n)!
, (1.40)

where n is the quaternionic dimension of M . Another observation which is in order is that the n-th
power of Ω, since it is non-degenerate, will give rise to a nowhere vanishing section of the canonical
bundle K(M,I), implying its topological triviality. Then, in particular, any hyperHermitian manifold has
vanishing first Chern class. We will see, however, in Section 4.2 that there is a natural generalization
of the first Chern and Bott-Chern class in this setting which may distinguish classes of hypercomplex
manifolds behaving differently, in some precise sense.
We can however deduce a more precise expression for the n-th power of Ω as follows. We fix I-holomorphic
coordinates {z1, . . . , z2n} we can write

Ω = Ωijdz
i ∧ dzj ,

where the complex matrix (Ωij) is skew-symmetric. The Pfaffian pf(Ωij) of (Ωij) is defined via the
relation:

Ωn

n!
= pf(Ωij) dz

1 ∧ · · · ∧ dz2n . (1.41)

From (1.40) we deduce

|pf(Ωij)|2 = det(grs̄) , (1.42)

where (grs̄) is the Hermitian matrix that describes the hyperHermitian metric in the given coordinates.
We will see how the Pfaffian of Ω is related to the first Chern-Ricci form of ωI in Section 4.1. A similar
theory as that described in Section 1.1 can be conducted in the hyperHermitian setting. The presence
of Ω makes, however, possible to define and study properties, for instance, of the Lefschetz operator
associated to Ω.

Definition 1.3.19. Let (M,H,Ω) be a hyperHermitian manifold. We define the Lefschetz operator
associated with Ω as

LΩ : ΛkM → Λk+2M , LΩα := α ∧ Ω , α ∈ ΛkM .

Then, the dual of LΩ with respect to the standard inner product induced by the hyperHermitian metric
on differential forms will be denoted with ΛΩ, namely

g(ΛΩα, β) = g(α,LΩβ) , α ∈ ΛkM ,β ∈ Λk−2M .

An important property of the Leftschetz operator associated with Ω is the following.

Proposition 1.3.20. Let (Mn,H,Ω) be a hyperHermitian manifold. Then, for any p ≤ n,

Ln−pΩ : Λp,0I M → Λ2n−p
I M

is an isomorphism.
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The full theory of these operators, mimicking the complex case, can be studied, see for instance [156].
We will not be interested in that, so it will be omitted. However, we will frequently make use of the
explicit expression for ΛΩ on (2, 0)-forms with respect to I. Let ξ ∈ Λ2,0

I M , an easy computation shows
that

ΛΩξ = n
ξ ∧ Ωn−1

Ωn
.

Thanks to this expression, one can easily observe that, if ξ is q-real, then ΛΩξ is a real-valued function
on M . Furthermore, at any given point, chosen I-holomorphic coordinates (z1, . . . , z2n) such that Ω =∑n
i=1 dz

2i−1 ∧ dz2i we have

ΛΩξ =

n∑
i=1

ξ

(
∂

∂z2i−1
,
∂

∂z2i

)
. (1.43)

Recalling (1.7) and choosing ξ = Φ(γ−Jγ2 ) in (1.43), by straightforward calculations, we have

ΛΩ

(
Φ

(
γ − Jγ

2

))
=

1

2
ΛωI

γ , (1.44)

where we used that, pointwise in the chosen coordinates, J ∂
∂z2i−1 = ∂

∂z̄2i , for all i = 1, . . . , n. In particular,
for a function φ ∈ C∞(M,R), we recover, from Lemma 1.3.7 and (1.44), the well-known fact that the
operator

∆Ωφ := ΛΩ(∂∂Jφ) = ΛωI
(
√
−1∂∂̄φ)

is the Chern Laplacian. Again recalling the definition of Hodge ∗-star operator in Definition 1.1.12, we
can deduce the following identities:

∗Ω =
Ωn−1 ∧ Ω̄n

n!(n− 1)!
, ∗ψ = −Jψ̄ ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!
, ψ ∈ Λ1,0

I M .

Moreover, one can easily prove that:

∗ζ = −Jζ̄ ∧ Ωn−2 ∧ Ω̄n

n!(n− 2)!
+ ΛΩ(Jζ̄)

Ωn−1 ∧ Ω̄n

n!(n− 1)!
, ζ ∈ Λ2,0

I M . (1.45)

Before going into the discussion of special hyperHermitian metrics, we will prove the following general
lemma which will be useful in Section 4.5.

Lemma 1.3.21. Let (Mn,H,Ω) be a hyperHermitian manifold. Then, for every ψ, ζ ∈ Λ2,0
I M , we have:

ψ ∧ ζ ∧ Ωn−2

(n− 2)!
=
(
ΛΩ(ψ)ΛΩ(ζ) − g(ψ, Jζ̄)

) Ωn

n!
. (1.46)

Proof. Fixed ψ, ζ ∈ Λ2,0
I M , we have that, using (1.45),

g(ψ, Jζ̄)
Ωn ∧ Ω̄n

(n!)2
= − ψ ∧ ζ ∧ Ωn−2 ∧ Ω̄n

n!(n− 2)!
+ ΛΩ(ζ)ψ ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!

= − ψ ∧ ζ ∧ Ωn−2 ∧ Ω̄n

n!(n− 2)!
+ ΛΩ(ζ)ΛΩ(ψ)

Ωn ∧ Ω̄n

(n!)2
.

Using that wedging with Ω̄n

n! is an isomorphism, we conclude.

As in the Hermitian case, we can impose cohomological constraints on the form Ω to obtain classes
of hyperHermitian metrics which can be considered special. The first one we consider is the hyperKähler
condition.
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Definition 1.3.22. Let (M,H,Ω) be a hyperHermitian manifold. We say that the hyperHermitian metric
is hyperKähler if

dΩ = 0 . (1.47)

The hyperKähler condition can be equivalently expressed by requiring that dωL = 0, for all L ∈ H. A
straightforward consequence of Proposition 1.1.24 is that (1.47) is equivalent to require that the Obata
connection is preserving the hyperHermitian metric and, thus, it coincides with the Levi-Civita connection
of the metric. (1.47) readily implies that the trivialization Ωn of K(M,I) is holomorphic implying that
hyperKähler manifolds are Kähler Calabi-Yau manifolds. Moreover, one can show that hyperKähler
metric are Ricci-flat, even in the non compact case.

Example 1.3.23. The flat metric on T 4n is hyperKähler. Moreover, any K3 surface is hyperKähler.
Furthermore, one can produce hyperKähler metrics on the Hilbert scheme M [n], n ∈ N when M is either
a 4-torus or a K3 surface, see [45]. Other two exceptional and compact examples were found by O’Grady
in [248, 249].

Non-compact 4-dimensional ALE, recall Definition 1.1.45, examples of hyperKähler metrics are par-
ticular instances of the so-called gravitational instantons. For instance, the Eguchi-Hanson metric, see
[97], on T ∗S2 is an example of complete, asymptotically flat metric which is hyperKähler. Calabi in
[68] showed that the cotangent bundle of CPn, n ∈ N, admits always a complete hyperKähler metric.
Examples with S1-symmetries of the above can be constructed using the Gibbons-Hawking ansatz, see
[161]. Kronheimer in [211, 212] gave the full classification of 4-dimensional ALE hyperKähler manifolds.

However, the hyperKähler condition, as we observed above, forces the geometry of the manifold to
satisfy some strict properties. Moreover, many examples of hypercomplex manifolds do not admit any
hyperKähler metric. The very first example is the quaternionic Hopf surface which is, of course, not
HyperKähler since it is not even Kähler.

Thus, we are led to consider weaker cohomological conditions generalizing the hyperKähler one. For
sure, the most studied is the hyperKähler with torsion (HKT, for short) condition, firstly considered in
[189].

Definition 1.3.24. Let (M, I, J,Ω) be a hyperHermitian manifold. The metric Ω is called HKT if

∂Ω = 0 ,

where ∂ is the operator induced by the splitting of d with respect to I.

Originally, the definition of HKT metrics involved the Bismut connections associated to ωL, for all
L ∈ H.

Theorem 1.3.25 ([174], Proposition 2). Let (M,H,Ω) be a hyperHermitian manifold. Then, the follow-
ing are equivalent:

1. Ω is HKT;

2. the Bismut connections of ωL coincide, for all L ∈ H;

3.
IdωI = JdωJ = KdωK .

Example 1.3.26. For dimensional reasons, any hyperHermitian metric on a quaternionic Hopf surface is
HKT. Thanks to a result by Dotti and Fino in [93], any nilmanifold with abelian hypercomplex structure
admits a left-invariant HKT metric. Barberis, Dotti and Verbitsky, see [43, Theorem 4.6], proved also the
converse, i.e. that the existence of a left-invariant HKT metric forces the hypercomplex structure to be
abelian. Dotti and Fino in [92] classified 8-dimensional 2-step nilpotent Lie algebras admitting an abelian
hypercomplex structure. Other examples were found by Verbitsky in [330] as a by-product of holomorphic
bundles. Joyce’s examples, see [201], admits a HKT metric. Inhomogeneous examples of HKT manifolds
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can be found in [174]. On the other hand, the existence of HKT metrics on a given hypercomplex manifold
is not always guaranteed. The first example of hypercomplex manifold not admitting HKT metrics was
produced by Fino and Grantcharov in [110]. Then, obstructions to the existence of such metrics were
proved, see [172, 289].

Other examples of HKT metrics can be found in [16, 44].

Despite being defined using the Bismut connection, which, as we saw in Section 1.1, is a non-Kähler
feature, HKT manifolds are believed to be the analogue of Kähler manifolds in hypercomplex Geometry.
The evidences towards this assertion can be found in the work by many authors. First of all, an analogue
of the Buchdahl-Lamari criterion [63, 215] for complex surfaces was proved by Grantcharov, Lejmi and
Verbistky in [172] for SL(2,H)-manifolds. Cohomologically speaking, the HKT condition allows to obtain
similar results as in Theorem 1.1.23, see for instance [329]. Moreover, Banos and Swann in [35, 270],
proved that, for HKT metrics, local potentials always exist. Other general properties of HKT metrics
can be found in [8, 173, 195, 197, 329, 332]

However, the most important fact that highlights the analogy of HKT manifolds with Kähler ones is
the so-called quaternionic Calabi conjecture. In order to give the precise statement of the conjecture we
need some other preliminaries.

Let (M, I, J,Ω) be a HKT manifold. The HKT condition and the q-realness of Ω allow us to define a
cohomological class

[Ω]qBC ∈ H2,0
qBC(M) ,

which is also called HKT class. Then, any other q-real (2, 0)-form α ∈ [Ω]qBC will be of the following
form:

α = Ω + ∂∂Jφ , φ ∈ C∞(M,R) .

The quaternionic Calabi conjecture was firstly stated by Alesker and Verbitsky in [9] and it mimicks the
statement of the Calabi conjecture in Kähler Geometry.

Conjecture 1.3.27. Let (Mn, I, J,Ω) be a compact HKT manifold. Let Θ be a q-real, q-positive, (2n, 0)-
form. Then, there exists a unique φ ∈ C∞(M,R) such that

(Ω + ∂∂Jφ)n = Θ , Ω + ∂∂Jφ > 0 , sup
M

φ = 0 .

As in the Kähler case, the validity of Conjecture 1.3.27 will give rise, in some special cases, to
canonical hyperHermitian metrics. Indeed, for instance, we know that on SL(n,H)-manifolds we always
have a holomorphic volume form Θ which is q-real. Then, with this particular choice, Conjecture 1.3.27
will produce a balanced HKT metric on M which, in particular, is Chern-Ricci flat.

As for the Calabi conjecture, Conjecture 1.3.27 has a more analytic and equivalent formulation in-
volving the so-called quaternionic Monge-Ampère equation.

Conjecture 1.3.28. Let (Mn, I, J,Ω) be a compact HKT manifold and F ∈ C∞(M,R). Then, there
exists a unique (φ, b) ∈ C∞(M,R) × R such that

(Ω + ∂∂Jφ)n = eF+bΩn , Ω + ∂∂Jφ > 0 , sup
M

φ = 0 . (1.48)

Partial results are known for Conjecture 1.3.27 to hold. As far as the author knows, the most general
result concerning the validity of the conjecture can be found in [89], where Conjecture 1.3.27 is proved
under the assumption of hyperKählerianity of the manifold. The proof of the latter result involves the
standard continuity method. Of course, the hardest part is the proof of a priori estimates. Recently,
Sroka in [292] proved the C0 estimate for (1.48) in the general hyperHermitian setting.

As we saw, we can combine the HKT condition with another condition coming from complex Geometry
without forcing the metric to be hyperKähler. Indeed, we saw that Conjecture 1.3.27 is essentially
formutaled to find balanced HKT metrics on any fixed SL(n,H)-manifold. On the other hand, mainly
motivated by the coincidence of the Bismut connections, one can ask d-closedness of its torsion, resulting
in the so-called strong HKT metrics.
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Definition 1.3.29. Let (M, I, J,Ω) be a HKT manifold. Ω is called strong HKT if the torsion of the
Bismut connection of ωI is closed, i.e.

ddcIωI = 0.

As for the all the conditions we will impose on the metric, the strong HKT condition can be rephrased
in the terms of some cohomological condition.

Theorem 1.3.30 ([332], Proposition 5.4). Let (M, I, J,Ω) be a HKT manifold. Ω is strong HKT if and
only if

∂∂JΩ = 0 .

Few examples of strong HKT metrics are known. The largest class of such examples are Joyce’s
examples, we refer to Subsection 4.7.3 for the construction of such examples. Indeed, in [251, 174], the
authors proved that a suitable extension of the Cartan-Killing form of the compact semisimple factor
gives rise to a strong HKT left-invariant metric. Barberis and Fino in [44] provided a construction for
producing new examples of left-invariant strong HKT metrics starting from a fixed one, using quaternionic
representations. Surprisingly, the moduli space of Hermitian-Einstein connections on a given holomorphic
vector bundle over a quaternionic Hopf surface inherits a strong HKT structure, see [243].

On the other hand, other conditions on the hyperHermitian metric were imposed throughout the
past years. As it is customary, they are all conditions on the (2, 0)-form Ω. We shall recall them in the
following definition.

Definition 1.3.31. Let (Mn,H,Ω) be a hyperHermitian manifold. The metric Ω is called quaternionic
Gauduchon if

∂∂JΩn−1 = 0 .

Moreover, the metric Ω is called quaternionic strongly Gauduchon if ∂Ωn−1 is ∂J -exact. Finally, Ω is
called quaternionic balanced if

∂Ωn−1 = 0 .

One can easily see that all the definitions above are mimicking the analogous definitions of, respec-
tively, Gauduchon, recall Definition 1.1.34, strongly Gauduchon, see [271], and balanced metrics, see
Definition 1.1.47, defined in complex Geometry.
As in the complex case, we have that a HKT metric is, in particular, a quaternionic balanced metric.
Moreover, any quaternionic balanced metric is quaternionic strongly Gauduchon. Finally, any quater-
nionic strongly Gauduchon metric is of course quaternionic Gauduchon. On the other hand, the converses
are not true in general. We shall collect in Section 4.7 examples showing that the inclusions among the
classes of manifolds admitting these metrics might be strict. For instance, as far as the author knows,
Examples 4.7.4, 4.7.5 and 4.7.6 are the first examples of compact hypercomplex manifolds admitting
quaternionic strongly Gauduchon metrics but no quaternionic balanced metrics.
The quaternionic Gauduchon condition was firstly considered in [172]. In particular, the authors noticed
that on a compact SL(n,H)-manifold quaternionic Gauduchon metrics really behave as Gauduchon met-
rics. Namely, on a compact SL(n,H)-manifold, we can always find a quaternionic Gauduchon metric in
each conformal class of a given hyperHermitian metric. On the other hand, on non SL(n,H)-manifold,
we cannot expect, in general, the existence of quaternionic Gauduchon metric. An example of such man-
ifolds was firstly provided by Andrada and Tolcachier in [17]. We will address that example in details in
Example 4.7.9. The main aim of Section 4.3 is that of giving sufficient and necessary conditions for the
existence of such metrics.

As regards the quaternionic balanced condition, it was firstly introduced in [231] and the first example
of a hypercomplex manifold admitting a quaternionic balanced metric but no HKT ones was found in
[112]. We should also mention that these kinds of metric are also the object of an interesting form-
type Calabi-Yau problem [131, 132, 159, 160]. On the other hand, properties of quaternionic balanced
manifolds are not perfectly known, as in the complex case. We will study some of them in Section 4.4.

Finally, quaternionic strongly Gauduchon metrics were firstly defined in [232]. Unfortunately, such
metrics were not studied much in the literature. As we will see in Example 4.7.11, this condition, as a



36 CHAPTER 1. PRELIMINARIES

difference with the quaternionic balanced and quaternionic Gauduchon one, relies on the preferred choice
of the pair of anti-commuting complex structures, ultimately indicating the not well-suited behaviour of
such condition in the hypercomplex setting.

1.4 Gromov-Hausdorff and Cheeger-Gromov convergence

In this short section, we quickly recall the definition of Gromov-Hausdorff and Cheeger-Gromov conver-
gence and their main properties.

Definition 1.4.1 ([64], Definition 7.3.1, Definition 7.3.10). Let (X, d) be a metric space and A,B ⊆ X.
The Hausdorff distance between A and B is defined as:

dH(A,B) := inf{r > 0 |A ⊆ Br(B) and B ⊆ Br(A)}

where Br(A) = {x ∈ X | d(x,A) < r} .
Given X,Y two metric spaces, the Gromov-Hausdorff distance dGH(X,Y ) between X and Y is defined

as the infimum of the Hausdorff distances between A′, B′ ⊆ Z, where Z is a metric space and A′ and B′

are, respectively, isometric to X and Y .
Finally, let {Xn}n∈N be a sequence of metric spaces and X be a metric space. We say that Xn

converges to X in the Gromov-Hausdorff sense if dGH(Xn, X) → 0, as n→ ∞.

We collect here the main properties of the Gromov-Hausdorff distance and convergence.

Theorem 1.4.2. 1. Let X and Y be two isometric metric spaces, then dGH(X,Y ) = 0;

2. dGH defines a metric on the space of isometry classes of compact metric spaces;

3. if there exist maps F : X → Y and G : Y → X, not necessary continuous, such that

|dY (F (x1), F (x2)) − dX(x1, x2)| <ε , dX(x,GF (x)) < ε , x1, x2, x ∈ X ,

|dX(G(y1), G(y2)) − dY (y1, y2)| <ε , dY (y, FG(y)) < ε , y1, y2, y ∈ Y ,

then, dGH(X,Y ) < 3
2ε.

The proof of the first statement is straightforward, the second one is proved in [64, Theorem 7.3.30]
while the proof of the third can be found in [277, Lemma 1.3.3].

Besides being purely topological, Gromov-Hausdorff convergence gives a quantitative picture of col-
lapsing in Differential Geometry. As we will see in Section 3.1, the Gromov-Hausdorff convergence of the
solution of certain geometric flows highlights how the flow transforms the starting manifold, ultimately
collapsing into a lower dimensional manifold.

On the other hand, the collapsing behaviour might be caused by the presence of some gauge group,
especially in the study of geometric flows, acting on our objects and producing degenerating directions.
Moreover, one may be interested not only on the topology but rather on the differential structure of the
limit. To do this, we introduce the notion of Cheeger-Gromov convergence.

Definition 1.4.3 ([221], Definition 6.2). Let {(Mk, gk, pk)}k∈N be a sequence of pointed Riemannian
manifolds and (M, g, p) be a pointed Riemannian manifold. We say that (Mk, gk, pk) converges to (M, g, p)
in the Cheeger-Gromov sense if there exist an exhaustion {Ωk}k∈N of open sets of M containing p and
φk : Ωk → Mk embeddings such that φk(p) = pk, for any k ∈ N, and φ∗

kgk → g smoothly on compact
sets.

We recall here some of the properties of the Cheeger-Gromov convergence.

Theorem 1.4.4. Let {(Mk, gk, pk)}k∈N be a sequence of pointed Riemannian manifolds converging to
(M, g, p) in the Cheeger-Gromov sense.
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1. If M is compact, then φk : M → Mk are diffeomorphisms. In particular, (Mk, gk) converges
smoothly to (M, g), up to diffeomorphisms;

2. (M, g, p) is unique up to isometries;

3. If (Mk, gk, pk) is homogeneous, for all k ∈ N, then (M, g, p) is homogeneous;

4. If (Mk, gk, pk) is homogeneous, for all k ∈ N, the choice of the base points pk is not influent on the
limit.

In contrast with the first Item of Theorem 1.4.4, we can find examples of compact Riemannian
manifolds converging to a non compact one, see [22, 9.2.2]. Moreover, the choice of the base points, in
the general case, is crucial, see [221]. We will see both in Section 3.1 and Section 3.2 the study of the
Cheeger-Gromov convergence of the solutions of pluriclosed and generalized Ricci flow highlights soliton
solutions.
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Chapter 2

Constructing constant Chern scalar
curvature balanced metrics

In the Kähler realm, cscK metrics are nowadays believed to be canonical representatives of a fixed Kähler
class, mainly due to the Yau-Tian-Donaldson conjecture, see [91, 316, 339]. A great source of examples of
cscK metrics was provided by a result by Arezzo and Pacard in [31]. This result ensures the existence of
cscK metrics on the blow-up in a finite number of points of a cscK orbifold with no non-trivial holomorphic
vector field vanishing somewhere. The aim of this chapter is to extend the result by Arezzo and Pacard
to the balanced case, thus proving Theorem B.

The strategy we follow to prove Theorem B is a classical gluing procedure. The chapter is divided as
follows.

In Section 2.1, we discuss the general set up within we wish to perform the deformation argument.

Section 2.2 is fully devoted to the proof of Theorem B. After comparing our problem with the Kähler
case, we prove the invertibility of the linearized operator and solve the equation by means of Banach’s
fixed point Theorem.

Section 2.3 is dedicated to the proof of Theorem 2.3.1 which requires the existence of a suitable
(n− 2, n− 2)-form on the starting manifold.

Finally, in Section 2.4, we discuss some classes of examples in which Theorem 2.3.1 can be applied.

The present chapter is an account of a joint work in progress with Federico Giusti.

2.1 Set up of the problem

In this section, we set up the problem in the general setting. This section will be divided in two sub-
sections. In Subsection 2.1.1, we construct the approximate solution and prove some estimates on it
to ensure we can perform the deformation argument in Section 2.2. In Subsection 2.1.2, we set up the
equation we want to solve and compute the linearized operator of it.

2.1.1 The approximate solution

Let (M, ω̃) be a compact Chern-Ricci flat manifold of dimension n ≥ 3 and let M̂ be the blow-up at
a point x ∈ M . For the sake of simplicity, we will focus in the case of the blow-up of a point, but
the argument applies in the same way when blowing up a finite family of points. Following the usual
strategy of gluing constructions (see [31] or [312]), the first step will be to construct an approximate
solution to the problem on M̂ , which in our case will consist of an approximately constant Chern scalar
curvature balanced metric. In order to do this, we shall implement the cut-off argument for balanced
metrics introduced in [168]. With this in hand, we can glue together the background metric ω̃ to the

39
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Burns-Simanca metric ωBS on the blow-up of Cn at 0, using a flat region as bridge, making sure that it
also satisfies suitable properties for the following deformation argument.

Let us then start to describe this gluing process by seeing how the balanced property intervenes. This
happens with the following lemma, whose proof can be found in [168].

Lemma 2.1.1. Let (Y n, ω̃) be a balanced manifold. Then, for every y ∈ Y and p > 0, there exist a
sufficiently small ε > 0, coordinates z centered at y and a balanced metric ω̃ε such that

ω̃ε =

{
ωo if |z| < εp ,

ω̃ if |z| > 2εp ,

where ωo is the flat metric around y, and such that |ω̃ε − ωo|ωo
< cεp on {εp ≤ |z| ≤ 2εp}.

Thus, starting from ω̃, we can obtain the corresponding ω̃ε, which is exactly flat in a neighbourhood
of x.
On the other hand, we can consider the standard coordinates ζ on X̂ := Bl0Cn\E ≃ Cn\{0} =: X \ {0}.
Recalling that ωBS admits the expansion (1.9) away from the exceptional divisor, we can introduce a
cut-off function

ψ(y) :=


1 if y ≤ 1

4 ,

non increasing if 1
4 < y < 1

2 ,

0 if y ≥ 1
2 ,

which, for all q > 0, can be rescaled to
ψε(y) := ψ(εqy),

making the cut-off happen far away from the exceptional divisor, i.e. in the asymptotically flat part.
This allows us to introduce the family of closed (1, 1)-forms:

ωBS,ε :=
√
−1∂∂(|ζ|2 + ψε(|ζ|)γ(|ζ|)) .

From here, it is easily seen that, on the cut-off region { 1
4ε

−q ≤ |ζ| ≤ 1
2ε

−q}, it holds

ωBS,ε = ωo + O(|ζ|2−2n), (2.1)

where now ωo denotes the flat metric on Cn\{0} induced by the coordinates ζ. This ensures that for
sufficiently small ε, ωBS,ε is an asymptotically exactly flat Kähler metric on X̂.
If we then consider the biholomorphism

z = εp+qζ,

we get the identification {
1

4
ε−q ≤ |ζ| ≤ 2ε−q

}
≡
{

1

4
εp ≤ |z| ≤ 2εp

}
with which we can topologically realize M̂ . Moreover, it also allows us to obtain that

|z|2 = ε2(p+q)|ζ|2,

telling that on M̂ , the metrics ε2(p+q)ωBS,ε and ω̃ε coincide with the flat metric on the region{
1

2
ε−q ≤ |ζ| ≤ ε−q

}
≡
{

1

2
εp ≤ |z| ≤ εp

}
. (2.2)

This last fact gives us the possibility to glue ω̃ε and ε2(p+q)ωBS,ε to a global balanced metric ωε on M̂ .
In the following, as it will not create any confusion, we will avoid writing explicitly the dependence on ε,
thus we will always write just ω = ωε.
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Remark 2.1.2. The metric ω is a suitable approximate solution. Indeed, it is clear that the metric is
unaltered on {εp ≤ |z| ≤ 2εp}, on which we still have

|∇k
ωo

(ω − ωo)|ωo ≤ c|z|1−k,

for all k ≥ 0.
On the other hand, since to obtain ω we had to rescale the metric ωBS,ε on X̂, we have to check how it
has affected the distance from the flat metric. To have clearer estimates, we will express also this one in
terms of the “small”coordinates z. The main thing to observe, is that on { 1

4ε
−q ≤ |ζ| ≤ 1

2ε
−q} it holds

⟨ω − ωo, ω − ωo⟩ωo
(z) = ε−4(p+q)⟨ε2(p+q)(ωBS,ε − ωo), ε

2(p+q)(ωBS,ε − ωo)⟩ωo
(ζ)

= ⟨ωBS,ε − ωo, ωBS,ε − ωo⟩ωo
(ζ) ,

implying that |ω−ωo|ωo(z) = |ωBS,ε−ωo|ωo(ζ). From here, we can recall the expansion (2.1) and obtain

|ω − ωo|ωo
(z) ≤|ωBS,ε − ωo|ωo

(ζ) ≤ c|ζ|2−2n ≤ cε(2n−2)q ≤ c|z|(2n−2)q/p ,

which implies, on the whole gluing region, that, for all k ≥ 0, holds

|∇k
ωo

(ω − ωo)|ωo
≤ c|z|m−k,

where m = min{1, (2n− 2)q/p}, showing again that ω is indeed a metric on M̂ . Moreover, the closeness
between the metric ω and the flat metric ωo shows us that ω is suitable to perform analysis with, and
hence we can try to search for a constant Chern scalar curvature balanced metric through a deformation
argument.

Remark 2.1.3. As we will see, the deformation argument we will introduce in the following subsection
will allow us to work within the balanced class of ω. Hence, in light of [23, Proposition 2.6], we can
predict the sign of the Chern scalar curvature of a genuine solution (which we will obtain in the next
sections) by describing the cohomology class of ω. Indeed, we have that

[ωn−1]BC = π∗[ω̃n−1]BC + [ε2(p+q)ωBS]n−1
BC ,

and, since [ωBS]BC = −[E]BC, we get

[ωn−1]BC = π∗[ω̃n−1]BC + (−1)n−1ε(2n−2)(p+q)[E]n−1
BC .

Now, recalling (1.18), (1.15) and that [E]nBC = (−1)n−1, it follows that

Γ({ω}) =
2π

(n− 1)!
(π∗cBC

1 (M) − (n− 1)[E]BC) · (π∗[ω̃n−1]BC + (−1)n−1ε(2n−2)(p+q)[E]n−1
BC )

= Γ({ω̃}) − 2π

(n− 2)!
ε(2n−2)(p+q).

(2.3)

2.1.2 Setting up the equation

We now wish to obtain a constant Chern scalar curvature balanced metric starting from the approximate
solution, and as done, for instance, in [31, 51, 312]. We plan to do it through a deformation argument.
Since we wish to work inside the balanced class of ω, we will consider the general deformation, considered
firstly in [130] :

ωn−1
φ := ωn−1 +

√
−1∂∂φ, φ ∈ Λn−2,n−2

R M̂ such that ωn−1
φ > 0. (2.4)

Thus, the problem we are interested in solving, following what was done in [312], is the equation

sCh(ωφ) = const. (2.5)
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for φ ∈ Λn−2,n−2
R M̂ such that ωn−1

φ > 0. Now, as showed by (2.3), we can expect the solution to have
the Chern scalar curvature near to the one of ω̃, thus we can rephrase equation (2.5) as

S(φ) := sCh(ωφ) − sCh(ω̃) = c (2.6)

for φ ∈ Λn−2,n−2
R M̂ and c ∈ R. Moreover, we can get rid of the unknown constant by rewriting the

equation as

S̃(φ) := sCh(ωφ) − sCh(ω̃) −
∫
M̂

f(φ)
ωn

n!
= 0, (2.7)

where f : Λn−2,n−2
R M̂ → C∞(M,R) is a suitable operator to be evaluated on φ which will be chosen

later to help us to get rid of the kernel of some operator. This will help us in obtaining the invertibility
of the linearization of S̃, which is a key ingredient to allow us to turn the problem of solving equation
(2.7) into a fixed point problem to be solved with Banach’s fixed-point Theorem in a suitably chosen
neighbourhood of zero. Hence, our next step will be to compute the linearization at 0 of S̃.

First of all, we observe that, directly from (2.7), we have that the linearized operator

L̃(φ) := d0S̃(φ) = L(φ) −
∫
M̂

d0f(φ)
ωn

n!
, φ ∈ Λn−2,n−2

R M̂ ,

where L(φ) := d0s
Ch(φ). We thus need to obtain an explicit expression for the operator L(φ) =

d
dt

∣∣
t=0

sCh(ωt,φ), where ωt,φ is an arbitrary curve of Hermitian metrics lying in [ωn−1]BC and such

that ωn−1
0,φ = ωn−1 and (ωn−1

t,φ )′(0) = φ. Thus, we consider the curve of Hermitian metrics defined

by ωn−1
t,u = ωn−1 + t

√
−1∂∂̄φ and we observe that

d

dt

∣∣∣
t=0

ωnt,φ =n
d

dt

∣∣∣
t=0

ωt,φ ∧ ωn−1 ,

d

dt

∣∣∣
t=0

ωnt,φ =
d

dt

∣∣∣
t=0

ωt,φ ∧ ωn−1 + ω ∧
√
−1∂∂̄φ .

(2.8)

Then, from (2.8), we obtain

d

dt

∣∣∣
t=0

ωnt,u =
n

n− 1
ω ∧

√
−1∂∂̄φ . (2.9)

For the sake of simplicity, we will denote with

Fω(φ) =
d

dt

∣∣∣
t=0

logωnt,φ =
n

n− 1

ω ∧
√
−1∂∂̄φ

ωn
.

From this, we easily obtain that

d

dt

∣∣∣
t=0

RicCh(ωt,φ) = −
√
−1∂∂̄Fω(φ) . (2.10)

Now, differentiating (1.13) in the case of the Chern connection and using (2.9) and (2.10), we obtain that

L(φ) = −∆ωFω(φ) + n
RicCh(ω) ∧

√
−1∂∂̄φ

ωn
− sCh(ω)Fω(φ) . (2.11)

Clearly such an operator will not stand the possibility to have no kernel, as the input space is much
larger then the target space, on top of being extremely complicate to understand. For this reason, in the
next two sections, we will introduce two different ansatz with the objective to turn the operator into one
between two function spaces, allowing us to perform the usual analysis involved in gluing constructions.
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2.2 Balanced deformation

In this section we consider the balanced ansatz for the deformation argument. In particular, we analyse
the equation in (2.4) assuming φ = uωn−2, for u ∈ C∞(M,R), as previously done in [168], from which
we get, as from [168, Lemma 3.2], that the operator Fω takes the form

Fω(u) =
1

n− 1

(
∆ωu+

1

n− 1
|∂ω|2u

)
. (2.12)

We will then choose f(uωn−2) = u|∂ω|2. With these choices, we are able to turn operator S̃ into an
operator taking smooth functions in input defined as

S̃(u) = sCh(ωu) − sCh(ω̃) −
∫
M̂

u|∂ω|2ω
n

n!
, (2.13)

whose linearization is now suitable to be inverted, up to working in the correct functional spaces. Let us
conclude by writing again the linearized operator L̃ implementing this ansatz:

L̃(u) := L̃(uωn−2) = −∆ωFω(u) +n
RicCh(ω) ∧

√
−1∂∂(uωn−2)

ωn
− sCh(ω)Fω(u)−

∫
M̂

u|∂ω|2ω
n

n!
. (2.14)

Before proving Theorem B, we want to highlight and discuss the differences and similarities of this
setting with the Kähler one.

2.2.1 Comparison with the Kähler case

As highlighted before, this deformation makes sense on every balanced manifold, hence it is worth ana-
lyzing the linearized operator in a more general setting, aiming to understand something more about it in
the case of constant Chern scalar curvature balanced metrics. As we will see, this linearization will show
up as a perfectly fitting generalization of the Kähler case, as it will reduce to the Lichnerowicz operator
whenever the metric on the base manifold is chosen to be cscK. In order to obtain this, we will first recall
some ingredients from the Kähler setting, then obtain some significant formulas for the balanced setting,
and finally put all the pieces together.

First of all, we recall that from the case of [31] for cscK metrics on blow-ups, a key role is played by
the Lichnerowicz operator:

D∗D : C∞(M,C) → C∞(M,C) defined locally by D∗Dψ := gij̄gkl̄DiDkDj̄Dl̄ψ

where here D is the Levi-Civita connection of a given Kähler metric g. More globally, using (1.16), we
can write, see for instance [312, Definition 4.3],

D∗Dψ = ∆2
ωψ + g(i∂∂̄ψ,Ric(ω)) + g(∂s(ω), ∂ψ̄) , ψ ∈ C∞(M,C) ,

where Ric(ω) is the Ricci form of the metric g while s(ω) = trωRic(ω) is the Riemannian scalar curvature
of g. The kernel of the Lichnerowicz operator is well-known and it consists on those function ψ such that
(Dψ)1,0 is a holomorphic vector field.

Now, let ω be a balanced manifold. Following the Kähler case, we would like to consider the operator

D := ∇k̄∇q̄ : C∞(M,R) → Γ(Λ0,1M ⊗ Λ0,1M) ,

where ∇ is the Chern connection of ω (which is now different from the Levi-Civita connection), and
compute, given ψ ∈ C∞(M,C), the Chern-Lichnerowicz operator D∗D. As the contracted Bianchi
identity (1.16) is only satisfied by the Levi-Civita connection, in order to obtain a reasonable expression
for the operator, we are going to develop some formulas for the codifferentials of the Chern-Ricci forms
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of a given balanced metric ω. We will then see some interesting applications of them, not only in direct
relation to our problem, but in the wider framework of constant Chern scalar curvature balanced metrics.

To make things clear, let us quickly establish some local coordinates conventions. We will locally
write any Hermitian metric ω as

ω =

√
−1

2
gij̄dz

i ∧ dz̄j ,

where, as usual, gij̄ = g( ∂
∂zi
, ∂
∂z̄j

) are the components of the Hermitian metric g associated to ω. As we

know, the presence of a Riemannian metric determines a natural metric on all the tensor bundles. In
what follows, we will make use of that on differential forms. Encoding directly the complex structure
in the discussion, we will use the following convention: given α, β ∈ Λp,qM , then, in local holomorphic
coordinates, we have that

g(α, β) =
1

p!q!
gi1 j̄1 · · · gip j̄pgk1 l̄1 · · · gkq l̄qαi1···ip l̄1···l̄qβj1···jpk̄1···k̄q .

Recalling Definition 1.1.12 and 1.6, we have:

α ∧ ∗β̄ = g(α, β)
ωn

n!
.

With these conventions, we can recall some well-known Riemannian relations we will use later, specified
in the Hermitian case. The first one is the fact that that the interior product and the exterior one are
formal adjoints with respect to the inner product above. More precisely, given Z ∈ T 1,0M , α ∈ Λp,qM
and β ∈ Λp−1,qM we have that

g(ιZα, β) = g(α, Z̄b ∧ β) , (2.15)

where Zb(W ) = g(Z,W ), for all W ∈ T 0,1M . From this equality, we derive the following:

ιZ̄β = ∗(Z̄b ∧ ∗β) and ιZβ = ∗(Zb ∧ ∗β) . (2.16)

We then have the following formulas, which can be interpreted as the contracted Bianchi identities
for the Chern connection.

Lemma 2.2.1. Let (M,ω) be a balanced manifold. We have,

∂̄∗RicCh(ω) =
√
−1∂sCh(ω) −

√
−1

2
Λ2(RicCh(ω) ∧ ∂ω) ,

∂̄∗Ric(2)(ω) =
√
−1∂sCh(ω) −

√
−1

2
Λ2(Ric(2)(ω) ∧ ∂ω) −

√
−1Λ(∂Ric(2)(ω)) .

As a consequence, we have that

i∂∗∂̄∗RicCh(ω) = ∆ωs
Ch(ω) − g(RicCh(ω), ∂∗∂ω) ,

i∂∗∂̄∗Ric(2)(ω) = ∆ωs
Ch(ω) − 1

2
Λ2(

√
−1∂∂̄Ric(2)(ω)) + 2Re(g(∂Ric(2)(ω), ∂ω)) − g(Ric(2)(ω), ∂∗∂ω) .

Proof. First of all, using [48, Lemma 2.1], we know that

∗RicCh(ω) =
1

(n− 1)!
sCh(ω)ωn−1 − 1

(n− 2)!
RicCh(ω) ∧ ωn−2 . (2.17)

Now, using the balanced condition, we have that

∂ ∗ RicCh(ω) = ∂sCh(ω) ∧ ∗ω − 1

(n− 2)!
RicCh(ω) ∧ ∂ωn−2 .
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Applying (2.16), for any Z ∈ T 1,0M , we can infer that

ιZ ∂̄
∗RicCh(ω) = ∗ (Zb ∧ ∂ ∗ RicCh(ω)) = ∗(Zb ∧ ∂sCh(ω) ∧ ∗ω) − 1

(n− 2)!
∗ (Zb ∧ RicCh(ω) ∧ ∂ωn−2) .

On the other hand, applying again Item 6 of Proposition 1.1.15, we obtain

∗∂sCh(ω) = −
√
−1

(n− 1)!
∂sCh(ω) ∧ ωn−1 = −

√
−1∂sCh(ω) ∧ ∗ω ,

which gives us that
∗(Zb ∧ ∂sCh(ω) ∧ ∗ω) =

√
−1ιZ∂s

Ch(ω) .

Now, thanks to the balanced condition, we have that ∂ω is primitive, recall Item 3 of Proposition 1.1.48.
So, using again Item 6 of Proposition 1.1.15, we can easily see that

∗∂ω =

√
−1

(n− 2)!
∂ωn−2 . (2.18)

Then,

1

(n− 2)!
Zb ∧ RicCh(ω) ∧ ∂ωn−2 = −

√
−1Zb ∧ RicCh(ω) ∧ ∗∂ω = −

√
−1g(RicCh(ω), ιZ̄ ∂̄ω)

ωn

n!
.

Hence, we obtain that

ιZ ∂̄
∗RicCh(ω) =

√
−1ιZ∂s

Ch(ω) +
√
−1g(RicCh(ω), ιZ̄ ∂̄ω) . (2.19)

In order to achieve the claim, using again the balanced condition, we observe that, for any Z ∈ T 1,0M ,
we have that

1

2
ιZΛ2(RicCh(ω) ∧ ∂ω) =

1

2
Λ2(ιZ(RicCh(ω) ∧ ∂ω)) =

1

2
g(ιZ(RicCh(ω) ∧ ∂ω), ω2)

= ∗
(

RicCh(ω) ∧ ιZ∂ω ∧ ωn−2

(n− 2)!

)
= −g(RicCh(ω), ιZ̄ ∂̄ω) ,

(2.20)

where we used that

∗ιZ∂ω = − 1

(n− 2)!
ιZ∂ω ∧ ωn−2 .

Now, we can conclude by using (2.20) in (2.19).
As regards the formula for the second Chern Ricci form, we just need to analyze the term involving
∂Ric(2)(ω) ∧ ωn−2. Applying again Item 6 of Proposition 1.1.15, we have that

∗LZb =
√
−1Zb ∧ ωn−2

(n− 2)!
,

which implies that

Zb ∧ ∂Ric(2)(ω) ∧ ωn−2

(n− 2)!
=

√
−1g(Ric(2)(ω), LZ̄b) =

√
−1ιZΛ∂Ric(2)(ω) ,

giving the desired formula.
As regards the second part of the statement, we know that

√
−1∂∗∂̄∗RicCh(ω) =

√
−1 ∗ ∂∂̄ ∗ RicCh(ω) .
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Now, recalling (2.17), using the balanced condition and the fact that RicCh(ω) is both ∂ and ∂̄-closed,
we have that

√
−1∂∗∂̄∗RicCh(ω) = ∗

(
1

(n− 1)!

√
−1∂∂̄sCh(ω) ∧ ωn−1 − 1

(n− 2)!
RicCh(ω) ∧

√
−1∂∂̄ωn−2

)
= ∆ωs

Ch(ω) − 1

(n− 2)!
∗ (RicCh(ω) ∧

√
−1∂∂̄ωn−2) .

(2.21)

Hence, using (2.18), we obtain

− 1

(n− 2)!
RicCh(ω) ∧

√
−1∂∂̄ωn−2 = −RicCh(ω) ∧ ∗∂̄∗∂̄ω = −g(RicCh(ω), ∂∗∂ω)

ωn

n!
, (2.22)

which used in (2.21) gives the claim.
Finally, using that

∗Ric(2)(ω) = sCh(ω) ∧ ωn−1

(n− 1)!
− Ric(2)(ω) ∧ ωn−2

(n− 2)!
,

we obtain

√
−1∂∗∂̄∗Ric(2)(ω) = ∗

(√
−1∂∂̄sCh(ω) ∧ ωn−1

(n− 1)!
− 1

(n− 2)!

√
−1∂∂̄(Ric(2)(ω) ∧ ωn−2)

)
= ∆ωs

Ch(ω) − ∗
(

1

(n− 2)!

√
−1∂∂̄(Ric(2)(ω) ∧ ωn−2)

)
.

(2.23)

Moreover, we have that

√
−1∂∂̄(Ric(2)(ω) ∧ ωn−2) =

√
−1∂∂̄Ric(2)(ω) ∧ ωn−2 + 2Re(

√
−1∂Ric(2)(ω) ∧ ∂̄ωn−2)

+ Ric(2)(ω) ∧
√
−1∂∂̄ωn−2 .

Now, in the same fashion as in (2.22), we can conclude that

− 1

(n− 2)!
Ric(2)(ω) ∧

√
−1∂∂̄ωn−2 = −g(Ric(2)(ω), ∂∗∂ω) .

Furthermore, one can check that

√
−1∂Ric(2)(ω) ∧ ∂̄ωn−2

(n− 2)!
= −∂Ric(2)(ω) ∧ ∗∂̄ω = −g(∂Ric(2)(ω), ∂ω) .

Then,

− 1

(n− 2)!

√
−1∂∂̄(Ric(2)(ω)∧ωn−2) = −1

2
Λ2(

√
−1∂∂̄Ric(2)(ω))+2Re(g(∂Ric(2)(ω), ∂ω))−g(Ric(2)(ω), ∂∗∂ω) ,

which inserted in (2.23) concludes the proof.

This result has several very interesting consequences which we shall now discuss (up to obtaining a
nice expression for the Chern-Lichnerowicz operator). The very first formula in Lemma 2.2.1, for example,
guarantees a new way of proving a well-known fact, i.e. that balanced first Chern-Ricci Einstein metrics
are either flat or Kähler-Einstein, see [24].

Corollary 2.2.2. Let (M,ω) be a first Chern-Einstein balanced manifold. Then, ω is either first Chern-
Ricci flat or Kähler-Einstein.
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Proof. The first Chern-Einstein condition together with the balanced condition ensures that

∂̄∗RicCh(ω) =
√
−1∂sCh(ω) .

On the other hand, if RicCh(ω) = λω, for some λ ∈ C∞(M,R), we have that

∂̄∗RicCh(ω) = ∂̄∗(λω) = − ∗ 1

(n− 1)!
(∂λ ∧ ωn−1) =

√
−1∂λ .

Then, we have that √
−1∂λ =

√
−1∂sCh(ω) = n

√
−1∂λ

which implies that λ is constant. So, in the case in which λ ̸= 0 we conclude the proof, using that
RicCh(ω) is d-closed.

Another consequence of Lemma 2.2.1 is that, on a compact balanced manifold (M,ω), the term
g(RicCh(ω), ∂∗∂ω) appearing in the expression of

√
−1∂∗∂̄∗RicCh(ω) is such that∫

M

g(RicCh(ω), ∂∗∂ω)
ωn

n!
= 0 .

The above condition directly implies that if (M,ω) is a compact quotient of a Lie group endowed with a
left-invariant balanced metric, then RicCh(ω) is Bott-Chern harmonic, i.e.

∂RicCh(ω) = 0 , ∂̄RicCh(ω) = 0 and
√
−1∂∗∂̄∗RicCh(ω) = 0 .

On the other hand, a well know result, stemming from 1.16, states that a Kähler metric has harmonic
Ricci form if and only if the metric is cscK. Then, one can formulate the following problem:

Question 2.2.3. Let (M,ω) be a compact balanced manifold. The first Chern-Ricci form of ω is Bott-
Chern harmonic if and only if ω has constant Chern scalar curvature.

Remark 2.2.4. In general, we cannot expect the first Chern-Ricci form to be d-harmonic. Indeed, in
[167], the authors constructed balanced compact quotient of Lie groups with vanishing first Chern class
but non-zero Chern-Ricci form. Then, if the Chern-Ricci form was d-harmonic, it would readily imply
that it is zero, which is not possible.

One more consequence of the proof of Lemma 2.2.1 is the following identity.

Remark 2.2.5. For ω balanced metric, we can easily use (2.18) and [168] to infer that

Λ∂∗∂ω =
1

(n− 2)!
∗ (

√
−1∂∂̄ωn−2 ∧ ω) = |∂ω|2ω .

With the same strategy, we can easily re-prove a result from Liu and Yang (see [235, Corollary 5.3])
relating balanced metrics with k-Gauduchon metrics, i.e. metrics such that

√
−1∂∂̄ωk ∧ ωn−k−1 = 0 ,

for some k = 1, . . . , n− 1. In particular, we can actually extend the result to the non-compact case and
obtain:

Proposition 2.2.6. Let (M,ω) be a Hermitian manifold with ω both balanced and k-Gauduchon, for
some k = 1, . . . , n− 2. Then, ω is Kähler.
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Proof. As in (2.18), we have that

∗∂ωj+1 =
√
−1

(j + 1)!

(n− 2 − j)!
∂ωn−2−j , j = 0, . . . , n− 3 .

Then,

∂∗∂ωj+1 =
(j + 1)!

(n− 2 − j)!
∗
√
−1∂∂̄ωn−2−j , j = 0, . . . , n− 3 . (2.24)

Then, combining (2.24) for j = n− 2 + k with the k-Gauduchon condition we get

Λn−1−k∂∗∂ωn−1−k =
(n− 1 − k)!

k!
∗ (

√
−1∂∂̄ωk ∧ ωn−1−k) = 0

On the other hand, for k ≥ 2, it holds

1

k!

√
−1∂∂̄ωk ∧ ωn−1−k =

1

(k − 1)!

√
−1∂∂̄ω ∧ ωn−2 − 1

(k − 2)!

√
−1∂̄ω ∧ ∂ω ∧ ωn−3 ,

while the balanced condition gives us that

√
−1∂∂̄ω ∧ ωn−2 = (n− 2)∂̄ω ∧ ∂ω ∧ ωn−3 , (2.25)

from which follows

0 = Λn−1−k∂∗∂ωn−1−k =
(n− 1 − k)(n− 1 − k)!

(k − 1)!
|∂ω|2 ,

which gives us the claim.
The 1-Gauduchon case follows directly by combining (2.25) and (2.18).

Let us now discuss the main consequence of Lemma 2.2.1 for our purposes, that is a formula for the
Chern-Lichnerowicz operator.

Lemma 2.2.7. Let (Mn, ω) be a compact balanced manifold. Then, for any u ∈ C∞(M,R), we have
that

D∗Du = ∆2
ωu+ g

(
RicCh(ω) − 1

2
Ξ, i∂∂̄u

)
+ g

(
∂̄∗
(

RicCh(ω) − 1

2
Ξ

)
, i∂u

)
,

where the (1, 1)-form Ξ is defined as

Ξ(X,Y ) := Q2(JX, Y ) , X, Y ∈ TM ,

with Q2
ij̄

= gkl̄gpq̄Tkpj̄Tl̄p̄i.

Proof. In order to have the explicit expression of D∗ we observe that, if β ∈ Λ0,1(M) ⊗ Λ0,1(M),

gij̄glk̄∇j̄∇k̄uβ̄il = − trω(∂̄∇∗(uβ̄)) + 2trω(∂̄(u∇∗β̄)) + ugij̄glk̄∇j̄∇k̄β̄il , (2.26)

where (∇∗β̄)m = −gpq̄∇q̄β̄pm. Then, using the balanced condition, we can infer that

⟨Du, β⟩ =

∫
M

ugij̄glk̄∇j̄∇k̄β̄il
ωn

n!
,

obtaining that D∗β = gjīgkl̄∇j∇kβīl̄ . This guarantees that

D∗Du = gjk̄gpq̄∇p∇j∇k̄∇q̄u ,

as in the Kähler case. On the other hand, we have that, for any β ∈ Λ1,0(M) ⊗ Λ1,0(M),

∇p∇jβk̄q̄ = ∇j∇pβk̄q̄ + T sjp∇sβk̄q̄ . (2.27)



2.2. BALANCED DEFORMATION 49

We can then use (2.27) to infer that

D∗Du = gpq̄gjk̄∇j∇p∇k̄∇q̄u+ gpq̄gjk̄T sjp∇s∇k̄∇q̄u .

Furthermore, we can recall that, for any α ∈ Λ0,1(M),

∇p∇k̄αq̄ = ∇k̄∇pαq̄ +Rt̄k̄pq̄αt̄ . (2.28)

Hence, by making use of (2.28), we obtain that

D∗Du = gjk̄gpq̄∇j∇k̄∇p∇q̄u+ gjk̄gpq̄∇j(R
t̄
k̄pq̄∇t̄u) + gpq̄gjk̄T sjp∇s∇k̄∇q̄u .

Now, recalling that, thanks to the second Bianchi identity, see for instance [327, Proposition 1.6], we have

∇jR
t̄
k̄pq̄ = ∇pR

t̄
k̄jq̄ + T spjR

t̄
k̄sq̄ ,

we can conclude that

gjk̄gpq̄∇j(R
t̄
k̄pq̄∇t̄u) = gjk̄gpq̄∇jR

t̄
k̄pq̄∇t̄u+ gjk̄gpq̄Rt̄k̄pq̄∇j∇t̄u

= g(Ric(3)(ω), i∂∂̄u) + gpq̄∇pRic(2)(g)t̄q̄∇t̄u+ gjk̄gpq̄T spjR
t̄
k̄sq̄∇t̄u ,

where Ric(3)(ω) is the third Chern-Ricci form, see, for instance, [235] for its definition. On the other

hand, using [235, Theorem 4.1], we know that, in the balanced case, Ric(3)(ω) = RicCh(ω). This gives us
that

D∗Du = ∆2
ωu+ g(RicCh(ω), i∂∂̄u) + gpq̄∇pRic(2)(g)t̄q̄∇t̄u+ gjk̄gpq̄T spjR

t̄
k̄sq̄∇t̄u+ gpq̄gjk̄T sjp∇s∇k̄∇q̄u .

Now, we can use (2.28) to infer that

gpq̄gjk̄T sjp∇s∇k̄∇q̄u− gjk̄gpq̄T sjpR
t̄
k̄sq̄∇t̄u = gpq̄gjk̄T sjp∇k̄∇s∇q̄u .

On the other hand, one can easily check that

gpq̄gjk̄T sjp∇k̄∇s∇q̄u =
1

2
gpq̄gjk̄T sjp(∇k̄∇s∇q̄u−∇q̄∇s∇k̄u) ,

moreover, using that, for any γ ∈ Λ1,1(M), we have that

∇k̄γsq̄ −∇q̄γsk̄ = (∂̄γ)k̄sq̄ + T t̄q̄k̄γst̄ ,

concluding that

gpq̄gjk̄T sjp∇k̄∇s∇q̄u =
1

2
gpq̄gjk̄T sjpT

t̄
q̄k̄∇s∇t̄u = −1

2
g(Ξ, i∂∂̄u) .

Then, putting all the pieces together we obtain that

D∗Du = ∆2
ωu+ g

(
RicCh(ω) − 1

2
Ξ, i∂∂̄u

)
+ gpq̄∇pRic(2)(g)t̄q̄∇t̄u

= ∆2
ωu+ g

(
RicCh(ω) − 1

2
Ξ, i∂∂̄u

)
+ g(∂̄∗Ric(2)(ω), i∂u) ,

where the last equality is due to the fact that

∂̄∗Ric(2)(ω)s = −gpq̄∇pRic(2)(ω)sq̄ ,

see, for instance [105, Appendix D] for a more general statement. The claim is obtained making use of
[303, Proposition 4.3].



50CHAPTER 2. CONSTRUCTING CONSTANT CHERN SCALAR CURVATURE BALANCEDMETRICS

This formula highlights the fundamental differences between the problem in our case and in the
Kähler one. Indeed, formally, the role which in the Kähler case belongs to the Ricci form now is played
by the first Chern-Ricci form, and the last torsion term appears. As one can see from the proof, the
balanced condition is playing a crucial role both in computing D∗ and in identifying the third and the
first Chern-Ricci tensors. This last property is really exclusive of the balanced setting, see [235, Theorem
4.1].

If we now go back to the operator L, which in our current setting is given by

L(u) = −∆ωFω(u) + n
RicCh(ω) ∧

√
−1∂∂(uωn−2)

ωn
− sCh(ω)Fω(u),

we can obtain a clearer alternative expression, which will allow us to compare it to the Kähler case.

Theorem 2.2.8. Let (Mn, ω) be a compact balanced manifold. Then, for all u ∈ C∞(M,R),

L(u) = − 1

n− 1

(
∆2
ωu+ g(

√
−1∂∂̄u,RicCh(ω)) +

1

n− 1
(∆ω + sCh(ω)Id)(|∂ω|2u)

)
− 1

n− 1

(
−Re(g(

√
−1∂u,

√
−1Λ2(RicCh(ω) ∧ ∂ω)) − ug(RicCh(ω), ∂∗∂ω)

)
.

(2.29)

In particular, if ω is cscK,

L(u) = − 1

n− 1
D∗Du ,

while if ω is a constant Chern scalar curvature balanced metric, we have

L(u) = − 1

n− 1

(
D∗Du+ g(

√
−1∂u, ∂̄∗RicCh(ω)) +

1

n− 1
(∆ω + sCh(ω)Id)(|∂ω|2u) + u

√
−1∂∗∂̄∗RicCh(ω)

)
.

Proof. In order to obtain (2.29), we will compute the L2-formal adjoint of L and then deduce the claim.
First of all, recalling (2.12), we observe that Fω is L2-self-adjoint. This implies that, for any u, φ ∈
C∞(M,R),

⟨φ,∆ωFω(u)⟩L2 = ⟨u, Fω∆ωφ⟩L2 , ⟨φ, sCh(ω)Fω(u)⟩L2 = ⟨u, Fω(sCh(ω)φ)⟩L2 . (2.30)

On the other hand, it is straightforward to check that

Fω(sCh(ω)φ) = sCh(ω)Fω(φ) +
1

n− 1
(φ∆ωs

Ch(ω) + 2Re(g(∂sCh(ω), ∂φ))) (2.31)

So, using (2.31) in the second equation of (2.30), we have that

⟨φ, sCh(ω)Fω(u)⟩L2 = ⟨u, sCh(ω)Fωφ)⟩L2 +
1

n− 1
⟨u, φ∆ωs

Ch(ω) + 2Re(g(∂sCh(ω), ∂φ))⟩L2 . (2.32)

Moreover, using the fact that RicCh(ω) is both ∂ and ∂̄-closed, we observe that
√
−1φ∂∂̄(uωn−2) ∧ RicCh(ω) = d((φ

√
−1∂̄(uωn−2) +

√
−1∂φ ∧ uωn−2) ∧ RicCh(ω))

+u
√
−1∂∂̄φ ∧ RicCh(ω) ∧ ωn−2 .

(2.33)

Thus, using (2.33) and Stokes’ Theorem, we infer that

n

〈
φ,

√
−1∂∂̄(uωn−2) ∧ RicCh(ω)

ωn

〉
L2

=
1

(n− 1)!

∫
M

u
√
−1∂∂̄φ ∧ RicCh(ω) ∧ ωn−2 . (2.34)

On the other hand, using [312, Lemma 4.7], we obtain that

√
−1∂∂̄φ ∧ RicCh(ω) ∧ ωn−2

(n− 2)!
= (sCh(ω)∆ωφ− g(

√
−1∂∂̄φ,RicCh(ω)))

ωn

n!
,
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which can be used in (2.34) to deduce

n

〈
φ,

√
−1∂∂̄(uωn−2) ∧ RicCh(ω)

ωn

〉
L2

=
1

n− 1
⟨u, sCh(ω)∆ωφ− g(

√
−1∂∂̄φ,RicCh(ω))⟩L2 . (2.35)

Now, using (2.30), (2.32) and (2.35), we have

⟨φ,L(u)⟩L2 = −⟨u, Fω∆ωφ⟩L2 − ⟨u, sCh(ω)Fω(φ)⟩L2 − 1

n− 1
⟨u, φ∆ωs

Ch(ω)⟩L2

− 2

n− 1
⟨u,Re(g(

√
−1∂sCh(ω),

√
−1∂φ))⟩L2 +

1

n− 1
⟨u, sCh(ω)∆ωφ⟩L2

− 1

n− 1
⟨u, g(

√
−1∂∂̄φ,RicCh(ω))⟩L2 .

(2.36)

Now, recalling again (2.12), we obtain〈
u, Fω∆ωφ+

1

n− 1
g(
√
−1∂∂̄φ,RicCh(ω))

〉
L2

=
1

n− 1

〈
u,∆2

ωφ+ g(
√
−1∂∂̄φ,RicCh(ω))

〉
L2

+
1

n− 1

〈
u,

|∂ω|2∆ωφ

n− 1

〉
L2

.

(2.37)

Moreover, 〈
u,−sCh(ω)Fω(φ) +

1

n− 1
sCh(ω)∆ωφ

〉
L2

= − 1

(n− 1)2
⟨u, sCh(ω)|∂ω|2φ⟩L2 . (2.38)

Finally, using (2.37) and (2.38) in (2.36), we conclude that

L∗(φ) = − 1

n− 1

(
∆2
ωφ+ g(

√
−1∂∂̄φ,RicCh(ω)) +

|∂ω|2

n− 1
(∆ωφ+ sCh(ω)φ)

)
− 1

n− 1

(
φ∆ωs

Ch(ω) + 2Re(g(
√
−1∂sCh(ω),

√
−1∂φ))

)
.

In order to conclude, it sufficient to understand what are the L2-formal adjoint of the operators
g(
√
−1∂∂̄φ,RicCh(ω)) and g(∂sCh(ω), ∂φ). So, we consider u ∈ C∞(M,R), we have that

⟨g(∂sCh(ω), ∂φ), u⟩L2 = ⟨u∂sCh(ω), ∂φ⟩L2 = ⟨∂∗(u∂sCh(ω)), φ⟩L2 .

Now, using (1.8), one checks that

2Re(∂∗(u∂sCh(ω))) = − 2Re(g(
√
−1∂u,

√
−1∂sCh(ω))) + 2u∂∗∂sCh(ω)

= − 2Re(g(
√
−1∂̄u,

√
−1∂̄sCh(ω))) − 2u∆ωs

Ch(ω) .
(2.39)

Moreover

⟨g(
√
−1∂∂̄φ,RicCh(ω)), u⟩L2 = ⟨

√
−1∂∂̄φ, uRicCh(ω)⟩L2 = ⟨φ,

√
−1∂∗∂̄∗(uRicCh(ω))⟩L2 .

On the other hand, one can easily verify that

√
−1∂∗∂̄∗(uRicCh(ω)) = g(

√
−1∂∂̄u,RicCh(ω)) + 2Re(g(

√
−1∂u, ∂̄∗RicCh(ω))) + u

√
−1∂∗∂̄∗RicCh(ω) .

(2.40)
Furthermore, from (2.39) and (2.40), using Lemma 2.2.1, we have that

−2Re(g(∂̄u, ∂̄sCh(ω))) + 2Re(g(
√
−1∂u, ∂̄∗RicCh(ω))) = −Re(g(∂u,Λ2(RicCh(ω) ∧ ∂ω))
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and
−∆ωs

Ch(ω) +
√
−1∂∗∂̄∗RicCh(ω) = −g(RicCh(ω), ∂∗∂ω) .

From these we obtain the first claim. Assume now ω to be cscK, then

L(u) = − 1

n− 1

(
∆2
ωu+ g(

√
−1∂∂̄u,RicCh(ω))

)
= − 1

n− 1
D∗Du ,

see [312, Definition 4.3].
Finally, let ω be a balanced metric with constant Chern scalar curvature. Using the fact that

2Re(g(
√
−1∂u, ∂̄∗RicCh(ω))) = g(

√
−1∂u, ∂̄∗RicCh(ω)) + g(∂̄∗RicCh(ω),

√
−1∂u) ,

we can easily infer that

∆2
ωu+ g(

√
−1∂∂̄u,RicCh(ω)) + 2Re(g(

√
−1∂u, ∂̄∗RicCh(ω))) = D∗Du+ g(

√
−1∂u, ∂̄∗RicCh(ω)) .

This last relation inserted in (2.29) gives us the claim.

Thus, we see that the operator L arising from the balanced deformation generalizes to the balanced
case, with the choice of the Chern connection, the Lichnerowicz operator, giving further motivation to
widen the understanding of the associated equation, and making it a good candidate to obtain in the
future the result in full generality.

Remark 2.2.9. It is very interesting to notice that, when starting with ω a Kähler metric, despite the
deformation is not corresponding to a deformation in the Kähler class (indeed the balanced deformation
does not preserve the Kähler condition in general), it produces an operator whose linearization is again
the Lichnerowicz operator, up to a constant factor. This in particular shows that, along this ansatz,
holomorphic vector fields appear again as an obstruction to successfully deform the pregluing metric to
a genuine constant Chern scalar curvature balanced metric.

2.2.2 Construction of constant Chern scalar curvature balanced metrics

Having now convinced ourselves of the significance of this deformation, we can proceed with the proof of
Theorem B.

In order to prove the theorem, we shall now introduce suitable weighted spaces, as done in [51], as
they will turn out to be the right spaces on which we are able to invert (uniformly) the operator L̃.
Since we can always assume, up to rescaling, that the neighbourhood of x on which the z coordinates are
defined contains the region {|z| ≤ 1}, we define

ρ = ρε(z) :=



εp+q on |z| ≤ εp+q,

non decreasing on εp+q ≤ |z| ≤ 2εp+q,

|z| on 2εp+q ≤ |z| ≤ 1/2,

non decreasing on 1/2 ≤ |z| ≤ 1,

1 on |z| ≥ 1 .

We then introduce, for all b ∈ R, the weighted Hölder norm as

∥u∥Ck,α
b,ε (M̂) :=

k∑
i=0

sup
M̂

|ρb+i∇i
εu|ω

+ sup
dε(x,y)<injε

∣∣∣∣min
(
ρb+k+α(x), ρb+k+α(y)

) ∇k
εu(x) −∇k

εu(y)

dε(x, y)α

∣∣∣∣
ω

,

where injε is the injectivity radius of the metric ω. Consequently, we define the corresponding weighted
Hölder spaces Ck,αb,ε (M̂) := {u ∈ Ck(M̂) | ∥u∥Ck,α

b,ε (M̂) < ∞}, where k ≥ 0, α ∈ (0, 1) is the Hölder
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constant, and ε indicates the dependence on the pre-gluing metric ω obtained in Subsection 2.1.1. Hence,
we can interpret S̃ as

S̃ : C4,α
b,ε (M̂) → C0,α

b+4,ε(M̂) .

As in [168, Theorem 1], there is an obstacle given by the kernel of the operator Fω (actually its limit -
with respect to ε - on Mx) in (2.12). Nevertheless, we will see that it is possible to work orthogonally to
this kernel, in order to ensure the invertibility of the operator. Indeed, we can introduce the functional
space

Vε := (kerFω)⊥L2 ⊆ C4,α
b,ε (M̂),

which inherits the Banach structure thanks to the fact that the topology induced by the weighted Hölder
norm is finer than the L2-topology, which guarantees that Vε is a closed subspace of C4,α

b,ε (M̂). We are
then able to obtain the uniform invertibility of the linearized operator, following the strategy in [51].
Before proving this result, however, we need a preliminary lemma, which will be central later.

Lemma 2.2.10. For all v ∈ kerFω̃, it exists vε ∈ C4,α
b,ε (M̂) such that

vε ∈ kerFωε
and vε ≡ v , on {|z| ≥ 2εp} , (2.41)

for all ε > 0.

Proof. For all v ∈ kerFω̃, we consider the same cut-off function χε of Lemma 2.1.1 and call Rε := {εp <
|z| < 2εp} the cut-off region, over which we consider the boundary value problem:{

Fω̃ε
(uε) = −Fω̃ε

(χεv) on Rε

uε = 0 on ∂Rε,
(2.42)

for uε smooth on Rε.
In order to solve problem (2.42), we consider its weak formulation:{

B(φ, uε) := ⟨∂φ, ∂uε⟩L2
ε
− 1

n−1 ⟨φ, |∂ω̃ε|
2
ω̃ε
uε⟩L2

ε
= ⟨φ, Fω̃ε

(χεv)⟩L2
ε
, φ ∈ C∞

c (Rε)

uε ∈W 1,2
0,ε (Rε),

(2.43)

where L2
ε identifies the L2-product induced by ω̃ε, and same for the Sobolev space W 1,2

0,ε (Rε).
In order to obtain a solution to problem (2.43), we notice that the bilinear form B satisfies the G̊arding

inequality

B(φ,φ) ≥ 1

2
||φ||2

W 1,2
ε

−
(

max |∂ω̃ε|2ω̃ε

n− 1
+

1

2

)
||φ||2L2

ε
, φ ∈W 1,2

0,ε . (2.44)

This ensures us that we can apply [2, Theorem 8.5], to obtain that problem (2.43) has solution if and only
if Fω̃ε

(χεv) is orthogonal to kerFω̃ε
, where here Fω̃ε

: W 2,2
0,ε (Rε) → L2

ε(Rε), which is clearly self-adjoint.
On the other hand, it is straightforward to notice that this last condition is indeed verified, ensuring us
a solution uε.

Now, if we extend uε to the function ũε, defined on the whole M as identically zero outside of Rε, it
is clear that ũε solves (weakly) on M the problem

Fω̃ε(ũε) = −Fω̃ε(χεv),

ensuring that ũε is actually smooth on M , and hence also a classical solution of the latter equation.
Finally, it is straightforward to see that ũε extends smoothly to ûε on M̂ (by setting ûε ≡ 0 on the

exceptional divisor), yielding a classical solution on M̂ of

Fωε(u) = −Fωε(χεv).

Thus, the function
vε := χεv + ûε

is exactly the function we wanted.
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We are now ready to prove the main theorem of this subsection.

Theorem 2.2.11. For any b ∈ (0, 2n− 4), there exists C > 0 such that, for all u ∈ Vε, we have

∥u∥C4,α
b,ε (M̂) ≤ C∥L̃u∥C0,α

b+4,ε(M̂) .

Proof. Suppose by contradiction that statement does not hold. Hence, we can find sequences {εk}k∈N ⊆
R>0 and {uk}k∈N such that uk ∈ Vk := Vεk , for all k ∈ N, and

εk −→
k→+∞

0 , ||uk||C4,α
b,εk

(M̂) = 1 , k ∈ N , (2.45)

and

||L̃uk||C0,α
b+4,εk

(M̂) <
1

k
, k ∈ N. (2.46)

We will focus firstly on Mx := M\{x}. By applying Ascoli-Arzelà’s Theorem, we have that uk → u∞
uniformly on compact subsets of Mx in the sense of C4,α

b , with respect to the background metric ω̃. This
implies, in particular, that on any compact subset of Mx, thanks to the fact that ω̃ is a Chern-Ricci flat
balanced metric, it holds

Luk → −∆ω̃Fω̃(u∞) , as k → ∞ , (2.47)

i.e. Luk converges uniformly on compact sets to a continuous function on Mx. If we then fix a point
y ∈Mx, in the region where ρ ≡ 1, condition (2.46) implies that

L̃uk(y) → 0,

which, combined with equation (2.47), implies that the real sequence
∫
M̂
uk|∂ω|2 ω

n

n! has finite limit.
Hence, by Lebesgue’s Theorem, we get∫

M̂

uk|∂ω|2
ωn

n!
→
∫
Mx

u∞|∂ω̃|2 ω̃
n

n!
, as k → ∞ . (2.48)

If we now integrate L̃uk on Mx, using equations (2.47) and (2.48) and assuming b < 2n− 4, we obtain

0 =

∫
Mx

L̃u∞ω̃n = −
∫
Mx

∆ω̃Fω̃(u∞)
ω̃n

n!
+ Vol(M, ω̃)

∫
Mx

u∞|∂ω̃|2 ω̃
n

n!
= Vol(M, ω̃)

∫
Mx

u∞|∂ω̃|2 ω̃
n

n!
,

(2.49)
hence

∫
Mx

u∞|∂ω̃|2 ω̃
n

n! = 0. From this, we can infer that

∆ω̃Fω̃(u∞) = 0 ,

from which follows that u∞ is such that Fω̃(u∞) ≡ c ∈ R. Now, recalling (2.12), we again integrate the
equation Fω̃(u∞) ≡ c over the whole Mx yielding that, since again b < 2n− 4,

0 =

∫
Mx

u∞|∂ω̃|2 ω̃
n

n!
= cVol(M,ω) ,

which implies that c = 0 and then Fω̃(u∞) = 0 on Mx.
Now, using that u∞ ∈ C4,α

b,ε (Mx) and (2.12) again, we can conclude that

∆du∞ ∈ C4,α
b,ε (Mx) .

Thanks to this, following the argument in [312, Proposition 8.10], we have that u∞ ∈ C6,α
b−2,ε(Mx).

Iterating this process, we can infer that u∞ ∈ C4+2j,α
b−2j,ε (Mx) where j ∈ N is the first integer such that

b− 2j + 1 < 0. Now, we can extend u∞ to a function in C4+2j,α(M) such that

u∞(x) = 0 , ∆ωu∞(x) = 0
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so that u ∈ kerFω̃ on the whole M . Now, elliptic regularity allows us to conclude that u∞ ∈ C∞(M,R)
such that

∫
M
u∞|∂ω̃|2 ω̃

n

n! = 0. Now, we want to use that uk ∈ Vk in order to conclude that u∞ is

L2-orthogonal to kerFω̃. If we show this, we will have that u∞ ∈ kerFω̃ ∩ (kerFω̃)⊥ concluding that
u∞ = 0.

For all v ∈ kerFω̃, we can apply Lemma 2.2.10 and obtain a corresponding vε ∈ C4,α
b,ε (M̂). Then,

denoting with vk := vεk , for all k ∈ N, using that uk ∈ Vk, it holds

⟨uk, vk⟩ωεk
= 0 , for all k ∈ N .

This implies that, on any compact subset on Mx, we have

⟨u∞, v⟩ω̃ = 0.

Hence, considering an exhaustion of compact subsets of Mx and using the fact that u∞ and v are actually
functions on M , we obtain

⟨u∞, v⟩ω̃ = 0

on M , which means exactly that
u∞ ⊥L2 kerFω̃.

This allows to conclude that u∞ = 0, as explained above.
We thus fix the compact set Mc := M \ {|z| < 1/2}, and focus on A := {|z| < 1/2}, on which we wish

to obtain uniform convergence to zero. For convenience, we shall shift to the “large”coordinates ζ, i.e.
the coordinates on the blow-up X̂ defined outside the exceptional divisor. Recalling then that

ζ = ε−(p+q)z and |z| = εp+q|ζ|,

we have the identification

A ≃ Ã = Ãε :=

{
|ζ| < 1

2
ε−(p+q)

}
⊆ X̂,

and the last description will be the one we will use.
First of all, we shall rewrite ρ with respect to ζ on Ã, giving

ρ =


εp+q on |ζ| ≤ 1,

non decreasing on 1 ≤ |ζ| ≤ 2,

εp+q|ζ| on 2 ≤ |ζ| ≤ 1/2ε−(p+q).

It follows that, going back to {uk}k∈N and recalling (2.45), we have, in particular, that on all Ãk := Ãεk
it holds

|ρbuk| ≤ C.

This suggests us to introduce the new sequence

Uk := ε
b(p+q)
k uk,

and using again (2.45), we obtain
|Uk| ≤ C on |ζ| ≤ 1,

|Uk| ≤ C on 1 ≤ |ζ| ≤ 2,

|Uk| ≤ C|z|−b(ζ) on 2 ≤ |ζ| ≤ 1/2ε
−(p+q)
k ,

and the same for its derivatives up to the fourth order. These estimates for Uk bring us to consider a
new weight function ρ̃ = ρ̃k on Ãk given by

ρ̃(ζ) =


1 on |ζ| ≤ 1,

non decreasing on 1 ≤ |ζ| ≤ 2,

|ζ| on 2 ≤ |ζ| ≤ 1/2ε
−(p+q)
k ,
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which gives that

|ρ̃bUk| ≤ C, (2.50)

and estimates also for ∇mUk, for all m = 1, ..., 4. Hence, again by Ascoli-Arzelà’s Theorem, we have
that Uk → U∞, as k → ∞, uniformly on compact sets of X̂ (since Ãk → X̂, as k → ∞) in the sense of
C̃4,α
b := C4,α

b (ρ̃), where this last space is the weighted Hölder space on X̂ given by the weight ρ̃ and the
metric ωBS.
On the other hand, on any compact subset of X̂, for sufficiently large k, it holds

ρb+4Luk = − 1

n− 1
ρ̃b+4D∗DUk, (2.51)

where D∗D is the Lichnerowicz operator corresponding to ωBS. Thus, since (2.46) holds, taking the limit
in (2.51), we obtain that U∞ is in the kernel of D∗D with respect to the Burns-Simanca metric ωBS.
Thus, applying [312, Proposition 8.10], we get that U∞ is necessarily constant, which needs to be zero as
U∞ decays at infinity (from inequality (2.50)). Hence, Uk → 0 uniformly on compact sets of X̂ in C̃4,α

b .
In order to conclude, we will show that Uk admits a subsequence uniformly convergent to zero on the
whole X̂ in the sense C̃0

b . This, combined with the scaled Schauder estimates, see for instance [51, formula

(6)], will imply that also Uk → 0 uniformly in C̃4,α
b . On the other hand, this is equivalent to uk → 0

uniformly on {|z| < 1/2} in C4,α
b,ε . Together with the fact that uk converges uniformly to zero on Mc, it

gives a contradiction with the fact that ||uk||C4,α
b,ε (M̂) = 1, for all k ∈ N.

The final step of the proof will be to show that such subsequence necessarily exists. Indeed, if we assume
by contradiction that such subsequence does not exist, then we can find a sequence {xn}n∈N ⊆ X̂ and a
δ > 0 such that

Rk := |ζ(xk)| → +∞ (2.52)

and

ρ̃b(xk)|Uk(xk)| ≥ δ , k ≥ 0 . (2.53)

This last condition can be rewritten (up to choosing sufficiently large k) as

Rbk|Uk(xk)| ≥ δ , k ≥ 0 . (2.54)

If we then define rk := |z(xk)|, we have that rk = εp+qk Rk, for all k ∈ N, from which, up to subsequences,
we see that we can only fall into two cases:

• if limk→+∞ rk = r > 0, then it means that we can assume xk → x∞, which combined with the
uniform convergence to zero on compact sets (of Mx) of the sequence {uk}k∈N gives

0 < δ ≤ Rbk|Uk(xk)| = rbkuk(xk) → 0,

i.e. a contradiction;

• if instead limk→+∞ rk = 0, we take X ′ a copy of X̂, and for all k ≥ 0 we introduce the holomorphic
maps

σk : Bk → A∗ := A \ {0},

given by σk(z′) = rkz
′, where Bk := {0 < |z′| < r−1

k /2} ⊆ X ′. Using these, we can define the
metrics and the forms

θk := r−2
k σ∗

kω ,

and easily observe that (Bk, θk) → (X ′, ωo), as k → ∞, where ωo here denotes the flat metric
induced by the coordinates z′. Then, it is natural to consider the functions on each Bk given by

Wk := rbkσ
∗
kuk , k ∈ N,



2.2. BALANCED DEFORMATION 57

and the pullback weight function

ρ′(z′) = σ∗
kρ(z′) =


εp+qk on |z′| ≤ R−1

k ,

non increasing onR−1
k < |z′| < 2R−1

k ,

rk|z′| on 2R−1
k ≤ |z′| < 1

2r
−1
k .

(2.55)

Now, if we pullback (2.45) using σk, we immediately obtain that the sequence {Wk}k∈N is uniformly
bounded on compact sets in the C4,α

b sense. Thus, by Ascoli-Arzela’s Theorem, we can assume that
Wk → W∞, and, again, from pulling back (2.45), we obtain that W∞ is a C4,α-function on X ′

decaying to infinity. Moreover, analyzing the pieces of the pullback

σ∗
k(Luk) = σ∗

k

(
∆ωFω(uk) + n

√
−1∂∂(ukω

n−2) ∧ RicCh(ω)

ωn
− sCh(ω)Fω(uk)

)

we can see that:

– σ∗
k∆ω(Fωuk) = r

−(b+4)
k ∆θkFk(Wk), where Fk := Fθk ;

– σ∗
k

(
RicCh(ω)∧

√
−1∂∂̄(ukω

n−2)
ωn

)
= r

−(b+4)
k

(
RicCh(θk)∧

√
−1∂∂̄(Wkθ

n−2
k )

θnk

)
;

– σ∗
k(sCh(ω)Fω(uk)) = r

−(b+4)
k sCh(θk)Fk(Wk).

Moreover, it is easy to show that Fk → 1
n−1∆ωo and that, of course, sCh(θk) → sCh(ωo) = 0,

as k → ∞. Hence, pulling back with σk (2.46) and taking the limit in k, we obtain that W∞
is biharmonic on X ′. Pulling back (2.45) and recalling (2.55), we obtain that W∞ decays at
infinity, implying necessarily that W∞ ≡ 0 on X ′. On the other hand, if we define the sequence
yk := σ−1

k (xk) ∈ X ′, it is straightforward to see that |yk| = 1, for all k ∈ N. Hence, it can be
assumed to be convergent to some y∞, which combined with the limit of pullback via σk of (2.54),
implies W∞(y∞) > 0, i.e. a contradicition with the fact that W∞ ≡ 0.

Hence the thesis is proven.

Remark 2.2.12. We stress how in the proof, the assumption of Chern-Ricci flatness of the metric ω̃
has allowed to make the problem significantly more approachable by erasing the second degree terms
involving the Chern-Ricci tensor and the Chern scalar curvature. We however expect that it is possible
to overcome this technical assumption and obtain the result in the more general constant Chern scalar
curvature balanced case, as a (not straightforward) consequence of the fact that both the above mentioned
terms are only second order terms.

The above estimate allows us to easily obtain the uniform invertibility.

Lemma 2.2.13. The operator
L̃ : Vε → C0,α

b+4,ε(M̂)

is an isomorphism.

Proof. Thanks to Theorem 2.2.11, we have that L̃ is injective. Moreover, thanks to Remark 2.3.2, it is
clear that L̃ is elliptic and with the same index of ∆2

ω, which is 0. This automatically guarantees the
claim.

2.2.3 Setting up the fixed point problem

We can now reformulate S̃(u) = 0 by considering the expansion

sCh(ωu) = sCh(ω) + Lu+Q(u) ,
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where Q is the quadratic part of sCh(ωu). Then, (2.7) can be rewritten as:

sCh(ω) + L̃u+Q(u) = 0 ,

and hence, using Lemma 2.2.13, we obtain that

N (u) := −L̃−1(sCh(ω) +Q(u)) = u . (2.56)

So, thanks to Banach’s fixed-point Theorem, in order to find a solution to S̃(u) = 0, it is sufficient to
show that

N : Vε → Vε
is a contraction on a suitable open neighbourhood of zero in Vε.

In order to determine the open set we are looking for, we note that, if ∥ψ∥C4,α
−2,ε(M̂) ≤ Cετ , for some

C, τ > 0, then,
∥
√
−1∂∂̄(ψωn−2)∥C2,α

0,ε (M̂) ≤ C∥ψ∥C4,α
−2,ε(M̂) ≤ Cετ , (2.57)

where the first inequality is due to the fact that ∥ωn−2∥C4,α
0,ε (M̂) ≤ C. Up to choosing ε sufficiently small,

this guarantees that ωn−1
ψ > 0, hence provides a balanced metric, thanks to [240], as well as, using (2.57),

∥ωn−1
ψ − ωn−1∥C2,α

0,ε (M̂) = ∥
√
−1∂∂̄(ψωn−2)∥C2,α

0,ε (M̂) ≤ Cετ . (2.58)

Moreover, arguing as in [168, Remark 2.8], we can fix a point y ∈ M̂ and consider holomorphic coordinates
so that, in y, ω is the identity and ωψ is diagonal with eigenvalues λi. On the other hand, ωn−1 will be
again the “identity ”and ωn−1

ψ will have eigenvalues Λi. But, thanks to (2.58), we know that

Λi = 1 + O(ετ ) ,

which implies that λi =
(∏

j ̸=i Λj

) 1
n−1

= 1 +O(ετ ) . This last fact readily guarantees that

∥ωψ − ω∥C2,α
0,ε (M̂) ≤ Cετ , (2.59)

which, in particular, gives that ωψ → ω, as ε→ 0. As in [312] and [168], we then consider the open set

Uτ := {ψ ∈ Vε | ∥ψ∥C4,α
b,ε (M̂) ≤ Cε(p+q)(b+2)+τ} .

We can readily note that, if ψ ∈ Uτ , then

∥ψ∥C4,α
−2,ε(M̂) ≤ ε−(p+q)(b+2)∥ψ∥C4,α

b,ε (M̂) ≤ Cετ , (2.60)

where the first inequality is due to the fact that ∥ψ∥Ck,α
a,ε (M̂) ≤ ε(p+q)(−b+a)∥ψ∥Ck,α

b,ε (M̂), for any k ≥ 0,

a ≤ b, thanks to the definition of our weight. This inequality guarantees also that every ψ ∈ Uτ , is not
only small in the weighted sense, but it is so also in the standard sense, ensuring that our setting for the
problem makes sense in this set.
We are thus left with the estimates to obtain that N preserves Uτ and it is a contraction on it.

2.2.4 Weighted estimates

We first show that N contracts distances on Uτ , which thanks to (2.56) and Theorem 2.2.13 reduces to
showing that Q contracts distances. Thus, fixed φ1, φ2 ∈ Uτ , the Mean value Theorem guarantees that
there exists t ∈ [0, 1] such that, defined χ := tφ1 + (1 − t)φ2 ∈ Uτ , we have

Q(φ1) −Q(φ2) = dχQ(φ1 − φ2) = (Lχ − L)(φ1 − φ2) .
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We now need to compute Lχ := dχS. As done in Subsection 2.1.2, we consider the curve of Hermitian
metrics in [ωn−1]BC = [ωn−1

χ ]BC defined by ωχ,v(s)
n−1 := ωn−1

χ + s
√
−1∂∂̄(vωn−2), then,

Lχ(v) =
d

ds

∣∣∣
s=0

sCh(ωχ,v(s)) .

But, differentiating again (1.13), we obtain that

Lχ(v)ωnχ = n
d

ds

∣∣∣
s=0

RicCh(ωχ,v(s)) ∧ ωn−1
χ + nRicCh(ωχ) ∧ d

ds

∣∣∣
s=0

ωn−1
χ (s) − sCh(ωχ)

d

ds

∣∣∣
s=0

ωχ,v(s)
n .

As done in (2.8), we conclude that

d

ds

∣∣∣
s=0

ωχ,v(s)
n =

n

n− 1

√
−1∂∂̄(vωn−2) ∧ ωχ ,

d

ds

∣∣∣
s=0

RicCh(ωχ,v(s)) = −
√
−1∂∂̄Fχ(v) , (2.61)

where Fχ := Fωχ . Then, we have that

Lχ(v) = −∆ωχ
Fχ(v) + n

RicCh(ωχ) ∧
√
−1∂∂̄(vωn−2)

ωnχ
− sCh(ωχ)Fχ(v) .

Before going through the estimates, we need to explore the relation between the differential operators we
are working with. First of all, we define the function

g(χ) :=
ωn

ωnχ
. (2.62)

Then, for any v ∈ C2(M̂), we have

∆ωχv = n

√
−1∂∂̄v ∧ ωn−1

χ

ωnχ
= g(χ)

(
∆ωv + n

√
−1∂∂̄v ∧

√
−1∂∂̄(χωn−2)

ωn

)
, (2.63)

which gives us that

∆ωχ
v − ∆ωv = (g(χ) − 1)∆ωv + ng(χ)

(√
−1∂∂̄v ∧

√
−1∂∂̄(χωn−2)

ωn

)
.

For the sake of simplicity, we will denote

E(v) := ng(χ)

(√
−1∂∂̄v ∧

√
−1∂∂̄(χωn−2)

ωn

)
(2.64)

so that (2.63) can be rewritten as
∆ωχ

v = g(χ)∆ωv + E(v) . (2.65)

Moreover, we define

G(v) :=n

√
−1∂∂̄(vωn−2) ∧ RicCh(ωχ)

ωnχ
− n

√
−1∂∂̄(vωn−2) ∧ RicCh(ω)

ωn
+ sCh(ω)F (v) − sCh(ωχ)Fχ(v)

=n

√
−1∂∂̄(vωn−2) ∧

(
g(χ)RicCh(ωχ) − RicCh(ω) − 1

n−1 (g(χ)sCh(ωχ)ωχ − sCh(ω)ω)
)

ωn
.

Then, using (2.65) and these new notations, we have

(Lχ − L)(v) = − (g(χ)∆ωFχ(v) − ∆ωF (u)) + E(Fχ(v)) +G(v)

= − g(χ)∆ω(Fχ − F )(v) − (g(χ) − 1)∆ωF (v) + E(Fχ(v)) +G(v) .
(2.66)

We will then breakdown the estimates in a series of smaller lemmas which will be used to conclude. The
first one gives estimates on the function g defined in (2.62).
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Lemma 2.2.14. Let χ ∈ Uτ , then

∥g(χ) − 1∥C2,α
0,ε (M̂) ≤ Cετ , ∥g(χ)∥C2,α

0,ε (M̂) ≤ 1 + Cετ . (2.67)

Proof. Obviously, it is sufficient to prove the first inequality, since the second one can be recovered by that
one using the triangle inequality and the fact that ∥1∥C2,α

0,ε (M̂) = 1 . In order to prove the first inequality

in (2.67), we observe that

ωn − ωnχ =ωn−1 ∧ (ω − ωχ) +
√
−1∂∂̄(χωn−2) ∧ (ω − ωχ) − ω ∧

√
−1∂∂̄(χωn−2) .

Now, from this, we have

∥ωn − ωnχ∥C2,α
0,ε (M̂) ≤C(∥ω − ωχ∥C2,α

0,ε (M̂) + ∥
√
−1∂∂̄(χωn−2)∥C2,α

0,ε (M̂)∥ω − ωχ∥C2,α
0,ε (M̂)

+ ∥
√
−1∂∂̄(χωn−2)∥C2,α

0,ε (M̂)) .

Thus, using (2.57), (2.58) and (2.59), we have

∥ωn − ωnχ∥C2,α
0,ε (M̂) ≤ Cετ . (2.68)

Now, (2.68) readily implies that
ωn = ωnχ + O(ετ ) ,

giving us the claim.

The next lemma shows the continuity of E : C2,α
b,ε (M̂) → C0,α

b+2,ε(M̂) and that its operator norm is
bounded by ετ , and it follows immediately from (2.57) and (2.67).

Lemma 2.2.15. For ε sufficiently small, we have that, for any v ∈ C2,α
b,ε (M̂),

∥E(v)∥C0,α
b+2,ε(M̂) ≤ Cετ∥v∥C2,α

b,ε (M̂) .

Before showing the next lemma, we notice that, for any v ∈ C2(M̂), it holds

(Fχ − F )(v) =
n

n− 1

(
g(χ)

(√
−1∂∂̄(vωn−2) ∧ (ωχ − ω)

ωn

)
+ (g(χ) − 1)F (v))

)
. (2.69)

Again, the next lemma shows that Fχ−F : C4,α
b,ε (M̂) → C2,α

b+2,ε(M̂) is a continuous operator with operator
norm bounded by ετ .

Lemma 2.2.16. For ε sufficiently small, for any v ∈ C4,α
b,ε (M̂), we have that

∥(Fχ − F )(v)∥C2,α
b+2,ε(M̂) ≤ Cετ∥v∥C4,α

b,ε (M̂) .

Proof. Thanks to (2.69) and Lemma 2.2.14, we can obtain that

∥(Fχ − F )(v)∥C2,α
b+2,ε(M̂) ≤C

(
(1 + ετ )∥ωχ − ω∥C2,α

0,ε (M̂)∥
√
−1∂∂̄(vωn−2)∥C2,α

b+2,ε(M̂) + ετ∥F (v)∥C2,α
0,ε (M̂)

)
≤C

(
(1 + ετ )∥ωχ − ω∥C2,α

0,ε (M̂)∥v∥C4,α
b,ε (M̂) + ετ∥F (v)∥C2,α

0,ε (M̂)

)
.

Now, we can use (2.59), (2.67) and the continuity of F : C4,α
b,ε (M̂) → C2,α

b+2,ε(M̂) to obtain that

∥(Fχ − F )(v)∥C2,α
b+2,ε(M̂) ≤ C((1 + ετ )ετ )∥v∥C4,α

b,ε (M̂) + ετ∥v∥C4,α
b,ε (M̂)) ≤ Cετ∥v∥C4,α

b,ε (M̂) ,

concluding the proof.
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It remains to analize the operator G. In order to do so, we need two more estimates.

Lemma 2.2.17. For ε sufficiently small, we have:

∥g(χ)RicCh(ωχ) − RicCh(ω)∥C0,α
2,ε (M̂) ≤ Cετ , ∥g(χ)sCh(ωχ)ωχ − sCh(ω)ω∥C0,α

2,ε (M̂) ≤ Cετ .

Proof. We have that

g(χ)RicCh(ωχ) − RicCh(ω) = g(χ)(RicCh(ωχ) − RicCh(ω)) + (g(χ) − 1)RicCh(ω)

= g(χ)
√
−1∂∂̄ log g(χ) + (g(χ) − 1)RicCh(ω)

On the other hand, we have

∥RicCh(ω)∥C0,α
2,ε (M̂) ≤ C , ∥sCh(ω)∥C0,α

2,ε (M̂) ≤ C . (2.70)

Indeed, we know that ω = ωo +O(|z|m), implying that ωn = ωno +O(|z|m). This allows us to infer that

RicCh(ω) = O(|z|m−2) , sCh(ω) = O(|z|m−2) .

Trivially, this gives that
ρ2RicCh(ω) = O(|z|m) , ρ2sCh(ω) = O(|z|m),

obtaining the claim. Now, using (2.67) and (2.70), we have that

∥g(χ)RicCh(ωχ) − RicCh(ω)∥C0,α
2,ε (M̂) ≤C(1 + ετ )∥log g(χ)∥C2,α

0,ε (M̂) + Cετ . (2.71)

But if we now recall again inequalities (2.67), we can use the Taylor expansion and obtain from (2.71)
the first claim. As for the second one, we observe that

g(χ)sCh(ωχ)ωχ − sCh(ω)ω = g(χ)(sCh(ωχ) − sCh(ω))ωχ + g(χ)sCh(ω)(ωχ − ω) + (g(χ) − 1)sCh(ω)ω .

Moreover, using (2.59), (2.67) and (2.70), we have that

∥g(χ)sCh(ωχ)ωχ − sCh(ω)ω∥C0,α
2,ε (M̂) ≤C(1 + ετ )∥(sCh(ωχ) − sCh(ω))ωχ∥C0,α

2,ε (M̂) + C(1 + ετ )ετ + Cετ

≤Cετ + C(1 + ετ )∥sCh(ωχ) − sCh(ω)∥C0,α
2,ε (M̂)∥ωχ∥C0,α

0,ε (M̂) .

(2.72)
Now, (2.59) yields

∥ωχ∥C0,α
0,ε (M̂) ≤ ∥ω∥C0,α

0,ε (M̂) + ∥ωχ − ω∥C0,α
0,ε (M̂) ≤ C(1 + ετ ) ,

which put into (2.72) gives that

∥g(χ)sCh(ωχ)ωχ − sCh(ω)ω∥C0,α
2,ε (M̂) ≤ Cετ + C(1 + ετ )2∥sCh(ωχ) − sCh(ω)∥C0,α

2,ε (M̂) . (2.73)

On the other hand, we have

sCh(ωχ) − sCh(ω) =n
RicCh(ωχ) ∧ ωn−1

ωnχ
+ n

RicCh(ωχ) ∧
√
−1∂∂̄(χωn−2)

ωnχ
− sCh(ω)

= (g(χ) − 1)sCh(ω) + g(χ)∆ω log(g(χ)) + g(χ)
RicCh(ωχ) ∧

√
−1∂∂̄(χωn−2)

ωn
.

Then, using again (2.67) and (2.70),

∥sCh(ωχ) − sCh(ω)∥C0,α
2,ε (M̂) ≤Cετ + C(1 + ετ )ετ + C(1 + ετ )∥RicCh(ωχ) ∧

√
−1∂∂̄(χωn−2)∥C0,α

2,ε (M̂)

≤Cετ + C(1 + ετ )∥RicCh(ωχ)∥C0,α
2,ε (M̂)∥

√
−1∂∂̄(χωn−2)∥C0,α

0,ε (M̂) .
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But, we have

∥RicCh(ωχ)∥C0,α
2,ε (M̂) ≤∥RicCh(ω)∥C0,α

2,ε (M̂) + ∥
√
−1∂∂̄ log g(χ)∥C0,α

2,ε (M̂) ≤ C(1 + ετ ) ,

∥
√
−1∂∂̄(χωn−2)∥C0,α

0,ε (M̂) ≤∥χωn−2∥C2,α
−2,ε(M̂) ≤ C∥χ∥C4,α

−2,ε(M̂) ≤ Cετ ,
(2.74)

where the last inequality is due to (2.60). Putting (2.74) into (2.73), we have the claim.

Thus, using Lemma 2.2.17, we can conclude that

∥G(v)∥C0,α
b+4,ε(M̂) ≤C∥v∥C4,α

b,ε (M̂)

∥∥∥∥g(χ)RicCh(ωχ) − RicCh(ω) − g(χ)sCh(ωχ)ωχ − sCh(ω)ω

n− 1

∥∥∥∥
C0,α

2,α (M̂)

≤Cετ∥v∥C4,α
b,ε (M̂) .

(2.75)
We are finally ready to prove that N is a contraction operator on Uτ .

Proposition 2.2.18. For ε sufficiently small and b < 2n − 4, the operator N is a contraction and
N (Uτ ) ⊆ Uτ .

Proof. Consider v = φ1 − φ2 as above,

∥N (φ1) −N (φ2)∥C4,α
b,ε (M̂) ≤ C∥(Lχ − L)(v)∥C0,α

b+4,ε(M̂) .

Using (2.66), (2.67), Lemma 2.2.16, Lemma 2.2.15 and (2.75) and the continuity of ∆ω : C4,α
b,ε (M̂) →

C2,α
b+2(M̂) and that of F : C2,α

b+2,ε(M̂) → C0,α
b+4,ε(M̂), we have

∥(Lχ − L)(v)∥C0,α
b+4,ε(M̂) ≤ Cετ∥v∥C4,α

b,ε (M̂)

which, after choosing ε sufficiently small, guarantees that N is a contraction. Now fix φ ∈ Uτ , we have
that

∥N (φ)∥C4,α
b,ε (M̂) ≤∥N (0)∥C4,α

b,ε (M̂) + ∥N (φ) −N (0)∥C4,α
b,ε (M̂) ≤ ∥N (0)∥C4,α

b,ε (M̂) + Cετ∥φ∥C4,α
b,ε (M̂)

≤∥N (0)∥C4,α
b,ε (M̂) + Cε2τ+(p+q)(b+2) ≤ ∥L̃−1(sCh(ω))∥C4,α

b,ε (M̂) + Cε2τ+(p+q)(b+2)

≤C∥sCh(ω)∥C0,α
b+4,ε(M̂) + Cε2τ+(p+q)(b+2) .

On the other hand,
∥sCh(ω)∥C0,α

b+4,ε(M̂) ≤ Cεp(m+b+2) ,

from which it follows

∥N (φ)∥C4,α
b,ε (M̂) ≤ Cεp(m+b+2) + Cε2τ+(p+q)(b+2) ≤ Cεmin{τ,pm−q(b+2)−τ}ετ+(p+q)(b+2) .

It is then sufficient to notice that τ can be chosen such that pm−q(b+2) > τ > 0, giving us the claim.

Hence, Theorem B is proven.
The construction done to prove Theorem B can also be used in the case in which the chosen points are

not smooth, provided the resolutions of the singularity model at such points satisfy some extra conditions.
More precisely, we need to impose the following:

1. for any x ∈ M , let Gx ⊆ SU(n) acting freely on Cn\{0} so that a suitable neighbourhood of p is
biholomorphic to a neighbourhood of Cn/Gx. Cn/Gx has a ALE resolution (X,ωALE), where ωALE

is a scalar flat ALE Kähler metric on X such that, away from the exceptional divisors, takes the
following form:

ωALE = ωo +
√
−1∂∂̄γ , γ = O(r4−2n) (2.76)
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Once (1) is satisfied, we can repeat all the step substituting the Burns-Simanca metric with ωALE and
conclude.

It is also clear that this setting can be considered in the case of an orbifold admitting crepant resolu-
tions, since, as we recalled in Theorem 1.1.46, the singularity resolution model carries Kähler Ricci-flat
ALE metrics with fast decay. In particular, one can easily adapt the proof of Theorem B (where the
key fact in repeating the proof is Lemma 2.2.10) to prove Theorem 2.2.19 which can be considered an
extension of [168, Theorem 1] to the general case of balanced Chern-Ricci flat orbifolds admitting crepant
resolutions.

Theorem 2.2.19. Let (Mn, ω̃) be a compact Chern-Ricci flat balanced orbifold with isolated singularities.
Furthermore, assume thatM admits a crepant resolution M̂ . Then, M̂ carries a Chern-Ricci flat balanced
metric ω̂ε such that

ω̂n−1
ε ∈ π∗[ω̃n−1]BC − ε2n−2

k∑
i=1

an−1
i [Ei]

n−1
BC ,

where [Ei]BC is the first Bott-Chern class of the line bundle associated to the exceptional divisor Ei of
exceptional set of the resolution and ε ∈ (0, ε0).

2.3 Non-positive trace deformation

The second ansatz we will be considering is based on assuming the existence of a suitable (n−2, n−2)-form
to restrict the deformation argument to an easier subspace of the cohomology class. More specifically, we
will assume that M is endowed with Ω̃ ∈ Λn−2,n−2

R M and such that

ω̃ ∧ Ω̃ > 0 and Λn−1
ω̃ (

√
−1∂∂̄Ω̃) ≤ 0 .

With this assumption, our main objective is to prove the following theorem.

Theorem 2.3.1. Let (Mn, ω̃) be a compact balanced Chern-Ricci flat manifold or orbifold with isolated
singularities endowed with Ω̃ ∈ Λn−2,n−2

R M such that

ω̃ ∧ Ω̃ > 0 and Λn−1
ω̃ (

√
−1∂∂̄Ω̃) ≤ 0 . (2.77)

Then, given p1, . . . , pk ∈M and a1, . . . , ak > 0 there exists ε0 > 0 such that the blow-up ofM at p1, . . . , pk
admits a balanced negative constant Chern scalar curvature metric

ωn−1
ε ∈ π∗[ω̃n−1]BC − ε2n−2

k∑
i=1

an−1
i [Ei]

n−1
BC ,

where [Ei]BC is the first Bott-Chern class of the line bundle associated to the exceptional divisor Ei of
the blow-up at pi and ε ∈ (0, ε0).

First of all, we can consider ε > 0 sufficiently small and a small neighbourhood of x, which will be
identified with B(0, 1) ⊂ Cn, with holomorphic coordinates z on M . As before, we can consider the
cut-off function χ : [0, 1] → [0, 1] from Lemma 2.1.1 and consider

Ω̃ε = (1 − χε(|z|2))Ω̃ + χε(|z|2)ωn−2
o ∈ Λn−2,n−2

R M

where again ωo is the flat metric induced by z on B(0, 1). As for ω̃ε, Ω̃ε coincides with the (n − 2)-th
power of the flat metric in a small neighbourhood of x, hence we can repeat the strategy to construct ω,
and glue together Ω̃ε with ε2(n−2)(p+q)ωn−2

BS,ε on the flat region (2.2), obtaining Ω ∈ Λn−2,n−2
R M̂ .
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Remark 2.3.2. It is easy to check that ω ∧ Ω > 0. Indeed, it is straightforward from the construction
that the only region in which we have to check this is the cut-off region {εp ≤ |z| ≤ 2εp}, in which we
have

ω ∧ Ω = (ωo + O(|z|)) ∧ ((1 − χ)Ω̃ + χωn−2
o ) = (1 − χ)ωo ∧ Ω̃ + χωn−1

o + O(|z|),
which is positive, for sufficiently small ε. Indeed, up to the decaying term, it is a pointwise convex
combination of positive forms. This, thanks to the work of Michelsohn ([240]), also implies that ω ∧Ω =
(ω′)n−1, where ω′ is an Hermitian metric on M̂ .

On the other hand, the condition Λω̃(
√
−1∂∂Ω̃) ≤ 0 might not be preserved, but, as we will see, we

will just need it on the base manifold.

Thanks to this construction, we can thus choose φ = uΩ with u ∈ C∞(M̂,R) such that ωn−1
u :=

ωn−1
uΩ > 0, and along with assuming f(uΩ) = u, we are able to turn again the operator S̃ into an operator

taking smooth functions in input defined as

S̃(u) = sCh(ωu) − sCh(ω̃) −
∫
M̂

u
ωn

n!
. (2.78)

Let us start by writing again the linearized operator L̃ implementing this new ansatz:

L̃(u) := L̃(uΩ) = −∆ωFω,Ω(u) + n
RicCh(ω) ∧

√
−1∂∂(uΩ)

ωn
− sCh(ω)Fω,Ω(u), (2.79)

where

Fω,Ω(u) := Fω(uΩ) =
n

n− 1

ω ∧
√
−1∂∂(uΩ)

ωn
. (2.80)

Now, the proof of Theorem 2.3.1 is considerably simpler than that of Theorem B. This is mainly
due to the fact that there is no need to restrict our attention on suitably chosen subspaces. Indeed, the
following lemma asserts that the operator Fω,Ω has trivial kernel, when restricted to zero-mean value
functions, on compact manifolds.

Lemma 2.3.3. Let (Mn, ω̃) be a compact balanced manifold and let Ω̃ ∈ Λn−2,n−2
R M satisfying (2.77).

If

Fω̃,Ω̃ : C∞(M,R) → C∞(M,R) , Fω̃,Ω̃(u) :=
n

n− 1

ω̃ ∧
√
−1∂∂̄(uΩ̃)

ω̃n
,

then, there are no non-trivial functions u ∈ C∞(M,R) such that

Fω̃,Ω̃(u) = c , c ∈ R and

∫
M

u
ω̃n

n!
= 0 .

Then, the restriction of Fω̃,Ω̃ to smooth functions with zero ω̃-mean value is injective.

Proof. Expanding the definition of Fω̃,Ω̃, we have

Fω̃,Ω̃(u) =
n

n− 1

(√
−1∂∂̄u ∧ Ω̃ ∧ ω̃

ω̃n
+ 2Re

(√
−1∂u ∧ ∂̄Ω̃ ∧ ω̃

ω̃n

)
+ u

√
−1∂∂̄Ω̃ ∧ ω̃

ω̃n

)
.

On the other hand, we know that Ω̃ ∧ ω̃ is a positive (n − 1, n − 1)-form. Then, thanks to a result in
[240], there exists a Hermitian metric ω̃′ such that ω̃′n−1 = Ω̃ ∧ ω̃. This implies that

n

√
−1∂∂̄u ∧ Ω̃ ∧ ω̃

ω̃n
= n

√
−1∂∂̄u ∧ ω̃′n−1

ω̃n
=
ω̃′n

ω̃n
∆ω̃′u .

Moreover,

√
−1∂∂̄Ω̃ ∧ ω̃

ω̃n
=

1

n!(n− 1)!
g̃(
√
−1∂∂̄Ω̃, ω̃n−1) =

1

n!(n− 1)!
Λn−1
ω̃ (

√
−1∂∂̄Ω̃) .
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Then, we can conclude that

Fω̃,Ω̃(u) =
1

n− 1

ω̃′n

ω̃n
∆ω̃′u+

2n

n− 1
Re

(√
−1∂u ∧ ∂̄Ω̃ ∧ ω̃

ω̃n

)
+

u

(n− 1)((n− 1)!)2
Λn−1
ω̃ (

√
−1∂∂̄Ω̃) , (2.81)

which is a second order elliptic operator with non-positive zero order coefficient. Now, if u ∈ C∞(M,R)\{0}
with

∫
M
u ω̃

n

n! = 0, then maxM u > 0. On the other hand, thanks to the maximum principle, being a
solution of

Fω̃,Ω̃(u) = c, c > 0 ,

allows us to conclude that u is constant. Using again the condition
∫
M
u ω̃

n

n! = 0, we conclude u = 0. The
case in which c < 0 can be deduced by the above, applying the same argument to v = −u satisfying

Fω̃,Ω̃(v) = −c > 0 ,

obtaining the claim.

Theorem 2.3.4. For any b ∈ (0, 2n− 4), there exists C > 0 such that, for all u ∈ C4,α
b,ε (M̂), we have

∥u∥C4,α
b,ε (M̂) ≤ C∥L̃u∥C0,α

b+4,ε(M̂) .

Then,

L̃ : C4,α
b,ε (M̂) → C ,αb+4,ε(M̂)

is a isomorphism.

Proof. The proof of the first part follows the ideas of the proof of Lemma 2.2.13. In this case, we have
that u∞ ∈ C4,α

b (Mx) is such that

Fω̃,Ω̃(u∞) = c , c ∈ R ,
∫
Mx

u∞
ω̃n

n!
= 0 .

Now, using (2.81), we can use a bootstrap argument to infer that u∞ ∈ kerFω̃,Ω̃ on M , then, in particular,
it is smooth. Now, we can conclude that u∞ = 0, using Lemma 2.3.3 . As regards the second part, one
may notice that the index of L̃ is equal to that of ∆ω ◦ ∆ω′ , where ω′ is the Hermitian metric such that
Ω ∧ ω = (ω′)n−1, as in Remark 2.3.2, which is 0. On the other hand, the first part of the statement is
telling that L̃ is injective and thus, since of index 0, surjective.

Now, the rest of the proof of Theorem 2.3.1 goes as the one of Theorem B. Indeed, We can now
reformulate S̃(u) = 0 as the following fixed point problem:

N (u) := −L̃−1(sCh(ω) +Q(u)) = u

where

N : C4,α
b,ε (M̂) → C4,α

b,ε (M̂) .

Proposition 2.3.5. For ε sufficiently small and b < 2n − 4, the operator N is a contraction and
N (Uτ ) ⊆ Uτ , where

Uτ := {ψ ∈ C4,α
b,ε (M̂) | ∥ψ∥C4,α

b,ε (M̂) ≤ Cε(p+q)(b+2)+τ} .

Proof. First of all, we notice that

∥Ω∥C4,α
0,ε (M̂) ≤ C .
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Indeed, we recall that

Ω =


ε2(n−2)(p+q)ωn−2

BS,ε |z| ≤ εp ,

Ω̃′ εp < |z| < 2εp ,

Ω̃ |z| ≥ 2εp ,

ω =


ε2(p+q)ωBS,ε |z| ≤ εp ,

ω′
ε εp < |z| < 2εp ,

ω̃ |z| ≥ 2εp .

Of course, |∇kΩ|ω ≤ C, if |z| ≥ 2εp and 0 ≤ |z| ≤ εp, for all k = 0, . . . , 4. On the other hand, both Ω̃′

and ω′
ε depend on ε just for their domain of definition and so we can infer that |∇kΩ|ω ≤ C on the whole

M̂ , giving the claim. Once, we have this, the proof is analogue to that of Proposition 2.2.18, using an
easily adapted version of the estimates found in Subsection 2.2.4.

Hence Theorem 2.3.1 is proven.
In the same fashion as discussed in the last part of section 2.2, we can prove the same result even

for singular points provided Condition 1 is satisfied. In particular, again one can repeat the proof of
Theorem 2.3.1 (where the key fact in repeating the proof is Theorem 2.3.4) to prove the Theorem, which
can be considered as a variation of [168, Theorem 1] and Theorem 2.2.19 with this new ansatz.

Theorem 2.3.6. Let (Mn, ω̃) be a compact Chern-Ricci flat balanced orbifold with isolated singularities
endowed with Ω̃ ∈ Λn−2,n−2

R M and satisfying (2.77) on the smooth part. Furthermore, assume that M

admits a crepant resolution M̂ . Then, M̂ carries a Chern-Ricci flat balanced metric ω̂ε such that

ω̂n−1
ε ∈ π∗[ω̃n−1]BC − ε2n−2

k∑
i=1

an−1
i [Ei]

n−1
BC ,

where [Ei]BC is the first Bott-Chern class of the line bundle associated to the exceptional divisor Ei of
exceptional set of the resolution and ε ∈ (0, ε0).

In Section 2.4 we will discuss some examples in which Theorems 2.3.1 and Theorem 2.2.19 can be
applied.

2.4 Examples

In this section, we will describe families of compact balanced manifolds satisfying the hypothesis of
Theorem 2.3.1. In [168, Theorem 1], the authors require the base manifold to satisfy the following

kerFω = {0} (2.82)

Condition (2.82) arises naturally, as we saw in Section 2.2, in the study of invertibility of the linearized
operator with the balanced ansatz. Motivated by this, we study examples in which (2.82) is verified.

2.4.1 Non-positive trace examples

A very special case in which we can apply Theorem 2.3.1 is when
√
−1∂∂Ω = 0. This setting can arise in

multiple scenarios, one of which is given by the case in which the balanced manifold (M, ω̃) carries also
astheno-Kähler metrics, introduced by Jost and Yau in [199], i.e. Hermitian metrics with fundamental
form η such that √

−1∂∂̄ηn−2 = 0 ,

whose coexistence with the balanced structure was shown [113] and in [216]) not to force the existence
of a Kähler metric. In this case, the (n − 2)-th power of η is trivially satisfying conditions (2.77), thus
they are very natural to be considered.

Once compact balanced manifolds admitting also an astheno-Kähler structure are found, it is not
hard to find they carry Chern-Ricci flat balanced metrics, as we can see in the following remark.
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Remark 2.4.1. The existence of Chern-Ricci flat balanced metrics in a given balanced class when the
manifold carries astheno-Kähler metrics depends only on the first Bott-Chern class. Indeed, in [314],
generalizing the same result on Kähler manifolds in [324], the authors proved, as a direct consequence
of the solvability of suitable complex Monge-Ampère equations, that on a compact balanced manifold
(M,ω) admitting an astheno-Kähler metric with cBC

1 (M) = 0, we can always find a Chern-Ricci flat
balanced metric in [ωn−1]BC.

A first explicit example in complex dimension 4 for this setting is the following.

Example 2.4.2 ([113], Example 4.1). Consider the T 2-principal bundle π : M → T 6, where T 6 has the
standard complex structure with holomorphic coordinates (z1, z2, z3), and with characteristic classes

a1 := dz1 ∧ dz̄1 + dz2 ∧ dz̄2 − 2dz3 ∧ dz̄3 and a2 := dz2 ∧ dz̄2 − dz3 ∧ dz̄3.

We then consider the Kähler metrics

η1 := dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3 and η2 := dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + 5dz3 ∧ dz̄3

on T 6, the connection 1-forms θj , j = 1, 2, such that dθj = π∗aj , and define

ωj := π∗ηj + θ1 ∧ θ2, j = 1, 2,

which correspond respectively to a balanced and an astheno-Kähler metric on M . Moreover, denoting
with z0 the holomorphic coordinate on T 2, it is straightforward to notice that

Θ := dz0 ∧ dz1 ∧ dz2 ∧ dz3,

defines a global holomorphic volume form, from which we also see that ω1 (and actually also ω2) is
Chern-Ricci flat, hence satisfying all the hypothesis are into place to apply Theorem 2.3.1.

A further family of examples was given in any complex dimension n ≥ 4 as follows.

Example 2.4.3 ([216],Theorem 2.4, Remark 2.6). For n ≥ 4, consider the nilpotent Lie group and the
left-invariant complex structure identified by a (1, 0)-coframe satisfying the following structure equations:

dωi = 0 , i = 1, . . . , n− 1 , dωn =

n−1∑
i=1

aiω
īi ,

where a1, . . . , an−1 ∈ R such that ai ̸= 0, for all i = 1, . . . , n− 1, and
∑n−1
i=1 ai = 0. Choosing ai ∈ Q, for

all i = 1, . . . , n guarantees the existence of a co-compact lattice, giving a compact nilmanifold. On top
of this, we know that nilmanifolds have vanishing first Bott-Chern class, as any left-invariant metric is
Chern-Ricci flat (see [225, Proposition 2.1]). Thus we are in condition to apply Theorem 2.3.1.
Moreover, in the same paper the authors produced another suitable family of 4-dimensional nilmanifolds
depending on three parameters in Q(i), where one can find Chern-Ricci flat balanced and astheno-Kähler
metrics, identified by the following structure equation:

dω1 = dω2 = dω3 = 0 , dω4 = Aω12 +Bω13 + Cω23 + ω11̄ + ω22̄ − 2ω33̄ , A,B,C ∈ Q(i).

To cover also the case of complex dimension 3, we need to follow a different path. Indeed, in complex
dimension 3, the astheno-Kähler condition coincide with the SKT one, recall Definition 1.1.56. Then,
we cannot hope for the co-existence of balanced and astheno-Kähler metrics on threefolds, due to Con-
jecture 1.1.57. Not having astheno-Kähler metrics is not, however, a big problem, mainly because the
positivity of the form Ω for the ansatz is not a necessary condition, as we only need its positivity when
wedged with the metric on the base. With this in mind, we are able to identify an interesting class of
examples in dimension n ≥ 3, still satisfying the condition

√
−1∂∂Ω = 0, without necessarily having Ω to

be the (n− 2)-th power of an astheno-Kähler metric. This class is given by compact balanced manifolds
admitting a holomorphic submersion with 1-dimensional fibres.
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Proposition 2.4.4. Let π : Mn → Xn−1 be a holomorphic submersion and assume (M,ω) is a compact
balanced manifold. Then, there exists Ω ∈ Λn−2,n−2

R M satisfying (2.77).

Proof. Thanks to [240, Proposition 1.9], we know that X admits balanced metrics. Let us fix ωX a
balanced metric on X. So, we can consider Ω = π∗ωn−2

X . Thus, we have

dΩ = 0 .

Then, we just need to check if ω∧Ω > 0. We then fix a point p ∈M and choose holomorphic coordinates
{z1, . . . , zn} on a neighbourhood of p such that {z1, . . . , zn−1} are holomorphic coordinates on a neigh-
bourhood of π(p) in X and zn is the holomorphic coordinate of the fibre over p, see for instance [321,
Lemma 5.6], such that

ωnn̄ = 1 , π∗ωX =
√
−1

n−1∑
i=1

dz īi and ω

(
∂

∂zi
,
∂

∂z̄k

)
= λiδik , i, k = 1, . . . , n− 1 .

From this, we immediately have that

Ω = π∗ωn−2
X = (

√
−1)n−2(n− 2)!

n−1∑
i=1

dz11̄...̂î̄i...n−1n−1 .

Then, denoting with Λ =
∑n−1
i=1 λi, it is easy to see that

ω ∧ Ω = (
√
−1)n−1(n− 2)!

(
Λdz11̄...n̂

ˆ̄n +

n−1∑
i=1

dz11̄...̂î̄i...nn̄ + ωin̄dz
11̄...î̄i...n̂n̄ − ωnīdz

11̄...̂īi...jˆ̄j...nˆ̄n

)
.

Thus, ω ∧ Ω is represented in p by the matrix

B =
1

n− 1

(
Id ωin̄
ωnī Λ

)
which is positive definite if and only if

det(B) =
1

(n− 1)n

n−1∑
i=1

(
λi − |ωin̄|2

)
> 0 .

On the other hand, using that ω is a metric, we have that λi − |ωin̄|2 > 0, for all i = 1, . . . , n − 1,
concluding the proof.

This proposition is thus very interesting, as in most explicit examples gives us an explicit choice of
Ω, since we frequently have an explicit balanced metric on the base.

One explicit example in the homogeneous case in which we can follow this approach is given by the
Iwasawa manifold, which we shall discuss in detail in Subsection 2.4.2. Another very interesting one is
given by the construction by Goldstein and Prokushkin, see [169], which Fu and Yau in [136] showed to
be highly relevant in the study of the Hull-Strominger system.

Example 2.4.5 ([169]). Let M be the total space of a T 2 bundle on a Calabi-Yau surface (S, ωS) with
holomorphic volume Θ ∈ Λ2,0S. Choose S such that it admits closed 2-forms ωP and ωQ such that
ωP +

√
−1ωQ ∈ Λ2,0S, and [ωP /2π], [ωQ/2π] ∈ H2(S,Z). Then we can find a (1, 0) form θ on M such

that dθ = ωP +
√
−1ωQ and

√
−1θ ∧ θ̄ > 0. Now, θ ∧ Θ defines a holomorphic volume form on M , along

with π∗ωS +
√
−1θ ∧ θ̄, which corresponds to a Chern-Ricci flat balanced metric. Finally, choosing ωP

and ωQ such that either one identifies a non-zero cohomology class guarantees that M does not carry
Kähler metrics. Hence, π∗ωS satisfies conditions (2.77), and thus is a natural choice of Ω in order to
apply Theorem 2.3.1.



2.4. EXAMPLES 69

Finally, we can also recover an example on threefolds in a case where
√
−1∂∂Ω ̸= 0

Example 2.4.6. Consider the six-dimensional nilmanifolds (corresponding to the case [26, Example
(Ni)]) identified by the structure equations

dφ1 = dφ2 = 0, dφ3 = ρφ12 + φ11̄ + λφ12̄ +Dφ22̄,

for {φ1, φ2, φ3} a coframe of invariant (1, 0)-forms, ρ ∈ {0, 1}, λ ∈ R≥0 and D ∈ C such that Im(D) ≥ 0.
When the corresponding Lie algebra is h2, h3, h4 or h5 (in the notation of [279, 325, 326]), these mani-
folds carry both a balanced metric ω (which is automatically Chern-Ricci flat thanks to the nilmanifold
structure) and a plurinegative metric ω′, i.e.

√
−1∂∂̄ω′ ≤ 0, making Ω = ω′ a natural choice to apply

Theorem 2.3.1.

Let us conclude by focusing on two specific locally homogeneous examples whose explicit structure
will allow us to construct examples suitable to apply Theorems 2.3.1, 2.2.19 which satisfy (2.82).

2.4.2 The Iwasawa manifold

Recall that the Iwasawa manifold M = Heis(3,C)/Heis(3,Z[
√
−1]) is the unique complex parallelizable

nilmanifold of complex dimension 3, recall Example 1.1.4.

Example 2.4.7. The center of Heis(3,C) is given by C, whose natural action descends to a T 2 action
on M , which gives rise to (see for a more general assertion [276]) a holomorphic principal T 2-bundle
structure

π : M → T 4. (2.83)

Moreover, the nilmanifold structure once again guarantees that any left-invariant Hermitian metric is
balanced and Chern-Ricci flat. Thus, we are in the position to apply Proposition 2.4.4 to find Ω satisfying
(2.77) and then apply Theorem 2.3.1. We also have an explicit choice of Ω, as we have the flat torus
metric ωT 4 that naturally yields the choice Ω = π∗ωT 4 .

Let us now recall the standard coframe of invariant (with respect to the Heisenberg group operation)
1-forms:

φ1 := dz1, φ2 := dz2, φ3 := dz3 − z2dz1,

which satisfy the following structure equations:

dφ1 = dφ2 = 0 , dφ3 = φ1 ∧ φ2 .

Using [326, Lemma 2.5], we are led to infer that, with such a frame, any left-invariant balanced metric
on Heis(3,C) is biholomorphically isometric to

ωt :=

√
−1

2
(φ1 ∧ φ̄1 + φ2 ∧ φ̄2 + t2φ3 ∧ φ̄3) , t2 > 0 ,

which descends to a Chern-Ricci flat balanced metric on the Iwasawa manifold M , for every t ̸= 0. We can
thus just focus on the family ωt, making use of the invariance of (2.82) under biholomorphic isometries.

Example 2.4.8. For the metrics ωt, the kernel of the operator Fωt (see (2.12)) is described by the
equation

∆ωtu+
1

2
|∂ωt|2ωt

u = 0 . (2.84)

Now, an easy computation shows that ∂ωt =
√
−1 t

2

2 φ1∧φ2∧φ3̄, implying |∂ωt|2ωt

ω3
t

3! =
√
−1 ∂ωt∧∂ωt =

t2
ω3

t

3! , from which we get |∂ωt|2ωt
= t2. Hence, equation (2.84) becomes

∆ωt
u+

t2

2
u = 0 . (2.85)
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We claim that u ≡ 0 is the unique solution of (2.85), for any t > 0 outside a countable set. Indeed, first
of all we notice that the bundle map

π : (M,ωt) → (T 4, ωT 4) , ωT 4 =

√
−1

2
(φ1 ∧ φ̄1 + φ2 ∧ φ̄2)

corresponding to the projection on the first two coordinates, is a Riemannian submersion, for any t > 0.
Moreover, we observe that the fibres are minimal, as the mean curvature vector of the fibres has to be
left-invariant. Then, the claim is equivalent to prove that Z(Heis(3,C)) is minimal in Heis(3,C). This
is trivially true since the Levi-Civita connection computed on central vector fields is identically zero, see
also [95, Example 3.4]. Now, we can integrate equation (2.85) along the fibres of π, and obtain

∆ωT4 û+
t2

2
û = 0 , (2.86)

where û(x) :=
∫
Tx
uωT 2,t is the average of u along the fibres, ωT 2,t is the metric obtained by rescaling

the flat metric on T 2
x by a factor t2, which coincides with the metric induced on the fibres by ωt).

Here, equation (2.86) gives us two possibilities: either t2

2 /∈ Spec(T 4, ωT 4) or t2

2 ∈ Spec(T 4, ωT 4). Choosing
then t in order to land in the first case, puts us in the position to conclude that û ≡ 0. Indeed, this
allows us to apply [55, Corollary 1.7], telling us that, in our setting, the k-th eigenvalue corresponding
to eigenfunctions with vanishing average along the fibres is bounded from below by the k-th eigenvalue
of ∆ωT2,t

, which is equal to 4π2t2k2 > t2/2. Hence, for these values of t, u is necessarily vanishing, and

thus equation (2.85) has only the trivial solution. Hence, condition (2.82) is satisfied.

Remark 2.4.9. The case in which t2

2 ∈ Spec(T 4, ωT 4) does not satisfy condition (2.82), since u = f ◦ π,

with f : T 4 → R an eigenfunction of ∆ωT4 with eigenvalue t2

2 is clearly contained in kerFωt
.

Remark 2.4.10. Since the metrics ωt considered in Example 2.4.8 all descend to Chern-Ricci flat bal-
anced metrics on the orbifold in [168, Example 2.6], constructed in [284]. Hence, for the same values of t,
Fωt

has vanishing kernel also as an operator on weighted Hölder spaces on the orbifold. Indeed, through
a bootstrap argument, the kernel reduces to the kernel on the smooth cover, i.e. the Iwasawa manifold,
giving also an example in which [168, Theorem 1] can be applied to construct Chern-Ricci flat balanced
metrics on the crepant resolution.

Example 2.4.11. The orbifold quotient constructed by Sferruzza and Tomassini considered in the pre-
vious remark provides also an example on which we can apply Theorem 2.2.19. Indeed, the action the
authors consider preserves the flat torus metric ωT 4 on the base, making π∗ω2

T 4 a suitable choice for Ω
also on the orbifold quotient and hence produces again Chern-Ricci flat balanced metrics on the crepant
resolution.

Remark 2.4.12. The fact that for the same metric (and corresponding cohomology class) we are able
to achieve our constructions with both ansatz, suggests the expected fact that Chern-Ricci flat balanced
metrics, as well as constant Chern scalar balanced metrics, might have very large moduli space inside
the balanced class. Hence, in order to be able to geometrize such classes, we forsee the need to introduce
additional constraint, possibly on the torsion.

2.4.3 Nakamura manifolds

The final example we want to discuss is the one of Nakamura manifolds, as constructed by Cattaneo and
Tomassini in [73].

To briefly recall the construction of Nakamura manifolds, fix M ∈ SL(n,Z) to be diagonalizable and
let P ∈ GL(n,R) such that P−1MP = diag(eλ1 , ..., eλn), where λi ∈ R are such that

n∑
i=1

λi = 0. (2.87)
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From here, we can consider the group action ρ : C → GL(n,C) given by

ρ(w) := diag
(
e

λ1
2 (w+w̄), . . . , e

λn
2 (w+w̄)

)
,

which allows to consider the semidirect product GM := C⋉ρ Cn. Then, we consider the lattices

Γ′
τ := Z⊕

√
−1τ · Z and Γ′′

P := Zn ⊕
√
−1P · Zn,

where τ ∈ R \ {0}. After noticing that ΓP,τ := Γ′
τ ⋉ρ Γ′′

P ≤ GM , we define Nakamura manifolds as the
quotients

N = NM,P,τ := GM/ΓP,τ .

These (n+ 1)-dimensional compact manifolds inherit the left-invariant coframe

φ0 := dw , φj := e
λj
2 (w+w̄)dzj , j = 1, . . . , n,

of (1, 0)-forms from GM (as they are invariant under ΓP,τ ’s action) satisfying the following structure
equations:

dφ0 = 0, dφj = −λj
2

(φ0 + φ̄0) ∧ φj , j = 1, . . . , n .

It can then be easily checked that

ωt :=

√
−1

2

t2φ0 ∧ φ̄0 +

n∑
j=1

φj ∧ φ̄j
 and Θ := φ0 ∧ . . . ∧ φn

define respectively a family of balanced metrics and a holomorphic volume form of constant (on N)
ωt-norm, making ωt also Chern-Ricci flat, and N a Calabi-Yau manifold.

Example 2.4.13. Following the discussion in [73, Section 5], any Nakamura manifold inherits a holo-
morphic T 2n-bundle over a 2 dimensional torus. A fundamental difference with the previous example is
that now the metrics induced by ωt on the fibres are not equal, but they vary depending on the base
parameter w. Nevertheless, it is straightforward to notice (by fixing a fiber, rescaling the coordinates
and using (2.87)) that the Laplacians induced on each fibre all share the same eigenvalues, which are also
the ones of the flat metric on T 2n. Hence, we can repeat the argument used in Example 2.4.8 to obtain
once again that the operator Fωt

has vanishing kernel up to a countable set of values for t, giving thus
another family of examples on which (2.82) is satisfied.

On the other hand, Theorem 2.3.1 cannot be applied to this manifolds, as we explain in the following
remark.

Remark 2.4.14. Using Proposition 1.1.50, we can reduce ourselves to work with invariant forms. We
will prove the claim in complex dimension 3. In this case, the structure equations are:

dφ0 = 0 , dφ1 = −λ
2

(φ0 + φ̄0) ∧ φ1 , dφ1 =
λ

2
(φ0 + φ̄0) ∧ φ1 , λ ∈ R .

Using these, one can easily prove that
√
−1∂∂̄(φi ∧ φ̄j) = 0 , i < j , (2.88)

while √
−1∂∂̄(φ0 ∧ φ̄0) = 0 ,

√
−1∂∂̄(φi ∧ φ̄i) =

√
−1λ2φ0 ∧ φ̄0 ∧ φi ∧ φ̄i , i = 1, 2 . (2.89)

Then, given a general left-invariant Ω ∈ Λ1,1
R N , we can write it as:

Ω =
√
−1

2∑
i,j=0

aij̄φ
i ∧ φ̄j .
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Then, using (2.88) and (2.89), we have that

√
−1∂∂̄Ω = (

√
−1)2λ2(a11̄φ

0 ∧ φ̄0 ∧ φ1 ∧ φ̄1 + a22̄φ
0 ∧ φ̄0 ∧ φ2 ∧ φ̄2) .

Now,

Λ2
ωt

(
√
−1∂∂̄Ω)

ω3
t

3!
= 2

√
−1∂∂̄Ω ∧ ωt .

On the other hand, we easily see that

√
−1∂∂̄Ω ∧ ωt = (

√
−1)3λ2(a11̄ + a22̄)φ0 ∧ φ̄0 ∧ φ1 ∧ φ̄1 ∧ φ2 ∧ φ̄2 = λ2(a11̄ + a22̄)

ω3
t

3!
.

Then, we conclude that Λ2
ωt

(
√
−1∂∂̄Ω) = λ2(a11̄+a22̄). Then, Λ2

ωt
(
√
−1∂∂̄Ω) ≤ 0 if and only if a11̄+a22̄ ≤

0. But, computing ω ∧ Ω and imposing its positivity, we need to have a11̄ + a22̄ > 0 which is absurd,
giving the claim.

Remark 2.4.15. What was shown in Remark 2.4.14 and Example 2.4.8 suggests that the existence
of metrics satisfying condition (2.82) might be strictly weaker then the assumption of having a form
satisfying (2.77), fueling the interest towards the study of operator (2.12).



Chapter 3

The Pluriclosed flow on
solvmanifolds

After the proof of Thurston’s geometrization conjecture by Perelman using the Ricci flow, the study of
geometric flows has gained much importance and these are frequently defined ad hoc to address many
problems in Geometry. A large class of manifolds on which the behaviour of the Ricci flow is largely
understood even in higher dimensions is the class of homogeneous spaces. Analogues of the Ricci flow
in the complex setting were defined by many authors. For sure, as we saw in Subsection 1.1.3 and
Section 1.2, among all of them, the pluriclosed flow is one of the most studied. In addiction, it is the
object of many open conjectures, for instance involving the classification of compact complex surfaces,
see [299, 305]. This chapter is focused on the study of the behaviour of the pluriclosed in the locally
homogeneous setting, i.e. on compact quotients of Lie groups. This study is conducted in two different
ways.

In Section 3.1, we study the pluriclosed flow on Oeljeklaus-Toma manifolds, an explicit class of compact
complex manifolds. These manifolds are, in particular, compact quotients of a solvable Lie group, endowed
with a left-invariant complex structure, by a discrete subgroup. The complete behaviour of the left-
invariant pluriclosed flow on such manifolds is deducted by the study of the Bismut-Ricci form of a
general left-invariant SKT metric. This first section is an account of a joint work with Luigi Vezzoni, see
[141].

In Section 3.2, we make use of the equivalence between the pluriclosed flow and the generalized Ricci
flow saw in Subsection 1.2.1. In view of this equivalence, we study the behaviour of the homogeneous
generalized Ricci flow by introducing a flow of Dorfman brackets which allows us to understand the
behaviour the generalized Ricci flow. The second section is a collection of the results of a joint work with
Ramiro A. Lafuente and James Stanfield, see [140].

3.1 Pluriclosed flow on Oeljeklaus-Toma manifolds

In this section, we collect the results regarding the behaviour of the pluriclosed flow on Oeljeklaus-Toma
manifolds. The section is divided as follows. Subsection 3.1.1 is dedicated to the description of Oeljeklaus-
Toma manifolds and their structure of solvmanifold. Moreover, we prove a general result concerning the
Gromov-Hausdorff convergence of Hermitian metrics on Oeljeklaus-Toma manifolds.

In Subsection 3.1.2, we study the left-invariant Chern-Ricci flow and discuss its long-time behaviour
on Oeljeklaus-Toma manifolds.

The statement and the proof of the main result of this section can be found in Subsection 3.1.3.
The long-time behaviour of the pluriclosed flow will be obtained through an explicit characterization of
left-invariant SKT metrics and the direct computation of their Bismut-Ricci form.

Finally, in Subsection 3.1.4 part of the main results will be generalized to a wider class of Lie algebras.

73
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3.1.1 Gromov-Hausdorff convergence on Oeljeklaus-Toma manifolds

Oeljeklaus-Toma manifolds were defined firstly in [247] using algebraic number theory. Such manifolds
are compact complex manifolds generalizing the classical Inoue surfaces, see [194]. We briefly present
their construction in details.

Let Q ⊆ K be an algebraic number field with [K : Q] = r + 2s and r, s ≥ 1. Let σ1, . . . , σr : K → R
be the real embeddings of K and σr+1, . . . , σr+2s : K → C be the complex embeddings of K satisfying
σr+s+i = σ̄r+i, for every i = 1, . . . , s. We denote by OK the ring of algebraic integers of K, i.e.

OK := {a ∈ K | ∃f ∈ Z[x] , f(a) = 0} ,

and by O∗
K the group of units of OK. Let

O∗,+
K := {u ∈ O∗

K | σi(u) > 0 , i = 1, . . . , r}

be the group of totally positive units of OK. The groups OK and O∗,+
K act on Hr × Cs as:

a · (z1, . . . , zr, w1, . . . , ws) = (z1 + σ1(a), . . . , zr + σr(a), w1 + σr+1(a), . . . , ws + σr+s(a)) , a ∈ OK

and

u · (z1, . . . , zr, w1, . . . , ws) = (σ1(u)z1, . . . , σr(u)zr, σr+1(u)w1, . . . , σr+s(u)ws) , u ∈ O∗,+
K ,

where H = {z ∈ C | Im(z) > 0} is the upper-half plane in C.
There always exists a free subgroup U of rank r of O∗,+

K such that prRr ◦ l(U) is a lattice of rank r in

Rr, see [247], where l : O∗,+
K → Rr+s is the logarithmic representation of units

l(u) = (log σ1(u), . . . , log σr(u), 2 log|σr+1(u)|, . . . , 2 log|σr+s(u)|)

and prRr : Rr+s → Rr is the projection on the first r coordinates. The action of U⋉OK on Hr×Cs is free,
properly discontinuous and co-compact. An Oeljeklaus-Toma manifold is then defined as the quotient

M :=
Hr × Cs

U ⋉OK

and it is a compact complex manifold having complex dimension r+ s. Directly from their construction,
we derive a structure of torus bundle for Oeljeklaus-Toma manifolds. This structure can be seen as
follows: we have

Hr × Cs

OK
= Rr+ × T r+2s

and that the action of U on Hr × Cs induces an action on Rr+ × T r+2s such that, for every x ∈ Rr+ and
u ∈ U , the induced map

u : (x, T r+2s) 7→ (σ1(u)x1, . . . , σr(u)xr, T
r+2s)

is a diffeomorphism. Hence

M ≃
Rr+ × T r+2s

U

inherits the structure of a T r+2s-bundle over T r. We denote by π and F the projections

π : Hr × Cs →M , F : M → T r .

Finally, we observe that the Poincaré metric ωHr =
√
−1
∑r
a=1

dza∧dz̄a
4(Imza)2

on Hr can be pulled back to

Hr×Cs, obtaining a degenerate (1, 1)-form ω∞. One can easily see that ω∞ is invariant under the action
of U ⋉OK. Thus, it descends to a (1, 1)-form on M , which will be denoted again with ω∞.

From the viewpoint of Lie groups, the universal covering of an Oeljeklaus-Toma manifold M has
a natural structure of solvable Lie group G and the complex structure on M lifts to a left-invariant
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complex structure, see [206] for the detailed proof of this fact. Therefore, Oeljeklaus-Toma manifolds
can be seen as compact solvmanifolds with a left-invariant complex structure. The solvable structure on
the universal covering of M can be described in terms of the existence of a left-invariant (1, 0)-coframe
{ω1, . . . , ωr, γ1, . . . , γs} such that{

dωk =
√
−1
2 ωk ∧ ω̄k k = 1, . . . , r ,

dγi =
∑r
k=1 λki ω

k ∧ γi −
∑r
k=1 λkiω̄

k ∧ γi i = 1, . . . , s ,
(3.1)

where

λki =

√
−1

4
bki −

1

2
cki

and bki, cki ∈ R depend on the embeddings σj as

σr+i(u) =

(
r∏

k=1

(σk(u))
bki
2

)
e
√
−1

∑r
k=1 cki log σk(u) , (3.2)

for any u ∈ U , k = 1, . . . , r and i = 1, . . . , s. Since U ⊆ O∗
K, it is easy to see that

l(U) ⊆

{
x ∈ Rr+s

∣∣∣∣∣
r+s∑
i=1

xi = 0

}
.

This fact together with (3.2) implies that, for every u ∈ U ,

r∑
i=1

log σi(u)

(
1 +

s∑
k=1

bik

)
= 0 ,

which, since prRr ◦ l(U) is a lattice of rank r in Rr, is equivalent to

s∑
k=1

bik = −1 , i = 1, . . . , r . (3.3)

The dual frame {Z1, . . . , Zr,W1, . . . ,Ws} to {ω1, . . . , ωr, γ1, . . . , γs} satisfies the following structure
equations:

[Zk, Z̄k] = −
√
−1

2
(Zk + Z̄k) , [Zk,Wi] = −λkiWi , [Zk, W̄i] = λ̄kiW̄i ,

for k = 1, . . . , r, i = 1, . . . , s. Consequently, the Lie algebra g of the universal covering of M splits as
vector space as

g = h⊕ I

where I is an abelian ideal and h is a subalgebra isomorphic to f⊕ · · · ⊕ f︸ ︷︷ ︸
r-times

, where f is the filiform Lie

algebra f = ⟨e1, e2⟩, [e1, e2] = − 1
2e1. The complex structure J induced on g preserves both h and I and

its restriction Jh on h satisfies
Jh = Jf ⊕ · · · ⊕ Jf︸ ︷︷ ︸

r-times

,

where Jf is the complex structure on f defined by Jf(e1) = e2. Moreover

[h1,0, I0,1] ⊆ I0,1 .

Now that the construction and the geometric structure of Oeljeklaus-Toma manifolds is well-understood,
we turn our focus on the study of Gromov-Hausdorff convergence of such manifolds.

Let {ωt}t∈[0,∞) be a smooth curve of Hermitian metrics on an Oeljeklaus-Toma manifold M and let
dt be the induced distance on M . For a smooth curve γ on M , let Lt(γ) be the length of γ with respect
to ωt. We further denote by H the foliation induced by h on M .
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Proposition 3.1.1. Let M be an Oeljeklaus-Toma manifold and {ωt}t∈[0,∞) be a smooth curve of Her-
mitian metrics on M such that ωt → ω∞ pointwise, as t → ∞. Assume that there exist T ∈ (0,∞) and
C > 0 such that

1. Lt(γ) ≤ CL0(γ) , for every smooth curve γ in M ;

2. Lt(γ) ≤ (C/
√
t)L0(γ), for every smooth curve γ in M such that γ̇ ∈ kerω∞.

3. for every ε, ℓ > 0, there exists T > 0 such that |Lt(γ) − L∞(γ)| < ε, for every t > T and every
curve γ in M tangent to H and such that L∞(γ) < ℓ.

Then, (M,dt) converges to (T r, d) in the Gromov-Hausdorff sense, where d is the distance induced by ω∞
onto T r.

Proof. To prove the claim, we will construct F : M → T r and G : T r → M satisfying the properties in
Item 3 of Theorem 1.4.2. In order to do this, we follow the approach in [322, Section 5] and in [344, Proof
of Theorem 1.1].

We consider the structure of M as T r+2s-bundle over a T r and let F : M → T r be the projection
onto the base and let G : T r →M be an arbitrary map such that F ◦G = IdT r . We show that, for every
ε > 0, there exists T > 0 such that

|dt(p, q) − d(F (p), F (q))| ≤ ε , (3.4)

|d(a, b) − dt(G(a), G(b))| ≤ ε , (3.5)

dt(p,G(F (p))) ≤ ε , (3.6)

d(a, F (G(a))) ≤ ε , (3.7)

for every t ≥ T , p, q ∈M , a, b ∈ T r which implies the statement.
First of all, we note that (3.7) is trivial since

d(a, F (G(a))) = 0 ,

for every a ∈ T r.
Then, we show that (3.6) is satisfied. Let p, q ∈ M be two points in the same fiber over T r. Assume

p = π(z, w). We denote with L(z,w) the leaf of the foliation kerω∞ on the universal covering of M passing
through (z, w). We easily see that, for all (z, w) ∈ Hr × Cs, L(z,w) = {z} × Cs. In view of [334, Section
2], for every z ∈ Hr, π({z} × Cs) is the leaf of the foliation kerω∞ on M passing through p and it is
dense in the fiber F−1(F (p)). Let BR be the standard ball in Cs around the origin having radius R.
We can choose R so that every point in F−1(F (p)) has distance with respect to d0 less than ε/2C to
π({z} × B̄R). On the other hand, given two points in π({z} × B̄R), they can be joined with a curve γ in
F−1(F (p)) which is tangent to kerω∞. Hence, for any such curve, Item 2 implies

Lt(γ) ≤ C ′
√
t
,

for a uniform constant C ′ depending only on R. Let p0 = π(z, 0), γ1 be a curve in F−1(F (p)) connecting
p with p0 tangent to kerω∞ and γ2 be a curve connecting p0 with q having minimal length with respect
to d0. Hence, by using Item 1, for t sufficiently large, we have

dt(p, q) ≤ Lt(γ1) + Lt(γ2) ≤ C ′
√
t

+ CL0(γ2) ≤ C ′
√
t

+
ε

2
≤ ε ,

from which (3.6) follows.
Next we show (3.4) and (3.5). First of all, we denote with g the riemannian metric on T r induced by

ω∞, for an explicit expression of g see [344, Section 2], and we observe that

Lg(F (γ)) ≤ L∞(γ) , (3.8)
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for every curve γ in M , and the equality holds if and only if

γ̇ ∈ Y = spanC

{
1

2
√
−1

(
Zi − Z̄i

) ∣∣∣∣ i = 1, . . . , r

}
.

Let p, q ∈ M . We can find a curve γ in M connecting p with a point q̃ in the T r+2s-fiber containing
q which is tangent to Y and such that F (γ) is a minimal geodesic on (T r, g), see for instance [322, Proof
of Theorem 5.1] or [344, Proof of Theorem 1.1]. By applying Item 3 we have

dt(p, q) ≤ dt(p, q̃)+dt(q̃, q) ≤ dt(p, q̃)+ε ≤ Lt(γ)+ε ≤ L∞(γ)+2ε = Lg(F (γ))+2ε = d(F (p), F (q))+2ε ,

for t big enough, i.e.

dt(p, q) − d(F (p), F (q)) ≤ 2ε , (3.9)

for t sufficiently large.
Next, using again (3.8), we obtain, for p, q ∈M ,

d(F (p), F (q)) ≤ Lg(F (γ)) ≤ L∞(γ) ≤ Lt(γ) + ε = dt(p, q) + ε ,

for t big enough, where γ is curve which realizes the distance dt(p, q). Hence we obtain

d(F (p), F (q)) − dt(p, q) ≤ ε . (3.10)

By substituting p = G(a) and q = G(b) in (3.9) and (3.10) we infer

−ε ≤ dt(G(a), G(b)) − d(a, b) ≤ 2ε

and (3.4) and (3.5) follow.

3.1.2 The left-invariant Chern-Ricci flow on Oeljeklaus-Toma manifolds

Before moving to prove the main results about the left-invariant pluriclosed flow on Oeljeklaus-Toma
manifolds, we study the behaviour of the Chern-Ricci flow, recall Definition 1.1.33, on such manifolds.

In this section we will prove the following theorem.

Proposition 3.1.2. Let ω be a left-invariant Hermitian metric on an Oeljeklaus-Toma manifold M .
Then, ω lifts to an expanding algebraic soliton for the Chern-Ricci flow on the universal covering of M if
and only if it takes the following expression with respect to the coframe {ω1, . . . , ωr, γ1, . . . , γs} satisfying
(3.1):

ω =
√
−1

A r∑
i=1

ωi ∧ ω̄i +

s∑
i,j=1

gr+ir+jγ
i ∧ γ̄j

 . (3.11)

Moreover, the Chern-Ricci flow starting from ω has a long-time solution {ωt} such that (M, ωt

1+t ) converges
as t → ∞ in the Gromov-Hausdorff sense to (T r, d), where d is the distance induced by ω∞ onto T r.
Finally, (Hr×Cs, ωt

1+t ) converges in the Cheeger-Gromov sense to (Hr×Cs, ω̃∞) where ω̃∞ is an algebraic
soliton.

Proof. Let M be an Oeljeklaus-Toma manifold. Since the Chern-Ricci form does not depend on the choice
of the left-invariant Hermitian metric, see, for instance, [225, 335], it is enough to compute RicCh(ω) for
the following metric:

ω =
√
−1

 r∑
i=1

ωi ∧ ω̄i +

s∑
j=1

γj ∧ γ̄j
 . (3.12)



78 CHAPTER 3. THE PLURICLOSED FLOW ON SOLVMANIFOLDS

We recall that the Chern-Ricci form of a left-invariant Hermitian metric ω =
√
−1
∑n
a=1 α

a ∧ ᾱa on
a Lie group G2n with a left-invariant complex structure takes the following algebraic expression:

RicCh(ω)(X,Y ) = −
n∑
a=1

(ω([[X,Y ]0,1, Xa], X̄a) + ω([[X,Y ]1,0, X̄a], Xa)) , (3.13)

for every left-invariant vector fields X,Y on G, where {αi} is a left-invariant unitary (1, 0)-coframe with
dual frame {Xa} (see e.g. [335]). By applying (3.13) to the metric (3.12), we have

RicCh(ω)(X,Y ) = −
r∑
a=1

{ω([[X,Y ]0,1, Za], Z̄a) + ω([[X,Y ]1,0, Z̄a], Za)}

−
s∑
b=1

{ω([[X,Y ]0,1,Wb], W̄b) + ω([[X,Y ]1,0, W̄b],Wb)} .

Clearly,
RicCh(ω)(Zi, Z̄j) = 0 , i ̸= j , RicCh(ω)(Wi, W̄j) = 0 , i, j = 1, . . . , s .

Moreover, since J is an abelian ideal and ω makes J and h orthogonal, we have:

RicCh(ω)(Zi, W̄j) = 0 , i = 1, . . . , r , j = 1, . . . , s .

Moreover we have

ω([[Zi, Z̄i]
0,1, Za], Z̄a) =

√
−1

4
δia , ω([[Zi, Z̄i]

1,0, Z̄a], Za) =

√
−1

4
δia

and

ω([[Zi, Z̄i]
0,1,Wb], W̄b) =

1

2
λib , ω([[Zi, Z̄i]

1,0, W̄b],Wb) = −1

2
λ̄ib

which imply

RicCh(ω)(Zi, Z̄i) = −
√
−1

(
1

2
+

s∑
b=1

Im(λib)

)
= −

√
−1

4
.

Consequently,
RicCh(ω) = −ω∞ ,

where ω∞ is the degenerate metric induced on M by the Poincaré metric on Hr, namely,

ω∞ =

√
−1

4

r∑
i=1

ωi ∧ ω̄i .

Now, consider P as the endomoprhism associated to the Chern-Ricci form, i.e. RicCh(ω)(·, ·) = ω(P ·, ·).
In general, we have that

P ji = (RicCh(ω))ik̄g
k̄j =

{
− 1

4g
īj if i ∈ {1, . . . , r} ,

0 otherwise .

Then, using [225, Part (iii) Proposition 4.2], we can infer that any left-invariant Hermitian metrics of
the form (3.11) lifts to an expanding algebraic soliton on the universal covering of M with cosmological
constant c = 1

4A . Conversely, let ω be an algebraic soliton for the Chern-Ricci flow. Then, thanks to
[225, Part (ii) Proposition 4.2], we have that

P − cI ∈ Der(g) .
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On the other hand, we can easily see that, if D ∈ Der(g), then h ⊆ kerD, see proof of Corollary 3.1.6 for
the details. This readily implies that

−1

4
gīi = −1

4
gj̄j = c , i, j = 1, . . . , r , gīj = 0 , i ∈ {1, . . . , r} , j ̸= i ,

from which the claim follows.
Moreover, the Chern-Ricci flow evolves an arbitrary left-invariant Hermitian metric ω as ωt = ω+tω∞

and ωt

1+t → ω∞ as t→ ∞. In order to obtain the claim regarding the Gromov-Hausdorff convergence, we
show that ωt

1+t satisfies Items 1 to 3 of Proposition 3.1.1. Here we denote by | · |t the norm induced by ωt.
On the other hand, Item 2 of Proposition 3.1.1 is trivially satisfied since ωt|I⊕I = ω0, for every t ≥ 0,
and

Lt(γ) =
1√

1 + t
L0(γ) ,

for every curve γ in M tangent to kerω∞.
On the other hand, for a vector v ∈ h, we have

1√
1 + t

|v|t ≤ C|v|0 ,

for a constant C > 0 independent on v. This, together with Item 2, guarantees Item 1.
In order to prove Item 3, let ε, ℓ > 0 and T > 0 be such that∣∣∣∣ |v|t√

1 + t
− |v|∞

∣∣∣∣ ≤ ε

ℓ
,

for every v ∈ h and t ≥ T . Let γ be a curve in M tangent to H which is parametrized by arclength with
respect to ω∞ and such that L∞(γ) < ℓ. Then

|Lt(γ) − L∞(γ)| ≤
∫ b

0

∣∣∣∣ 1√
1 + t

|γ̇|t − |γ̇|∞
∣∣∣∣ da ≤ ε

ℓ
b ≤ ε ,

since b ≤ ℓ.
For the last statement, we identify ωt with its pull-back onto Hr × Cs and we fix as base point the

identity element of Hr × Cs. Firstly, we observe that the endomorphism D represented with respect to
the frame {Z1, . . . , Zr,W1, . . . ,Ws} by the following matrix:(

0 0
0 IJ

)
is a derivation of g. Moreover, we can construct

exp(s(t)D) =

(
Ih 0
0 es(t)IJ

)
∈ Aut(g, J) , t ≥ 0 ,

where s(t) = log(
√

1 + t) and define the 1-parameter family {φt} ⊆ Aut(Hr × Cs, J) such that

dφt = exp(s(t)D) , t ≥ 0 .

Trivially, we see that

φ∗
t

ωt
1 + t

(Zi, Z̄j) =
√
−1

1

1 + t

(
gij̄ +

t

4
δij

)
→

√
−1

4
δij , t→ ∞ ,

φ∗
t

ωt
1 + t

(Zi, W̄j) =
√
−1

es(t)

1 + t
gir+j → 0 , t→ ∞ ,

φ∗
t

ωt
1 + t

(Wi, W̄j) =
√
−1

e2s(t)

1 + t
gr+ir+j →

√
−1gr+ir+j , t→ ∞ .

These facts guarantee that

φ∗
t

ωt
1 + t

→ ω∞ + ω|J⊕J , t→ ∞ ,

hence, the assertion follows.
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3.1.3 Behaviour of the pluriclosed flow on Oeljeklaus-Toma manifolds

In this section, we prove long-time existence and convergence in both Gromov-Haudorff and Cheeger-
Gromov sense of a solution of the pluriclosed flow on a given Oeljeklaus-Toma manifold starting from a
left-invariant SKT metric. The result will be proved in steps. The first one consists in characterizing all the
SKT metrics on a Oeljeklaus-Toma manifold. Then, we will compute the (1, 1)-part of the Bismut-Ricci
form and, from that, we will deduce long-time existence and the characterization of algebraic solitons.
Finally, we will conclude the proof applying Proposition 3.1.1 and obtain Cheeger-Gromov convergence
as in the proof of Proposition 3.1.2.

The existence of SKT metrics on Oeljeklaus-Toma manifolds was studied in [25], [115] and [253].

Theorem 3.1.3 ([25], Corollary 3 ). An Oeljeklaus-Toma manifold of type (r, s) admits a SKT metric
if and only if r = s and

σj(u)|σr+j(u)|2 = 1 , j = 1, . . . , s , u ∈ U . (3.14)

Condition (3.14) in the previous theorem can be rewritten in terms of the structure constants appearing
in (3.1). Indeed, (3.1) together with (3.14) forces bki ∈ {0,−1} and bkibli = 0, for every i, k, l = 1, . . . , s
with k ̸= l. In particular, using (3.3), for every fixed index k ∈ {1, . . . , s}, there exists a unique ik ∈
{1, . . . , s} such that

bkik = −1 , bki = 0 ,

for all i ̸= ik and, if k ̸= l, then ik ̸= il. Hence, up to a reorder of the γj ’s, we may and do assume,
without loss of generality, ik = k, for every k ∈ {1, . . . , s}, i.e.

λki =

{
− 1

2cki if i ̸= k ,

− 1
2ckk −

√
−1
4 if i = k .

(3.15)

The next proposition gives a full characterization of left-invariant SKT metric on a Oeljeklaus-Toma
manifold in terms of the standard (1, 0)-coframe.

Proposition 3.1.4. A left-invariant metric ω on an Oeljeklaus-Toma manifold admitting SKT metrics
is SKT if and only if it takes the following expression with respect to a coframe {ω1, . . . , ωs, γ1, . . . , γs}
satisfying (3.1) and (3.15):

ω =
√
−1

s∑
i=1

Aiω
i ∧ ω̄i +Biγ

i ∧ γ̄i +
√
−1

k∑
r=1

(
Crω

pr ∧ γ̄pr + C̄rγ
pr ∧ ω̄pr

)
(3.16)

for some A1, . . . , As, B1, . . . , Bs ∈ R+, C1, . . . , Ck ∈ C, where {p1, . . . , pk} ⊆ {1, . . . , s} are such that

λjpi = 0 , j ̸= pi , i = 1, . . . , k .

Proof. We assume s > 1 since the case s = 1 is trivial. Let

ω =
√
−1

s∑
p,q=1

Apq̄ω
p ∧ ω̄q +Bpq̄γ

p ∧ γ̄q + Cpq̄ω
p ∧ γ̄q + C̄pq̄γ

q ∧ ω̄p

be an arbitrary real left-invariant (1, 1)-form on M , with App̄, Bpp̄ ∈ R, for every p = 1, . . . , s, Apq̄, Bpq̄ ∈
C, for all p, q = 1, . . . , s with p ̸= q, and Cpq̄ ∈ C, for every p, q = 1, . . . , s.

From the structure equations (3.1), it easily follows
∂∂̄(ωp ∧ ω̄q) ∈ ⟨ωp ∧ ωq ∧ ω̄p ∧ ω̄q⟩ ,
∂∂̄(ωp ∧ γ̄q) ∈ ⟨ωi ∧ ωj ∧ ω̄l ∧ γ̄m⟩ ,
∂∂̄(γp ∧ γ̄q) ∈ ⟨ωi ∧ ω̄j ∧ γl ∧ γ̄m⟩ ,

(3.17)
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and that ω is SKT if and only if the following three conditions are satisfied

s∑
p,q=1

Apq̄∂∂̄(ωp ∧ ω̄q) = 0 ; (3.18)

s∑
p,q=1

Bpq̄∂∂̄(γp ∧ γ̄q) = 0 ; (3.19)

s∑
p,q=1

Cpq̄∂∂̄(ωp ∧ γ̄q) = 0 . (3.20)

The first relation in (3.17) yields that (3.18) is satisfied if and only if

Apq̄ = 0 , p ̸= q .

Next we focus on (3.19). We have

∂∂̄(γp ∧ γ̄q) =∂

(
−

s∑
δ=1

λδpω̄
δ ∧ γp ∧ γ̄q − γp ∧

s∑
δ=1

λ̄δqω̄
δ ∧ γ̄q

)

and

∂∂̄(γp ∧ γ̄q) =

s∑
δ=1

(λ̄δq − λδp)
(
∂ω̄δ ∧ γp ∧ γ̄q − ω̄δ ∧ ∂γp ∧ γ̄q + ω̄δ ∧ γp ∧ ∂γ̄q

)
,

which implies

∂∂̄(γp ∧ γ̄q) =

s∑
δ=1

√
−1

2
(λ̄δq − λδp)ω

δ ∧ ω̄δ ∧ γp ∧ γ̄q −
s∑
δ=1

(λ̄δq − λδp)ω̄
δ ∧

(
s∑

a=1

λapω
a ∧ γp

)
∧ γ̄q

+

s∑
δ=1

(λ̄δq − λδp)ω̄
δ ∧ γp ∧

(
−

s∑
a=1

λ̄aqω
a ∧ γ̄q

)

=

s∑
δ=1

√
−1

2
(λ̄δq − λδp)ω

δ ∧ ω̄δ ∧ γp ∧ γ̄q +
∑
δ,a

(λap − λ̄aq)(λ̄δq − λδp)ω
a ∧ ω̄δ ∧ γp ∧ γ̄q .

Finally, we get

∂∂̄(γp ∧ γ̄q) =

s∑
δ=1

(λ̄δq − λδp)

(√
−1

2
+ λδp − λ̄δq

)
ωδ ∧ ω̄δ ∧ γp ∧ γ̄q

+
∑
δ ̸=a

(λap − λ̄aq)(λ̄δq − λδp)ω
a ∧ ω̄δ ∧ γp ∧ γ̄q

and that condition (3.19) is equivalent to

Bpq̄

 s∑
δ=1

(λ̄δq − λδp)

(√
−1

2
+ λδp − λ̄δq

)
ωδ ∧ ω̄δ +

∑
δ ̸=a

(λap − λ̄aq)(λ̄δq − λδp)ω
a ∧ ω̄δ

 = 0 ,

for every p, q = 1, . . . , s .
By using our conditions on the bki’s, it is easy to show that the quantity

s∑
δ=1

(λ̄δq − λδp)

(√
−1

2
+ λδp − λ̄δq

)
ωδ ∧ ω̄δ +

∑
δ ̸=a

(λap − λ̄aq)(λ̄δq − λδp)ω
a ∧ ω̄δ
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is vanishing for p = q and, consequently, there are no restrictions on the Bqq̄’s. Now we observe that the
real part of

(λ̄pq − λpp)

(√
−1

2
+ λpp − λ̄pq

)
is different from 0, for every p, q with p ̸= q, which forces Bpq̄ = 0, for p ̸= q. Indeed, we have

λ̄δq − λδp =
1

2
(cδp − cδq) −

√
−1

4
(bδp + bδq) ,

√
−1

2
+ λδp − λ̄δq = −1

2
(cδp − cδq) +

√
−1

2

(
1 +

bδp + bδq
2

)
,

which implies

Re

(
(λ̄δq − λδp)

(√
−1

2
+ λδq − λ̄δp

))
= − (cδp − cδq)

2

4
+

1

4

(
bδp + bδq

2

)(
1 +

bδp + bδq
2

)
. (3.21)

Since p ̸= q, we have
bpp = −1 , bpq = 0 ,

and so (3.21) computed for δ = q gives

Re

((
λ̄pq − λpp

)(√
−1

2
+ λpq − λ̄pp)

))
=

1

4

(
−(cpp − cpq)

2 − 1

4

)
̸= 0 ,

as required. Therefore equation (3.19) is satisfied if and only if

Bpq̄ = 0 , p ̸= q .

Next we focus on (3.20). We have

∂∂̄(ωp ∧ γ̄q) = ∂

(√
−1

2
ωp ∧ ω̄p ∧ γ̄q − ωp ∧

(
s∑
δ=1

λ̄δqω̄
δ ∧ γ̄q

))
and

∂∂̄(ωp ∧ γ̄q) =

√
−1

2

(
−
√
−1

2
ωp ∧ ωp ∧ ω̄p ∧ γ̄q + ωp ∧ ω̄p ∧

(
−

s∑
δ=1

λ̄δqω
δ ∧ γ̄q

))

+

s∑
δ=1

√
−1

2
λ̄δqω

p ∧ ωδ ∧ ω̄δ ∧ γ̄q +

s∑
δ=1

λ̄δqω
p ∧ ω̄δ ∧

(
s∑

a=1

λ̄aqω
a ∧ γ̄q

)
.

Hence, we get

∂∂̄(ωp ∧ γ̄q) =

s∑
δ=1
δ ̸=p

√
−1

2
λ̄δqω

p ∧ ω̄p ∧ ωδ ∧ γ̄q +

s∑
δ=1
δ ̸=p

√
−1

2
λ̄δqω

p ∧ ωδ ∧ ω̄δ ∧ γ̄q

+
∑
δ,a
a̸=p

λ̄δqλ̄aqω
p ∧ ω̄δ ∧ ωa ∧ γ̄q

and

∂∂̄(ωp ∧ γ̄q) =

s∑
δ=1
δ ̸=p

√
−1

2
λ̄δqω

p ∧ ω̄p ∧ ωδ ∧ γ̄q +

s∑
a=1
a ̸=p

λ̄pqλ̄aqω
p ∧ ω̄p ∧ ωa ∧ γ̄q

+

s∑
δ=1
δ ̸=p

√
−1

2
λ̄δqω

p ∧ ωδ ∧ ω̄δ ∧ γ̄q +
∑
δ,a
δ ̸=p
a ̸=p

λ̄δqλ̄aqω
p ∧ ω̄δ ∧ ωa ∧ γ̄q .
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Therefore

∂∂̄(ωp ∧ γ̄q) =

s∑
δ=1
δ ̸=p

λ̄δq

(√
−1

2
+ λ̄pq

)
ωp ∧ ω̄p ∧ ωδ ∧ γ̄q +

s∑
δ=1
δ ̸=p

λ̄δq

(√
−1

2
− λ̄δq

)
ωp ∧ ωδ ∧ ω̄δ ∧ γ̄q

+
∑
δ ̸=a
δ ̸=p
a ̸=p

λ̄δqλ̄aqω
p ∧ ω̄δ ∧ ωa ∧ γ̄q

and (3.20) is equivalent to

Cpq̄


s∑
δ=1
δ ̸=p

λ̄δq

(√
−1

2
+ λ̄pq

)
ω̄p ∧ ωδ +

s∑
δ=1
δ ̸=p

λ̄δq

(√
−1

2
− λ̄δq

)
ωδ ∧ ω̄δ +

∑
δ ̸=a
δ ̸=p
a̸=p

λ̄δqλ̄aqω̄
δ ∧ ωa

 = 0 ,

for every p, q = 1, . . . , s. Since

λpq ̸= ±
√
−1

2
, p, q = 1, . . . , s ,

the quantity

Epq̄ :=

s∑
δ=1
δ ̸=p

λ̄δq

(√
−1

2
+ λ̄pq

)
ω̄p ∧ ωδ +

s∑
δ=1
δ ̸=p

λ̄δq

(√
−1

2
− λ̄δq

)
ωδ ∧ ω̄δ +

∑
δ ̸=a
δ ̸=p
a̸=p

λ̄δqλ̄aqω̄
δ ∧ ωa

is vanishing if and only if
λδq = 0 , δ ̸= p .

Since λqq ̸= 0, it follows
Epq̄ ̸= 0 , p ̸= q

and
Epp̄ = 0 if and only if cδp = 0 , δ ̸= p .

Hence the claim follows.

Proposition 3.1.5. Let

ω =
√
−1

s∑
i=1

Aiω
i ∧ ω̄i +Biγ

i ∧ γ̄i +
√
−1

k∑
r=1

(
Crω

pr ∧ γ̄pr + C̄rγ
pr ∧ ω̄pr

)
(3.22)

be a left-invariant SKT Hermitian metric on an Oeljeklaus-Toma manifold, where the components are
with respect to a coframe {ω1, . . . , ωs, γ1, . . . , γs} satisfying (3.1) and (3.15) and {p1, . . . , pk} ⊆ {1, . . . , s}
are such that

λjpi = 0 , j ̸= pi , i = 1, . . . , k .

Then, the (1, 1)-part of the Bismut-Ricci form of ω takes the following expression:

(RicB(ω))1,1 = −
√
−1

k∑
r=1

3

4

(
1 +

|Cr|2

AprBpr − |Cr|2

)
ωpr ∧ ω̄pr −

√
−1

∑
i̸∈{p1,...,pk}

3

4
ωi ∧ ω̄i

−
√
−1

k∑
r=1

(
− 3

16
−
c2prpr

4
−

√
−1cprpr

4

)
BprCr

AprBpr − |Cr|2
ωpr ∧ γ̄pr + conjugates .
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Proof. We recall that the Bismut-Ricci form of a left-invariant Hermitian metric ω =
√
−1gab̄α

a ∧ ᾱb on
a Lie group G2n with a left-invariant complex structure takes the following algebraic expression:

RicB(ω)(X,Y ) = −gab̄ω([[X,Y ]1,0, Xa], X̄b) + gābω([[X,Y ]0,1, X̄a], Xb) +
√
−1gab̄ω([X,Y ], J [Xa, X̄b]) ,

(3.23)
for every left-invariant vector fields X,Y on G, where {αi} is a left-invariant (1, 0)-coframe with dual
frame {Xa} and (gb̄a) is the inverse matrix to (gij̄) (see e.g. [335]). We apply (3.23) to a left-invariant
SKT metric on an Oeljeklaus-Toma manifold of the form (3.22).

We have

gīs+i =

{
0 if i ̸∈ {p1, . . . , pk} ,
− Ci

AiBi−|Ci|2 otherwise ,
gīi =

Bi
AiBi − |Ci|2

, gs+is+i =
Ai

AiBi − |Ci|2

and taking into account that the ideal I is abelian, we have

RicB(ω)(X,Y ) = −
4∑
i=1

RicBi (ω)(X,Y ) ,

where

RicB1 (ω)(X,Y ) =

s∑
a=1

gaā(ω([[X,Y ]1,0, Za], Z̄a) −
√
−1

2
ω([X,Y ], Za − Z̄a) + ω([[X,Y ]0,1, Z̄a], Za)) ,

RicB2 (ω)(X,Y ) =

s∑
a=1

gs+as+a(ω([[X,Y ]1,0,Wa], W̄a) + ω([[X,Y ]0,1, W̄a],Wa)) ,

RicB3 (ω)(X,Y ) =

k∑
r=1

gprs+pr
(
ω([[X,Y ]1,0, Zpr ], W̄pr ) − ω([X,Y ], [Zpr , W̄pr ])

)
+

k∑
r=1

gprs+prω([[X,Y ]0,1, Z̄pr ],Wpr ) ,

RicB4 (ω)(X,Y ) =

k∑
r=1

gs+pr p̄r
(
ω([[X,Y ]1,0,Wpr ], Z̄pr ) + ω([X,Y ], [Wpr , Z̄pr ])

)
+

k∑
r=1

gs+prprω([[X,Y ]0,1, W̄pr ], Zpr ) .

Next we focus on the computation of RicB(ω)(Zi, Z̄j). Thanks to (3.1), we easily obtain that

RicB(ω)(Zi, Z̄j) = 0 , i, j = 1, . . . , s , i ̸= j .

On the other hand,

RicB1 (ω)(Zi, Z̄i) = −
√
−1

2

s∑
a=1

gaā
(
−
√
−1

2
ω(Zi + Z̄i, Za − Z̄a)

)
=

√
−1

2
gīiAi =

√
−1

2

(
AiBi

AiBi − |Ci|2

)
.

Moreover, we have

RicB2 (ω)(Zi, Z̄i) = −
√
−1

2

s∑
a=1

gs+as+a(ω([Zi,Wa], W̄a) + ω([Z̄i, W̄a],Wa)

= −
√
−1

s∑
a=1

gs+as+aReω([Zi,Wa], W̄a) .
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Using (3.1), we have
ω([Zi,Wa], W̄a) = −

√
−1λiaBa ,

Reω([Zi,Wa], W̄a) =
Babia

4
= −Ba

4
δia .

Then,

RicB3 (ω)(Zi, Z̄i) =
√
−1

gs+is+iBi
4

=

√
−1

4

AiBi
AiBi − |Ci|2

.

Next we observe that
RicB3 (ω)(Zi, Z̄i) + RicB4 (ω)(Zi, Z̄i) = 0

which implies

RicB(ω)(Zi, Z̄i) =

{
−
√
−1 3

4

(
1 + |Cr|2

AprBpr−|Cr|2

)
if there exists r = 1, . . . , k such that i = pr ,

−
√
−1 3

4 if i ̸∈ {p1, . . . , pk} .
(3.24)

We have

RicB3 (ω)(Zi, Z̄i) =

k∑
j=1

gpjs+pjω([Zi, Z̄i], [Zpj , W̄pj ]) = −
√
−1

2

k∑
j=1

gpjs+pj λ̄pjpjω(Zi + Z̄i, W̄pj )

=

{
0 if i ̸∈ {p1, . . . , pk} ,
1
2g
is+iλ̄iiCi otherwise .

We compute the three addends in the expression of RicB4 (ω) separately:

ω([[Zi, Z̄i]
1,0,Wpj ], Z̄pj ) = − 1

2
λipj C̄pj =

{
0 if i ̸∈ {p1, . . . , pk} or i ̸= pj ,

− 1
2λiiC̄i otherwise ;

ω([Zi, Z̄i], [Wpj , Z̄pj ]) =
1

2
λpjpjgis+pj =

{
0 if i ̸∈ {p1, . . . , pk} or i ̸= pj ,
1
2λiiC̄i otherwise ;

ω([[Zi, Z̄i]
0,1, W̄pj ], Zpj ) =

1

2
λ̄ipjgs+pjpj =

{
0 if i ̸= pj ,
1
2 λ̄iiCi otherwise .

It follows
RicB3 (ω)(Zi, Z̄i) = RicB4 (ω)(Zi, Z̄i) = 0 , i ̸∈ {p1, . . . , pk} ,

and, for i ∈ {p1, . . . , pk},

RicB3 (ω)(Zi, Z̄i) + RicB4 (ω)(Zi, Z̄i) =
1

2

(
−gis+iλ̄iiCi − gs+iiλiiC̄i + gs+iiλiiC̄i + gs+iiλ̄iiCi

)
= 0 .

Now, we focus on the calculation of RicB(ω)(Zi, W̄j). We have

RicB1 (ω)(Zi, W̄j) =

s∑
a=1

gaāλ̄ij

(
−
√
−1

2
ω(W̄j , Za − Z̄a) + ω([W̄j , Z̄a], Za)

)

=

{√
−1gīiCiλ̄ii

(√
−1
2 − λ̄ii

)
if i = j ∈ {p1, . . . , pk} ,

0 otherwise ,

and, since I is abelian,
RicB2 (ω)(Zi, W̄j) = 0 .
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Furthermore

RicB3 (ω)(Zi, W̄j) =

k∑
j=1

gpjs+pjω([[Zi, W̄j ]
0,1, Z̄pj ],Wpj ) = −

√
−1

k∑
j=1

gpjs+pj λ̄ij λ̄pjpjgs+js+pj

=

{
−
√
−1λ̄2jjg

js+jBj if i = j ∈ {p1, . . . , pk} ,
0 otherwise

and

RicB4 (ω)(Zi, W̄j) =

k∑
j=1

gs+pj p̄jω([Zi, W̄j ], [Wpj , Z̄pj ]) =
√
−1

k∑
j=1

gs+pj p̄j λ̄ijλpjpjgs+js+pj

=

{√
−1gs+jj̄ λ̄jjλjjBj if i = j ∈ {p1, . . . , pk}

0 otherwise .

It follows that RicB(ω)(Zi, W̄j) ̸= 0 if and only if i = j ∈ {p1, . . . , pk}. In such a case, we have

RicB(ω)(Zj , W̄j) = −
√
−1

(
gs+jjBj

(
|λjj |2 − λ̄2jj

)
+ gjj̄Cj λ̄jj

(√
−1

2
− λ̄jj

))
.

Since

gs+jj̄Bj = − BjCj
AjBj − |Cj |2

and gjj̄Cj =
BjCj

AjBj − |Cj |2
,

we infer

RicB(ω)(Zj , W̄j) = −
√
−1

(
λ̄jj

(√
−1

2
− λ̄jj

)
−
(
|λjj |2 − λ̄2jj

)) BjCj
AjBj − |Cj |2

.

Taking into account that λjj = −
√
−1
4 − cjj

2 , we obtain

RicB(ω)(Zj , W̄j) = −
√
−1

(
− 3

16
−
c2jj
4

−
√
−1cjj

4

)
BjCj

AjBj − |Cj |2

and the claim follows.

The next result gives the classification of algebraic solitons for the pluriclosed flow.

Corollary 3.1.6. Let ω be a left-invariant SKT Hermitian metric on an Oeljeklaus-Toma manifold M .
Then ω lifts to an algebraic expanding soliton of the pluriclosed flow on the universal covering of M if
and only if it takes the following diagonal expression with respect to a coframe {ω1, . . . , ωs, γ1, . . . , γs}
satisfying (3.1) and (3.15):

ω =
√
−1

s∑
i=1

Aωi ∧ ω̄i +Biγ
i ∧ γ̄i . (3.25)

Proof. Let ω be a SKT left-invariant metric on an Oeljeklaus-Toma manifold M . In view of [223, Section
7], ω lifts to an algebraic expanding soliton of the pluriclosed flow on the universal covering of M if and
only if

(RicB(ω))1,1(·, ·) = cω(·, ·) +
1

2
(ω(D·, ·) + ω(·, D·)) ,

for some c ∈ R− and D ∈ Der(g) ∩ gl(g, J).
Assume that ω takes the expression in formula (3.25). Proposition 3.1.5 implies that RicB(ω) is

represented with respect to the basis {Z1, . . . , Zs,W1, . . . ,Ws} by the matrix

P = − 3

4A

(
Ih 0
0 0

)
.
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Since
3

4A

(
0 0
0 II

)
induces a symmetric derivation on g, ω lifts to an algebraic expanding soliton of the pluriclosed flow on
the universal covering of M and the first part of the claim follows.

In order to prove the second part of the statement, we need some preliminary observations on deriva-
tions D of g that commute with J , i.e. such that

D(g1,0) ⊆ g1,0 , D(g0,1) ⊆ g0,1 .

We can write

DZi =

s∑
j=1

kijZj +mi
jWj and DZ̄i =

s∑
j=1

lijZ̄j + rijW̄j .

Since D is a derivation, we have, for all i = 1, . . . , s,

D[Zi, Z̄i] = [DZi, Z̄i] + [Zi, DZ̄i] . (3.26)

On the other hand

D[Zi, Z̄i] = −
√
−1

2

 s∑
j=1

kijZj + lijZ̄j +mi
jWj + rijW̄j

 ,

[DZi, Z̄i] = −
√
−1

2
kii(Zi + Z̄i) −

s∑
j=1

mi
jλijWj ,

[Zi, DZ̄i] = −
√
−1

2
lij(Zi + Z̄i) +

s∑
j=1

rij λ̄ijW̄j .

Then, (3.26) rewrites as:

0 = −
√
−1

2

∑
j ̸=i

kijZj + lijZ̄j +

√
−1

2
liiZi +

√
−1

2
kiiZ̄i +

s∑
j=1

mi
j

(
λij −

√
−1

2

)
Wj − rij

(√
−1

2
+ λ̄ij

)
W̄j ,

which forces DZi, DZ̄i = 0, for all i = 1, . . . , s. It follows that D|h = 0. Moreover, for all I, I ′ ∈ J, we
have

0 = D[I, I ′] = [DI, I ′] + [I,DI ′] ,

which implies

[DI, I ′] = −[I,DI ′] .

Assume

DWi =

s∑
j=1

ks+ij Zj +ms+i
j Wj and DW̄i =

s∑
j=1

ls+ij Z̄j + rs+ij W̄j ,

then

[DWi, W̄i] =

s∑
j=1

ks+ij [Zj , W̄i] ∈ J0,1 and [Wi, DW̄i] =

s∑
j=1

ls+ij [Wi, Z̄j ] ∈ J1,0 .

This implies

DWi =

s∑
j=1

ms+i
j Wj , DW̄i =

s∑
j=1

rs+ij W̄j ,
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i.e. D(J) ⊆ J. Moreover, for all i = 1, . . . , s, we have that

D[Zi,Wi] = −λiiDWi = −
s∑
j=1

λiim
s+i
j Wj ,

while [DZi,Wi] = 0 and

[Zi, DWi] = −
s∑
j=1

ms+i
j λijWj .

Using again the fact that D is a derivation, we have

DWi =
∑
j∈Ji

mjWj

where

Ji = {j ∈ {1, . . . , s} | λii = λij} .

With analogous computations, we infer

DW̄i =
∑
j∈Ji

rs+ij W̄j .

Clearly, i ∈ Ji. On the other hand, for all i = 1, . . . , s, we know that Im(λii) ̸= 0, while, for all i ̸= j,
λij ∈ R. This guarantees that, for all i = 1, . . . , s,

Ji = {i} .

This allows us to write

DWi = ms+i
i Wi , DW̄i = rs+ii W̄i .

From the relations above, we obtain that

Der(g)1,0 = {E ∈ End(g)1,0 | h ⊆ ker(E) , E(⟨Wi⟩) ⊆ ⟨Wi⟩ , i = 1, . . . , s} .

First of all, we suppose that ω is a SKT Hermitian metric which takes the following diagonal expression
with respect to a coframe {ω1, . . . , ωs, γ1, . . . , γs} satisfying (3.1) and (3.15):

ω =
√
−1

s∑
i=1

Aiω
i ∧ ω̄i +Biγ

i ∧ γ̄i .

such that there exist i, j ∈ {1, . . . , s} such that Ai ̸= Aj and we suppose that ω is an algebraic soliton.
Thanks to the facts regarding derivations proved before, we have that

−
√
−1

3

4
= RicB(ω)(Zi, Z̄i) = cω(Zi, Z̄i) +

1

2

(
ω(DZi, Z̄i) + ω(Zi, DZ̄i)

)
=

√
−1cAi ,

−
√
−1

3

4
= RicB(ω)(Zj , Z̄j) = cω(Zj , Z̄j) +

1

2

(
ω(DZj , Z̄j) + ω(Zj , DZ̄j)

)
=

√
−1cAj ,

which is impossible, since Ai ̸= Aj .
Now suppose that ω is a SKT metric on M which is not diagonal. So, we suppose that there exists

j̃ = 1, . . . , s such that Cj̃ ̸= 0. Then, assume that there exist a constant c ∈ R and D ∈ Der(g) ∩ gl(g, J)
such that

(RicB(ω))1,1(·, ·) = cω(·, ·) +
1

2
(ω(D·, ·) + ω(·, D·)) .
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On the other hand

0 = RicB(ω)(Wj̃ , W̄j̃) = cω(Wj̃ , W̄j̃) +
1

2

(
ω(DWj̃ , W̄j̃) + ω(Wj̃ , DW̄j̃)

)
=

√
−1cBj̃ +

√
−1

2
(rs+j̃
j̃

+ms+j̃

j̃
)Bj̃ ,

RicB(ω)(Zj̃ , W̄j̃) =cω(Zj̃ , W̄j̃) +
1

2

(
ω(DZj̃ , W̄j̃) + ω(Zj̃ , DW̄j̃)

)
=

√
−1cCj̃ +

√
−1

2
rs+j̃
j̃

Cj̃ ,

RicB(ω)(Z̄j̃ ,Wj̃) =cω(Z̄j̃ ,Wj̃) +
1

2

(
ω(DZ̄j̃ ,Wj̃) + ω(Z̄j̃ , DWj̃)

)
= −

√
−1cC̄j̃ −

√
−1

2
ms+j̃

j̃
C̄j̃ ,

which implies that

c = −1

2
(rs+j̃
j̃

+ms+j̃

j̃
) .

On the other hand,

RicB(ω)(Zj̃ , W̄j̃) =
√
−1KCj̃ ,

where

K =

(
3

16
+
c2
j̃j̃

4
+

√
−1cj̃j̃

4

)
Bj̃

Aj̃Bj̃ − |Cj̃ |2
.

Then,

K = c+
1

2
rs+j̃
j̃

= −1

2
ms+j̃

j̃

and

K̄ = c+
1

2
ms+j̃

j̃
= −1

2
rs+j̃
j̃

.

From this, we obtain that

c = K + K̄ = 2Re(K) > 0 .

On the other hand, we have

−
√
−1

3

4

(
1 +

|Cj̃ |2

Aj̃Bj̃ − |Cj̃ |2

)
= RicB(ω)(Zj̃ , Z̄j̃) = cω(Zj̃ , Z̄j̃)+

1

2

(
ω(DZj̃ , Z̄j̃) + ω(Zj̃ , DZ̄j̃)

)
=

√
−1cAj̃ ,

which implies that c must be negative. From this the claim follows.

Using Proposition 3.1.5, we deduce the long-time existence of the pluriclosed flow starting from any
left-invariant SKT metric.

Corollary 3.1.7. Let ω be a SKT Hermitian metric on an Oeljeklaus-Toma manifold which takes the
form (3.16). Then the pluriclosed flow starting from ω is equivalent to the following system of ODEs:

A′
i = 3

4 if i ̸∈ {p1, . . . , pk} ,
A′
pr = 3

4

(
1 + |Cr|2

AprBpr−|Cr|2

)
for all r = 1, . . . , k ,

B′
j = 0 for all j = 1, . . . , s ,

C ′
r = −

(
3
16 +

c2prpr

4 +
√
−1cprpr

4

)
BprCr

AprBpr−|Cr|2 for all r = 1, . . . , k .

(3.27)

Moreover, |Cr| is bounded, for all r = 1, . . . , k, the solution exists for all t ∈ [0,+∞) and Ai ∼ 3
4 t, as

t→ +∞, for all i = 1, . . . , s.
In particular,

ωt
1 + t

→ 3ω∞

as t→ ∞.
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Proof. Observe that, for every r ∈ {1, . . . , k},

(|Cr|2)′ = −

(
3

8
+
c2prpr

2

)
Bpr |Cr|2

AprBpr − |Cr|2
≤ 0 ,

which guarantees that |Cr|2 is bounded. On the other hand, denote, for all r = 1, . . . , k,

ur = AprBpr − |Cr|2.

We have that

u′r = A′
prBpr − (|Cr|2)′ =

3

4
Bpr +

(
9

8
+
c2prpr

2

)
Bpr |Cr|2

AprBpr − |Cr|2
≥ 0 .

This guarantees

A′
pr =

3

4

(
1 +

|Cr|2

AprBpr − |Cr|2

)
≤ 3

4

(
1 +

K

ur(0)

)
,

where K > 0 such that |Cr|2 ≤ K, for all t ≥ 0. This implies the long-time existence. As regards the
last part of the statement, it is sufficient to prove that

lim
t→+∞

|Cr|2

ur
= 0 .

But,

u′r ≥
3

4
Bpr .

So,

ur ≥
3

4
Bpr t+ ur(0) → +∞ , t→ +∞ .

Then,
lim

t→+∞
ur(t) = +∞ ,

and, since |Cr|2 is bounded, the assertion follows.

We are now ready to state and prove the main theorem of this section.

Theorem 3.1.8. Let ω be a left-invariant SKT Hermitian metric on an Oeljeklaus-Toma manifold M .
Then, the pluriclosed flow starting from ω has a long-time solution ωt such that (M, ωt

1+t ) converges
to (T s, d) in the Gromov-Hausdorff sense. Moreover, ω lifts to an expanding algebraic soliton on the
universal covering of M if and only if it is of the form (3.25). Finally, (Hs × Cs, ωt

1+t ) converges to
(Hs × Cs, ω̃∞) in the Cheeger-Gromov sense, where ω̃∞ is an algebraic soliton.

Proof. Let ω be a left-invariant SKT metric on an Oeljeklaus-Toma manifold. Corollary 3.1.7 implies
that pluriclosed flow starting from ω has a long-time solution ωt such that

ωt
1 + t

→ 3ω∞ as t→ ∞ .

We show that ωt

1+t satisfies Items 1 to 3 in Proposition 3.1.1. Here we denote by | · |t the norm induced
by ωt. First of all, taking into account that

ωt|I⊕I = ω0|I⊕I ,

Item 2 follows. Now, thanks to the fact that Item 2 holds,

ωt|h⊕h =

s∑
i=1

Ai(t)ω
i ∧ ω̄i
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with Ai(t)
1+t → 3

4 as t→ ∞ and there exist C, T > 0 such that, for every vector v ∈ h,

1√
1 + t

|v|t ≤ C|v|0 ,

for every t ≥ T ,giving that Item 1 is satisfied.
In order to prove Item 3, let ε, ℓ > 0 and let γ be a curve in M tangent to H which is parametrized

by arclength with respect to 3ω∞ and such that L∞(γ) < ℓ. Let v = γ̇ and T > 0 such that∣∣∣∣Ai(t)1 + t
− 3

4

∣∣∣∣ ≤ 3ε2

4ℓ2
,

for t ≥ T . Then, ∣∣∣∣ 1

1 + t
|v|2t − |v|2∞

∣∣∣∣ ≤ s∑
i=1

∣∣∣∣Ai(t)1 + t
− 3

4

∣∣∣∣ |vi|2 ≤ ε2

ℓ2

and

|Lt(γ) − L∞(γ)| ≤
∫ b

0

∣∣∣∣ 1√
1 + t

|γ̇|t − |γ̇|∞
∣∣∣∣ da ≤ ε

ℓ
b ≤ ε ,

since b ≤ ℓ.

Now we show the last part of the statement, using the same argument as in Proposition 3.1.2, and
we prove that (Hs × Cs, ωt

1+t ) converges in the Cheeger-Gromov sense to (Hs × Cs, ω̃∞) where ω̃∞ is
an algebraic soliton. Again, here we are identifying ωt with its pull-back onto Hs × Cs and we are
fixing as base point the identity element of Hs × Cs. It is enough to construct a 1-parameter family of
biholomorphisms {φt} of Hs × Cs such that

φ∗
t

ωt
1 + t

→ ω̃∞ .

As we already observed, since I is abelian the endomorphism represented by the matrix

D =

(
0 0
0 II

)
is a derivation of g that commutes with the complex structure J . Then, we can consider

dφt = exp(s(t)D) =

(
Ih 0
0 es(t)II

)
∈ Aut(g, J)

where s(t) = log(
√

1 + t). Using dφt, we can define

φt ∈ Aut(Hs × Cs, J) .

For i = 1, . . . , s we have

1

1 + t
(φ∗
tωt)(Zi, Z̄i) =

1

1 + t
ωt(Zi, Z̄i) →

3

4

√
−1 , as t→ ∞ ,

1

1 + t
(φ∗
tωt)(Zi, W̄i) =

1√
1 + t

ωt(Zi, W̄i) → 0 , as t→ ∞ ,

1

1 + t
(φ∗
tωt)(Wi, W̄i) =ωt(Wi, W̄i) =

√
−1Bi(0) .

Then,
1

1 + t
φ∗
tωt → ω̃∞ , as t→ ∞ ,

where
ω̃∞ = 3ω∞ + ω|I⊕I .

In view of Proposition 3.1.4, ω̃∞ is an algebraic soliton.
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3.1.4 A generalization to semidirect product of Lie algebras

From the viewpoint of Lie groups, the algebraic structure of Oeljeklaus-Toma manifolds is quite rigid and
some of the results in the previous sections can be generalized to semidirect product of Lie algebras.

In this subsection, we consider a Lie algebra g which is a semidirect product of Lie algebras

g = h⋉λ I ,

where λ : h → Der(I) is a representation. We further assume that g has a complex structure of the form

J = Jh ⊕ JI

where Jh and JI are complex structures on h and I, respectively.

The following assumptions are all satisfied in the case of an Oeljeklaus-Toma manifold:

i. h has (1, 0)-frame such that {Z1, . . . , Zr} such that [Zk, Z̄k] = −
√
−1
2 (Zk + Z̄k), for all k = 1, . . . , r

and the other brackets vanish;

ii. I is a 2s-dimensional abelian Lie algebra and JI is a complex structure on I;

iii. λ(h1,0) ⊆ End(I)1,0;

iv. I has a (1, 0)-frame {W1, . . .Ws} such that λ(Z) · W̄r = λr(Z)W̄r, for every r = 1, . . . , s, where
λr ∈ Λ1,0(h);

v.
∑s
a=1 Im(λa(Zi)) is constant on i.

vi. I has a (1, 0)-frame {W1, . . .Ws} such that λ(Z) ·Wr = λ′r(Z)Wr, for every r = 1, . . . , s, where
λ′r ∈ Λ1,0(h) and

∑s
a=1 Im(λ′a(Zi)) is constant on i.

Note that condition i. is equivalent to require that h = f⊕ · · · ⊕ f︸ ︷︷ ︸
r-times

equipped with the complex structure

Jh = Jf ⊕ · · · ⊕ Jf︸ ︷︷ ︸
r-times

, while in condition iv. the existence of {Wr} and λr is equivalent to require that

λ(Z) ◦ λ(Z ′) = λ(Z ′) ◦ λ(Z) ,

for every Z,Z ′ ∈ h1,0.

The computations in Section 3.1.3 can be used to study solutions to the flow

∂

∂t
ω = −(RicB(ω))1,1 (3.28)

in semidirect products of Lie algebras (this flow coincides to the pluriclosed flow only when the initial
metric is pluriclosed). We have the following

Proposition 3.1.9. Let g = h ⋉λ I be a semidirect product of Lie algebras equipped with a splitting
complex structure J = Jh ⊕ JI and let ω be a Hermitian metric on g making h and I orthogonal. Then
the Bismut Ricci-form of ω satisfies (RicB(ω))1,1|h⊕I = (RicB(ω))1,1|I⊕I = 0.

If i − iv hold and ω|h⊕h is diagonal with respect to the frame {Zi} then the (1, 1)-component of the
Bismut-Ricci form of ω does not depend on ω and the solution to the flow (3.28) starting from ω takes
the following expression:

ωt = ω − t(RicB(ω))1,1 .

If i − iv and vi hold and ω|h⊕h is a multiple of the canonical metric with respect to the frame {Zi},
then ω is a soliton for flow (3.28) with cosmological constant c = 1

2 +
∑s
a=1 Im(λ′a(Zi)).
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The previous proposition does not cover the case when properties i-iv are satisfied and the restriction
to h⊕ h of the initial Hermitian inner product

ω =
√
−1

r∑
a,b=1

gab̄ω
a ∧ ω̄b +

√
−1

s∑
a,b=1

gr+ar+bγ
a ∧ γ̄b

is not diagonal with respect to {Zi}. In this case flow (3.28) evolves only the components gīi of ω along
ωi ∧ ω̄i via the ODE

d

dt
gīi =

1

4

r∑
a=1

gāaRe giā −
1

2

s∑
c,d=1

gr+dr+c
{
ω([Zi,Wc], W̄d) + ω([Z̄i, W̄c],Wd)

}
,

where gīi depends on t. Note that the quantities − 1
2

∑s
c,d=1 g

r+dr+c
{
ω([Zi,Wc], W̄d) + ω([Z̄i, W̄c],Wd)

}
appearing in the evolution of gīi are independent on t.

The same computations as in Section 3.1.2 imply the following

Proposition 3.1.10. Let g = h ⋉λ I be a semidirect product of Lie algebras equipped with a splitting
complex structure J = Jh ⊕ JI. Assume that properties i, ii, iii are satisfied and let ω be a left-invariant
Hermitian metric on g. Then

RicCh(ω)|I⊕I = RicCh(ω)|h⊕I = 0 ,

while RicCh(ω)|h⊕h is diagonal with respect to {Z1, . . . , Zr}.
If further also iv. holds, then

RicCh(ω)(Zi, Z̄i) = −
√
−1

(
1

2
−

s∑
a=1

Im(λa(Zi))

)
, i = 1, . . . , r .

If, in addition, v. holds, then ω is a soliton for the Chern-Ricci flow with cosmological constant
c = 1

2 −
∑s
a=1 Im(λa(Zi)) if and only if ω|h⊕h is a multiple of the canonical metric on h with respect to

the frame {Zi} and ω|h⊕J = 0.

3.2 Homogeneous generalized Ricci flow

The present section is devoted to the study of the long time behaviour of the generalized Ricci flow in
the homogeneous setting, especially in the Lie group case. The section will be divided as follows.

Subsection 3.2.1 is dedicated to the discussion of a scaling process on ECAs, which lead to a new
definition of solitons for the generalized Ricci flow allowing for non classical and non steady solitons.
Moreover, we will discuss a class of examples of expanding generalized Ricci solitons.

In Subsections 3.2.2 and 3.2.3, we focus our attention to the homogeneous case highlighting how one
can present the space of left-invariant generalized metrics as a homogeneous space.

Subsection 3.2.4 is devoted to show the equivalence of the classical moving generalized metrics ap-
proach and the moving Dorfman brackets one. Motivated by this, in Subsection 3.2.5 we prove that a
suitably modified version of the generalized Ricci curvature tensor is related to the moment map of the
action of a Lie group on the space of left-invariant Dorfman brackets.

In Subsection 3.2.6, we define a flow in the space of left-invariant Dorfman brackets which is gauge-
equivalent to the generalized Ricci flow. We then use this equivalence in Subsection 3.2.7 to prove a
blow-up result which lead us to show the long time existence of the homogeneous generalized Ricci flow
on any solvable Lie group.

Subsection 3.2.8 is focused on the definition and the study of the generalized nilsolitons. These objects
appear naturally as models for the asymptotic behaviour of the homogeneous generalized Ricci flow on
nilpotent Lie groups, as we will show in Subsection 3.2.9.

Finally, in Subsection 3.2.10, we deduce results on the long time behaviour of the pluriclosed flow on
solvable and nilpotent Lie groups, while in Subsection 3.2.11, we obtain a full classification of generalized
nilsolitons up to dimension 4.
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3.2.1 Scaled ECAs and solitons of the generalized Ricci flow

To start this section, we observe that there is a natural way of scaling exact Courant algebroids. This
will play a key role in the next sections.

Lemma 3.2.1. Let (E, ⟨ · , · ⟩, [·, ·], π) be an exact Courant algebroid and let c ∈ R\{0}. Then, the data
(c ⟨ · , · ⟩, [·, ·], π) defines a new exact Courant algebroid structure on E.

Proof. Trivially, c⟨ · , · ⟩ is a non-degenerate symmetric bilinear form of signature (n, n), regardless of the
sign of c. Moreover, all the axioms except for Item 5 in Definition 1.2.1 in the definition of ECA clearly
remain true after scaling ⟨ · , · ⟩. As regards Item 5 in Definition 1.2.1, we can notice that the π∗ in the
right-hand-side involves a composition with the isomorphism φ⟨ · ,· ⟩ : E∗ ≃ E induced by the neutral
inner product. For c⟨ · , · ⟩, this isomorphism is simply

φc⟨ · ,· ⟩ = c−1φ⟨ · ,· ⟩, (3.29)

which gives the claim.

Definition 3.2.2. Let (E, ⟨ · , · ⟩, [·, ·], π) be an exact Courant algebroid and c ∈ R\{0}. We define the
scaled exact Courant algebroid c · E to be the one associated with the data (E, c ⟨ · , · ⟩, [·, ·], π).

We now study the effect of scaling on the 3-form H after choosing an isotropic splitting:

Lemma 3.2.3. Let E be an ECA with isotropic splitting σ. Then, the isomorphism E ≃σ (T ⊕ T ∗)H ,
H ∈ Λ3M closed, induces an isomorphism

c · E ≃σ (T ⊕ T ∗)cH .

Proof. This follows immediately from Proposition 1.2.5 and (1.27).

Let us now examine the effect of scaling on generalized metrics.

Lemma 3.2.4. Let (E,G) ≃σ ((T ⊕ T ∗)H ,G(g, b)) be a metric ECA and c > 0. Then, ±G is a generalized
metric on ±c · E and the isomorphism ±c · E ≃σ (T ⊕ T ∗)±cH gives an isometry

(±c · E,±G) ≃σ ((T ⊕ T ∗)±cH ,G(cg,±cb)).

Proof. The first claim is clear, since the bilinear form ±c⟨±G·, ·⟩ = c ⟨G·, ·⟩ is symmetric and positive
definite. As regards the second one, we note that the scaling on the Riemannian metric follows directly
from (1.28). On the other hand, considering σ1 to be the preferred isotropic splitting induced by G, then
(σ1 − σ)(X) ∈ kerπ = Im(π∗), for any X ∈ Γ(TM). Hence, we can write

b = (π∗)−1(σ1 − σ) : TM → T ∗M , (3.30)

where the fact that b is a 2-form is straightforward to check, using that both σ1 and σ are isotropic.
Then, the scaling on b follows from (3.29).

Remark 3.2.5. The isometry in the second claim in Lemma 3.2.4 can be also explicitly constructed.
Assuming c > 0, we can use the isotropic splitting σ to obtain the isometry (±c · E,G) ≃σ (±c ·
(T ⊕ T ∗)H ,G(g, b)). Then, one can easily see that(

Id 0
0 ±cId

)
: (±c · (T ⊕ T ∗)H ,G(g, b)) → ((T ⊕ T ∗)±cH ,G(cg,±cb))

is an isometry. Hence, composing the two isometries above, we obtain the claim.

Motivated by Definition 3.2.2 and by the effect of scaling on the 3-form H described in Lemma 3.2.4,
we give the following new definition of solitons for the generalized Ricci flow.
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Definition 3.2.6. A solution (E,G(t))t∈[0,T ) to the generalized Ricci flow (1.31) is called a generalized
Ricci soliton if there exists a one-parameter family of scalings c(t) > 0, c(0) = 1, and a one-parameter
family of generalized isometries

Ft : (c(t) · E,G(0)) −→ (E,G(t)).

Differentiating the family Ft at t = 0 gives rise to a pair (X,D) ∈ Γ(TM) × End(E) satisfying the
following properties:

1. D ∈ Der([·, ·]), i.e. D[a, b] = [Da, b] + [a,Db], for any a, b ∈ Γ(E);

2. X⟨ · , · ⟩ = ⟨(D + λId)·, ·⟩ + ⟨·, (D + λId)·⟩, where c′(0) = −2λ;

3. [Rc(G(0)) + D,G(0)] = 0.

As one can easily see, the dependence of (2) on the scalings is only through c′(0). This motivates the
following definition.

Definition 3.2.7. Let E be a ECA and λ ∈ R. We say that (X,D) ∈ Γ(TM)×End(E) is a λ-derivation
if Item 1 and Item 2 are satisfied. We denote by Derλ([·, ·]) the set of all λ-derivations.

It can easily be observed that 0-derivations are precisely the derivations of the Dorfman bracket
introduced in [177]. Then, λ-derivations has to be interpreted as the generalization of derivations when
a scaling process is taken into account.

We can give a characterization of both the set of isomorphisms between c · (T ⊕ T ∗)H and (T ⊕ T ∗)H
and the set of λ-derivations which will be useful in the next sections.

Lemma 3.2.8. Let H ∈ Λ3M be closed and c ∈ R\{0}. Then,

Aut(c · (T ⊕ T ∗)H , (T ⊕ T ∗)H) = {f̄ceb | b ∈ Λ2M, f ∈ Diff(M), f∗H = c(H − db)} ,

where

f̄c =

(
df 0
0 c(f−1)∗

)
.

Moreover, if λ ∈ R,

Derλ([·, ·]) = {X + b ∈ Γ(TM) ⊕ Λ2M | LXH = −db− 2λH} .

Proof. Let (F, f) ∈ Aut(c · (T ⊕ T ∗)H , (T ⊕ T ∗)H). Since F preserves the Dorfman bracket, we have that
π ◦ F = df ◦ π. This naturally gives us that if

F = eB
(
df 0
0 h∗

)
eb

then B = 0. On the other hand, the condition ⟨F ·, F ·⟩ = c⟨·, ·⟩ forces b ∈ Λ2M and dh = cdf−1 .
Moreover, we have that, for any X + ξ, Y + η ∈ Γ(T ⊕ T ∗),

f̄c
[
(f̄c)

−1(X + ξ), (f̄c)
−1(Y + η)

]
= [X,Y ] + LXη − ιY dξ + cιY ιX(f−1)∗H.

Composing this with the usual action of eb, we have that if F ∈ Aut(c · (T ⊕ T ∗)H , (T ⊕ T ∗)H) then

F = f̄ce
b , f∗H = c(H − db) .

The viceversa is trivial, concluding the proof of the first claim.
Let us consider a one parameter family of scalings c(t) > 0 such that c(0) = 1 and c′(0) = −2λ and a

one parameter family (Ft, ft) ∈ Aut(c(t) · (T ⊕ T ∗)H , (T ⊕ T ∗)H). Differentiating (Ft, ft) at t = 0 gives
X + b ∈ Γ(TM) ⊕ Λ2M such that

LXH = −db− 2λH .
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Viceversa, given X + b ∈ Γ(TM) ⊕ Λ2M such that LXH = −db − 2λH, we can consider ft the one
parameter family of diffeomorphisms generated by X and a family of scaling c(t) > 0 such that c(0) = 1
and c′(0) = −2λ. Hence, we can define

b̄t =

∫ t

0

c(s)f∗s bsds ,

where bs ∈ Λ2M such that LXs
H = −dbs + c′(s)

c(s) H. Then, we have that

db̄t = −
∫ t

0

1

c(s)
f∗s

(
−c

′(s)

c(s)
H + LXs

H

)
ds = −

∫ t

0

d

ds

(
1

c(s)
f∗sH

)
ds = − 1

c(t)
f∗t H +H .

Then, F = f̄t,c(t)e
b̄t ∈ Aut(c(t) · (T ⊕ T ∗)H , (T ⊕ T ∗)H), as we wanted.

Definition 3.2.6 is the dynamical definition of solitons for the generalized Ricci flow. As in the classical
case, we can deduce from that an equivalent and static definition in terms of classical data, as the next
proposition shows.

Proposition 3.2.9. Let (E,G(t)) be a generalized Ricci soliton, and consider the time-independent isom-
etry (E,G(t)) ≃σ0

((T ⊕ T ∗)H0
, G(g(t), b(t))) induced by the isotropic splitting σ0 associated to G(0).

Then, g0 := g(0) and H0 satisfy

RicBg0,H0
= λ g0 + 1

2 LXg0,
∆g0H0 = −2λH0 − LXH0,

(3.31)

where λ = − 1
2c

′(0) and c(t) > 0 are the scalings from Definition 3.2.6. Conversely, if ((T ⊕ T ∗)H0
, G(g0, 0))

satisfies (3.31), then there exists a soliton solution G(g(t), b(t)) to (1.31) on (T ⊕ T ∗)H0
with G(g(0), b(0)) =

G(g0, 0).

Proof. By Lemma 3.2.4, the isomorphism associated to σ0 also induces time-independent isometries

(c(t) · E,G(0)) ≃σ0

(
(T ⊕ T ∗)c(t)H0

, G(c(t)g0, 0)
)
.

It follows that c(t)g0 and c(t)H0 must solve the gauged-fixed equations (1.33) and (1.34).

Thus,

c′g0 = −2 RicBg0,H0
+ cLXg0,

c′H0 = ∆g0H0 + cLXH0.

Evaluating at t = 0 and using c(0) = 1, c′(0) = −2λ, (3.31) follows.

Remark 3.2.10. When H0 = 0, Proposition 3.2.9 implies that Definition 3.2.6 is equivalent to the
classical definition of Ricci soliton for the Ricci flow.

On the other hand, if c(t) ≡ 1 is constant, we recover the definition of soliton solution given in [149,
§4.4], which only allows for steady solitons (i.e. λ = 0). Recently, in [269, Definition 2.1], a definition of
generalized Ricci soliton, equivalent to Definition 3.2.6, was given.

Moreover, in the non-steady case, the second equation in (3.31), together with dH0 = 0 and the Car-
tan’s formula, forces [H0] = 0. In particular, if M is compact, this implies that a non-steady generalized
Ricci soliton with harmonic torsion is a classical Ricci soliton.

To conclude this section, we give a family of explicit examples of expanding generalized Ricci solitons.
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Example 3.2.11. Let us consider M0 = H3 := Heis(3,R) the 3-dimensional Heisenberg group. It is well
known that on M0 we can choose coordinates {x, y, z} so that

e1 =
∂

∂x
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z

are left-invariant vector fields, forming a frame of the Lie algebra of M0, subjected to the following
structure equation:

[e1, e2] = e3 .

We will denote with {e1, e2, e3} the dual coframe of {e1, e2, e3} which is, in particular, given by:

e1 = dx , e2 = dy , e3 = dz − xdy .

We next consider the following one parameter family of diffeomorphisms of M0:

φt(x, y, z) = ((1 + 4t)
1
4x, (1 + 4t)

1
4 y, (1 + 4t)

1
2 z) , (x, y, z) ∈M0 , t ≥ 0 .

It is easy to see that φt is actually an automorphism of M0 viewed as a Lie group. Another easy
computation allows us to state that

dφt = (1 + 4t)
1
4 e1 + (1 + 4t)

1
4 e2 + (1 + 4t)

1
2 e3 , t ≥ 0 .

Now we consider the closed left invariant 3-form H = dx ∧ dy ∧ dz and observe that H is harmonic with
respect to any metric on M0. Then, one can easily see that

φ∗
tH = (1 + 4t)H , t ≥ 0 .

Then, denoting c(t) = 1 + 4t > 0 and comparing with Lemma 3.2.8, we are in the position to promote φt
to

Ft = φ̄t,c(t) ∈ Aut(c(t) · (T ⊕ T ∗)H , (T ⊕ T ∗)H) , t ≥ 0 . (3.32)

Moreover, we easily compute the vector field generated by φt:

X =
d

dt

∣∣∣
t=0

φt = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
= xe1 + ye2 + (2z − xy)e3 ,

which, in particular, satisfies the following bracket relations:

[X, e1] = −e1 , [X, e2] = −e2 , [X, e3] = −2e3 .

Finally, X ∈ Der−2([·, ·]) satisfies
LXH = 4H

which is precisely the second equation in (3.31) with −2λ = c′(0) = 4, since H is harmonic with respect
to any Riemannian metric on M0. Now, we consider the following Riemannian metric:

g = e1 ⊙ e1 + e2 ⊙ e2 + e3 ⊙ e3 = dx⊙ dx+ (1 + x2)dy ⊙ dy + dz ⊙ dz − 2xdy ⊙ dz ,

which is the standard left-invariant Riemannian metric on M0 with respect to the frame {e1, e2, e3}. It
is easy to see that

RicBg,H = −(e1 ⊙ e1 + e2 ⊙ e2) and LXg = 2(e1 ⊙ e1 + e2 ⊙ e2 + 2e3 ⊙ e3) .

Then,

RicBg,H = −2g +
1

2
LXg
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giving precisely the first equation in (3.31). Now, we can use Proposition 3.2.9 to infer that ((T ⊕ T ∗)H ,G(g, 0))
is an expanding soliton for the generalized Ricci flow. Moreover, we can also specify what actually is the
one parameter family of generalized isometries in Definition 3.2.6. Indeed, considering Ft as in (3.32), we
have

FtG(g, 0)F−1
t = G((1 + 4t)(φ−1

t )∗g, 0)

but
g(t) = (1 + 4t)(φ−1

t )∗g = (1 + 4t)
1
2 e1 ⊙ e1 + (1 + 4t)

1
2 e2 ⊙ e2 + e3 ⊙ e3

is precisely the solution of the generalized Ricci flow starting from g, see [254, Section 6].
In the same fashion and with a bit more effort, we can construct examples of expanding solitons for the

generalized Ricci flow on Mk := H3 ×Rk, for any k ≥ 1. On Mk, we consider the following left-invariant
frame {e1, e2, e3, e4, . . . , ek+3} of the Lie algebra of H3 × Rk where e1, e2, e3 are the same defined above
while e3+j = ∂

∂x3+j
where x3+j is the standard coordinate on the j-th copy of R in the abelian factor Rk.

Then, it is sufficient to consider c(t) = 1 + 4t as scaling,

φt(x, y, z, x4, . . . , x3+k) = ((1 + 4t)
1
4x, (1 + 4t)

1
4 y, (1 + 4t)

1
2 z, (1 + 4t)

1
2x4, . . . , (1 + 4t)

1
2x3+k) ,

for all (x, y, z, x4, . . . , x3+k) ∈Mk, as the one parameter family of diffeomorphisms of Mk , H = e1∧e2∧e3
and finally the standard left-invariant metric

g =

k+3∑
i=1

ei ⊙ ei ,

with respect to the coframe {e1, . . . , e3+k} dual with respect to {e1, . . . , ek+3} and obtain an expanding
soliton of the generalized Ricci flow on Mk.

3.2.2 Homogeneous generalized Geometry

In this subsection we specialize our study to the case where the underlying manifold M = G is a simply-
connected Lie group. We will denote by e the identity of G and g = TeG its Lie algebra. We also ask the
ECA to be compatible with the algebraic structure in the following sense:

Definition 3.2.12. We say that a metric ECA (E → G,G) is left-invariant if the action of G on itself
by left-translations lifts to an action on (E,G) by isometries (as defined in Definition 1.2.8).

The action of G on E in Definition 3.2.12 is a particular instance of a wider class of Lie group actions
on ECAs called lifted or extended actions, see [36, Definition 2.4] and [65, Definition 2.6].
The action of G on a left-invariant metric ECA allows to consider G-equivariant isotropic splittings. The
choice of such isotropic splittings, using Proposition 1.2.9, gives rise to left-invariant classical data as the
following proposition highlights.

Proposition 3.2.13. Let (E → G,G) be a left-invariant metric ECA. Then, any G-equivariant isotropic
splitting σ : TG → E of (1.24) induces a G-equivariant isometry

(E,G) ≃σ ((T ⊕ T ∗)H ,G(g, b)),

where the tensors g, H, b on M are left-invariant and H depends only on σ and not on G.

Proof. If σ is the isotropic splitting given by G, firstly, we note that, by Proposition 1.2.9, (E,G) is
isometric to ((T ⊕ T ∗)H ,G(g, 0)), for some closed 3-form H and Riemannian metric g. Using this iso-
morphism, we can define an action of G on (T ⊕ T ∗)H , and by definition this action will be by isometries
of G(g, 0). By Proposition 1.2.11, H and g must be left-invariant. It remains to prove the invariance of
b. As in (3.30), the 2-form b can be expressed as

b = (π∗)−1(σ1 − σ) ,
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where σ1 is the isotropic splitting induced by G, which is G-equivariant. Then, the claim follows directly
from the fact that, for any (F, f) ∈ Aut(E), we have that F ◦ π∗ = π∗ ◦ (f−1)∗ and from the expression
of b above.

Remark 3.2.14. As said, the preferred isotropic splitting induced by G is G-equivariant. Thus, any
homogeneous metric ECA is isometric to ((T ⊕ T ∗)H ,G(g, 0)) for a left-invariant Riemannian metric g,
and a closed left-invariant 3-form H ∈ (Λ3G)G.

Notice that as a vector bundle any left-invariant ECA is trivial, since after choosing an isotropic
splitting we get an isomorphism with (T ⊕ T ∗)H , where

TG⊕ T ∗G ≃ (g⊕ g∗) × G (3.33)

because Lie groups are parallelizable by using left-invariant vector fields. By abuse of notation, we will
simply denote

(g⊕ g∗)H := (T ⊕ T ∗)H ,

where H ∈ (Λ3G)G ≃ Λ3g∗ is a closed, left-invariant 3-form on G.

3.2.3 The space of left-invariant generalized metrics as a homogeneous space

Let E → G be a left-invariant ECA, and let us fix a background left-invariant generalized metric G on E.
The preferred isotropic splitting σ̄ : TG → E induced by G yields an isometry

(E → G,G) ≃σ̄ ((g⊕ g∗)H̄ ,G(ḡ, 0)),

for some left-invariant metric ḡ and closed 3-form H̄ on G. By abuse of notation we write G = G(ḡ, 0).
Let us set

MG := {G | G is a left-invariant generalized metric on (g⊕ g∗)H̄}
≃ {G(g, b) | g left-invariant metric on G, b ∈ (Λ2G)G}

where the last identification is due to Proposition 3.2.13. Next, we consider the following Lie subgroup
of O(g⊕ g∗, ⟨ · , · ⟩):

L :=

{
eb ·

(
h 0
0 (h−1)∗

) ∣∣∣∣h ∈ GL(g), b ∈ Λ2g∗
}
, eb :=

(
Id 0
b Id

)
. (3.34)

As an abstract Lie group, L is isomorphic to the semi-direct product Λ2g∗ ⋊ GL(g). Moreover, its Lie
algebra is

l :=

{(
A 0
α −A∗

) ∣∣∣∣A ∈ gl(g), α ∈ Λ2g∗
}
.

The standard representation of O(g⊕ g∗, ⟨·, ·⟩) on g⊕ g∗ gives rise to a representation of L on g⊕ g∗,
and this extends in a standard way to an action of L on all tensor powers of g⊕ g∗. In particular, L acts
on generalized metrics and Dorfman brackets via the following formulas:

ℓ · G := ℓ ◦ G ◦ ℓ−1, ℓ · [·, ·] := ℓ[ℓ−1·, ℓ−1·].

Recall that we also have the ‘change of basis’ actions of GL(g) on the spaces of brackets and 3-forms:

h · µ(·, ·) = hµ(h−1·, h−1·), h · ω(·, ·, ·) = ω(h−1·, h−1·, h−1·), h ∈ GL(g),

for µ ∈ Λ2g∗ ⊗ g and ω ∈ Λ3g∗.
The next proposition allows to present the space of left-invariant metric on E as a homogeneous space.

Proposition 3.2.15. The action of L on the space of left-invariant generalized metrics MG is transitive.
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Proof. For any ℓ ≃ (b, h) ∈ L, its action on the background metric is given by

ℓ · G = eb
(
h 0
0 (h−1)∗

)(
0 ḡ−1

ḡ 0

)(
h−1 0

0 h∗

)
e−b = eb

(
0 g−1

g 0

)
e−b,

where

g = (h−1)∗ḡh−1 = h · ḡ(·, ·).

Since GL(g) acts transitively on left-invariant metrics, the claim now follows from Proposition 3.2.13.

3.2.4 Moving generalized metrics is equivalent to moving Dorfman brackets

In this subsection, we will define and study the main properties of the space of left-invariant Dorfman
brackets. A similar treatment of them can also be found in [254]. Then, we will focus on describing the
effect of the L-action and its infinitesimal version on Dorfman brackets.

From the Item 5 of Definition 1.2.1, the Dorfman bracket associated with a left-invariant ECA is
skew-symmetric. Thus, we consider the vector space Λ2(g⊕g∗)∗⊗ (g⊕g∗) of all skew-symmetric bilinear
maps

µ : (g⊕ g∗) × (g⊕ g∗) → (g⊕ g∗).

Using Proposition 1.2.5, we know that choosing an isotropic splitting σ gives rise to an isomorphism
E ≃σ (g ⊕ g∗)H . Then, from left-invariance and (1.26), it follows that the Dorfman bracket of E gets
identified with [·, ·]H ∈ Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗) given by

[X + ξ, Y + η]H = [X,Y ]g − η ◦ adg(X) + ξ ◦ adg(Y ) + ιY ιXH, (3.35)

where adg(X) = [X, ·]g : g → g and H ∈ Λ3g∗ is closed. It is not hard to see that ⟨[·, ·]H , ·⟩ is totally
skew-symmetric. This motivates the following.

Definition 3.2.16. The space of Dorfman brackets is the algebraic subset of Λ2(g⊕g∗)∗⊗ (g⊕g∗) given
by

D := {µ ∈ Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗) | ⟨µ(·, ·), ·⟩ ∈ Λ3(g⊕ g∗)∗ , µ(g∗, g∗) = 0, J (µ) = 0}.

Here, J (µ)(a, b, c) := µ(µ(a, b), c) + µ(µ(b, c), a) + µ(µ(c, a), b) = 0 is the Jacobi identity.

We can show that all elements in D can be written as in (3.35) for suitable choices of the 3-form H
and the Lie bracket on g.

Lemma 3.2.17. We have that µ ∈ D if and only if there exist a Lie bracket µ on g and a closed 3-form
H ∈ Λ3g∗ such that, for any X + ξ, Y + η ∈ g⊕ g∗,

µ(X + ξ, Y + η) = µ(X,Y ) − η ◦ µX + ξ ◦ µY + ιY ιXH, µX := µ(X, ·). (3.36)

Proof. Sufficiency was observed above. Regarding necessity, for each X,Y, Z ∈ g, we set

µ(X,Y ) := π ◦ µ(X,Y ), H(X,Y, Z) := 2 ⟨µ(X,Y ), Z⟩.

The linear conditions on µ imply that, for every ξ ∈ g∗, we have µ(ξ, Y ) ∈ g∗. Thus,

µ(ξ, Y )(X) = 2 ⟨µ(ξ, Y ), X⟩ = 2 ⟨µ(Y,X), ξ⟩ = ξµ(Y,X) = ξ ◦ µY (X).

By skew-symmetry, µ(X, η) = −η ◦ µX , and from this (3.36) follows. A simple computation shows that
the Jacobi identity for µ implies the Jacobi identity for µ and that dµH = 0.
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Moreover, one can notice that the following conditions hold for brackets in D:

µ(g, g) ⊂ g⊕ g∗, µ(g, g∗) ⊂ g∗, µ(g∗, g∗) = 0. (3.37)

That is, (g⊕ g∗,µ) is a Lie algebra which is a central extension of (g, µ). We thus have that the space of
Dorfman brackets is contained in the linear subspace:

VD :=
{
µ ∈ Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗) |µ satisfies (3.37) and ⟨µ(·, ·), ·⟩ ∈ Λ3(g⊕ g∗)∗

}
. (3.38)

We then have two projections (·)g : D → Λ2g∗ ⊗ g and (·)Λ3 : D → Λ3g∗,

µ 7→ µg = µ ∈ Λ2g∗ ⊗ g, µ 7→ µΛ3 = H ∈ Λ3g∗, (3.39)

where here µ is simply the Lie bracket of g. Furthermore, we notice that, by (3.36), these projections
completely determine a Dorfman bracket µ ∈ D.

Let us first study how the action of L relates to the projections in (3.39):

Lemma 3.2.18. Let µ ∈ D with µ := µg, H := µΛ3 . Then, for any ℓ = h̄ eα ∈ L, we have

(ℓ · µ)g = h · µ, (ℓ · µ)Λ3 = h · (H − dµα). (3.40)

Proof. First, we compute for X + ξ, Y + η ∈ g⊕ g∗:

(eα · µ)(X + ξ, Y + η) = eαµ(X + ξ − iXα, Y + η − iY α)

= eα (µ(X + ξ, Y + η) + α(Y, µ(X, ·)) − α(X,µ(Y, ·)))
= µ(X + ξ, Y + η) − iY iX(dµα).

Similarly,((
h 0
0 (h−1)∗

)
· µ
)

(X + ξ, Y + η) =

(
h 0
0 (h−1)∗

)
µ(h−1X + ξ ◦ h, h−1Y + η ◦ h)

= (h · µ)(X,Y ) − η ◦ (h · µ)X + ξ ◦ (h · µ) + iY iX(h ·H).

The result follows from composing the two actions.

Given the actions of L on Dorfman brackets on g⊕ g∗, and of GL(g) on brackets and 3-forms on g, we
denote the corresponding Lie algebra representations (or ‘infinitesimal actions’) by

Θ : l → End(Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗)), θ : gl(g) → End(Λ2g∗ ⊗ g), ρ : gl(g) → End(Λ3g∗).

More precisely, they are given by

Θ(A)µ(·, ·) = Aµ(·, ·) − µ(A·, ·) − µ(·, A·), A ∈ gl(g⊕ g∗),

θ(A)µ(·, ·) = Aµ(·, ·) − µ(A·, ·) − µ(·, A·), A ∈ gl(g),

ρ(A)ω(·, ·, ·) = −ω(A·, ·, ·) − ω(·, A·, ·) − ω(·, ·, A·), A ∈ gl(g).

From Lemma 3.2.18 we immediately deduce:

Corollary 3.2.19. For any L ≃ (α,A) ∈ l ≃ Λ2g∗ ⋊ gl(g), we have

(Θ(L)µ)g = θ(A)µ, (Θ(L)µ)Λ3 = ρ(A)H − dµα.

Since we will be moving the Dorfman and Lie brackets on g⊕ g∗ and g respectively, it is convenient
to introduce the following notation: given µ a Dorfman bracket as in (3.36), we denote by

(g⊕ g∗)µ := (g⊕ g∗, ⟨ · , · ⟩,µ, π)

the left-invariant ECA structure given by the data (⟨ · , · ⟩,µ, π), where ⟨ · , · ⟩ and π are defined in (1.25).
Notice that in order for Item 2 of Definition 1.2.1 to be satisfied, we must necessarily have that the Lie
bracket on g is µ := µg.
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Proposition 3.2.20. Let ℓ = h̄ eα ∈ L, for h ∈ GL(g) and α ∈ Λ2g∗. Then, the bundle map

(ℓ, h) :
(
(g⊕ g∗)H , (ℓ

−1) · G
)
→ ((g⊕ g∗)ℓ·µ,G)

is an isometry. Here µg = [·, ·]g is the original Lie bracket of g and µΛ3 = H.

Proof. We first prove the claim for ℓ = h̄ covering h ∈ GL(g). By definition of the action, the map
h : (g, [·, ·]g) → (g, h · [·, ·]g) is a Lie algebra isomorphism. Set µ := h · [·, ·]g, let G,Gµ be respectively
the simply-connected Lie groups with Lie algebras (g, [·, ·]g) and (g, µ). Then, there exists a Lie group
isomorphism φ : G → Gµ for which deφ = h, where e ∈ G is the identity. The corresponding bundle map
φ̄ : TG⊕T ∗G → TGµ⊕T ∗Gµ covering φ clearly maps left-invariant sections to left-invariant sections, and
since the trivialization (3.33) is done via left-invariant sections, it follows that φ̄ may be represented by an
element of GL(g⊕g∗). The latter is precisely h̄, and the pair (h̄, h) is the infinitesimal data corresponding
to the ECA isomorphism

φ̄ : (g⊕ g∗)H → (g⊕ g∗)h̄·µ.

Indeed, h̄ preserves the Dorfman bracket by definition of the action, and it preserves the neutral inner
product because h̄ ∈ O(g⊕ g∗, ⟨ · , · ⟩). Finally,

h̄ · (h̄−1 · G) = G,

thus we have an isometry.

The proof for ℓ = eα covering Id ∈ GL(g) is similar (in this case, G = Gµ).

Let us now consider the effect of scaling when Dorfman brackets are moving. Recall that, by
Lemma 3.2.4, a choice of isotropic splitting σ induces an isometry (c ·E,G) ≃σ ((g⊕ g∗)cH ,G(cg, cb)), for
any c > 0.

Proposition 3.2.21. Let c > 0 and let µ be the Dorfman bracket determined by µg = [·, ·]g and µΛ3 = H.
Then, the following bundle map is an isometry:(

±c1/2 Id , ±c1/2 Id
)

: ((g⊕ g∗)±cH ,G(cg,±cb)) −→ ((g⊕ g∗)±c−1/2µ,G(g, b)).

Proof. First, we see that it is an ECA isomorphism. Indeed, we have that ±c1/2 Id ∈ O(g ⊕ g∗, ⟨ · , · ⟩),
and

±c1/2 Id
[
(±c1/2 Id)−1 · , (±c1/2 Id)−1 ·

]
cH

= ±c−1/2µ(·, ·)

can be easily verified using (3.35) and (3.36) (with µ = [·, ·]g). Regarding the isometry claim, we directly
compute:(

c1/2 Id
)
G(cg, cb)

(
c1/2 Id

)−1

=

(
c1/2 Id 0

0 c−1/2 Id

)
ecb
(

0 c−1g−1

cg 0

)
e−cb

(
c−1/2 Id 0

0 c1/2 Id

)
=

(
−g−1b g−1

g − bg−1b bg−1

)
= G(g, b).

3.2.5 The moment map

In this subsection, we define a moment map for the action of L on Dorfman brackets, in the sense of
real GIT (see [274, 183, 53]). In Proposition 3.2.24 we show that this moment map encodes the most
complicated part of the generalized Ricci curvature of left-invariant generalized metrics.
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As before, we fix a background generalized metric G on a left-invariant ECA, yielding an isomorphism
with ((g ⊕ g∗)H̄ ,G(ḡ, 0)). The metric ḡ gives rise to an inner product on Λ2(g ⊕ g∗)∗ ⊗ (g ⊕ g∗), also
denoted by ḡ. To define it, we fix a ḡ-orthonormal basis {ei} of g with dual basis {ei} and set

ḡ(µ,ν) := 2
∑
i,j

〈
Gµ(ei, ej),ν(ei, ej)

〉
+ 4

∑
i,j

〈
Gµ(ei, e

j),ν(ei, e
j)
〉

+ 2
∑
i,j

〈
Gµ(ei, ej),ν(ei, ej)

〉
.

The overall factor of 2 is due to the 1
2 factor in the definition of ⟨ · , · ⟩. Since we are only interested in

Dorfman brackets and their infinitesimal variations, we will mostly work with brackets in VD (see (3.38)).
Then, the only non-vanishing structure coefficients are:

µ(ei, ej) = µkijek + µijke
k, µ(ei, e

j) = −µjike
k = −µ(ej , ei),

using Einstein’s summation convention (summing over all i, j, k and not just i < j). The fact that the
coefficient of ek in µ(ei, e

j) is related to that of ej in µ(ei, ek) follows from ⟨µ(·, ·), ·⟩ ∈ Λ3(g⊕ g∗)∗. We
then have

ḡ(µ,ν) :=
∑
i,j,k

(
3µkijν

k
ij + µijkνijk

)
= 3 ḡ(µ, ν) + ḡ(H, H̃), µ,ν ∈ VD, (3.41)

where µ = µg, ν = νg, H = µΛ3 , H̃ = νΛ3 . Here we have used the extension of ḡ to a positive-definite
inner product on Λ2g∗ ⊗ g, and on Λkg∗, given respectively by

ḡ(µ, ν) :=
∑
i,j,k

µkijν
k
ij , µ, ν ∈ Λ2g∗ ⊗ g, µkij := ḡ(µ(ei, ej), ek).

and
ḡ(α, β) :=

∑
i1,...,ik

αi1···ikβi1···ik , α, β ∈ Λkg∗, αi1···ik := α(ei1 , . . . , eik).

The metric ḡ also determines a maximal compact subgroup O(g, ḡ) ≤ L. We fix on l the Ad(O(g, ḡ))-
invariant, positive-definite inner product ḡl given by

ḡl

((
A 0
α −A∗

)
,

(
B 0
β −B∗

))
:= 2 trABT +

1

6
trβ∗α = 2

∑
i,j

AijBij +
1

6

∑
i,j

αijβij , (3.42)

where Aij := g(Aei, ej), αij = α(ei, ej), etc, for a g-orthonormal basis {ei}. While the 1/6-factor looks
arbitrary, it will play a key role in the forthcoming computations.

Definition 3.2.22. The moment map for the action of L on (Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗), ḡ) is the map

M : Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗) → l, µ 7→ Mµ,

implicitly defined by

ḡl(Mµ, L) =
1

6
ḡ(Θ(L)µ,µ), L ∈ l.

Proposition 3.2.23. The moment map is O(g, ḡ)-equivariant. Moreover, for each µ ∈ Λ2(g ⊕ g∗)∗ ⊗
(g⊕ g∗) and L ∈ l, it satisfies

ḡl(Mµ, L) =
1

12

d

dt

∣∣∣
t=0

|exp(tL) · µ|2g .

Proof. Let K ∈ O(g, ḡ), for every L ∈ l, we have that

ḡl(MK·µ, L) =
1

6
ḡ(K

−1 · Θ(L)(K · µ),µ) =
1

6
ḡ(Θ(K

−1
LK)µ,µ) = ḡl(Mµ,K

−1
LK) = ḡl(K MµK

−1
, L)

yielding the first claim. The second one is trivial computing the derivative on the right hand side.
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We now define Rcµ ∈ End(g ⊕ g∗) to be the generalized Ricci curvature of ((g ⊕ g∗)µ,G) (at the
identity). We also denote by Ricµ ∈ End(g) the (1, 1)-Ricci tensor of (g, µ, ḡ), and by Mµ ∈ End(g) the
moment map for the action of GL(g) on Λ2g∗ ⊗ g:

ḡ(Mµ, A) =
1

4
ḡ(θ(A)µ, µ), A ∈ gl(g), µ ∈ Λ2g∗ ⊗ g.

The factor 1
4 makes this consistent with the standard notation in the homogeneous Riemannian setting,

see for instance [214]. In this notation, for µ ∈ D with µg = µ, µΛ3 = H, we have

Rcµ =

(
RicBµ,H

1
2 ḡ

−1(d∗µH) ḡ−1

− 1
2d

∗
µH −(RicBµ,H)∗

)
, RicBµ,H := Ricµ − 1

4
ḡ−1H2. (3.43)

Proposition 3.2.24. The generalized Ricci curvature and the moment map for the action of L on Dorf-
man brackets are related by

Rcµ = Mµ +Ricµ − Mµ +Aµ ,

for some Aµ ∈ so(g⊕ g∗,G) ∩ so(g⊕ g∗, ⟨ · , · ⟩).

Proof. Let us set

Aµ :=

(
0 1

2 ḡ
−1(d∗µH) ḡ−1

1
2d

∗
µH 0

)
. (3.44)

It is not hard to see that indeed Aµ ∈ so(g⊕ g∗,G) ∩ so(g⊕ g∗, ⟨ · , · ⟩). We are thus left with

Rcµ −Aµ =

(
RicBµ,H 0

−d∗µH −(RicBµ,H)∗

)
∈ l.

Furthermore, one can easily see that (3.44) defines the unique element in so(g⊕ g∗, Ḡ)∩ so(g⊕ g∗, ⟨ · , · ⟩)
such that Rcµ −Aµ ∈ l.

Moreover, for any L ≃ (B, β) ∈ l, we compute using the definition of ḡl:

ḡl (Rcµ −Aµ, L) = 2 tr(RicµB) − 1

2
tr(H2B) − 1

6
ḡ(d∗µH,β).

Furthermore, we notice that

ḡ(ρ(B)H,H) =
∑
i,j,k

(ρ(B)H)(ei, ej , ek)H(ei, ej , ek) = −3
∑
i,j,k

H(Bei, ej , ek)H(ei, ej , ek)

= −3
∑
i

ḡ(ιeiH, ιBeiH) = −3ḡ(H2ei, Bei) = −3 tr(H2B),

from which we get

ḡl (Rcµ −Aµ, L) = ḡl
(
Ricµ, L

)
+

1

6
ḡ(ρ(B)H − dµβ,H).

On the other hand, by Corollary 3.2.19 and (3.41) the moment map satisfies:

ḡl (Mµ, L) =
1

6
ḡ(Θ(L)µ,µ) =

1

2
ḡ(θ(B)µ, µ) +

1

6
ḡ(ρ(B)H − dµβ,H)

= 2 ḡ(Mµ, B) +
1

6
ḡ(ρ(B)H − dµβ,H)

= ḡl
(
Mµ, L

)
+

1

6
ḡ(ρ(B)H − dµβ,H),

(3.45)

and the proposition follows.
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Corollary 3.2.25. If the Lie algebra (g, µ) is nilpotent, then

Rcµ −Aµ = Mµ, Aµ ∈ so(g⊕ g∗,G) ∩ so(g⊕ g∗, ⟨ · , · ⟩).

Proof. Lauret’s formula for the Ricci curvature of left-invariant metrics in terms of the moment map on
the variety of Lie algebras [219] yields

Ricµ = Mµ−
1

2
Bµ − 1

2
(adµ U + (adµ U)t),

where ḡ(Bµ·, ·) is the Killing form of (g, µ), and U ∈ g denotes the mean curvature vector of the metric
Lie algebra (g, µ, ḡ), which vanishes if and only if (g, µ) is unimodular. In particular, for nilpotent Lie
algebras –for which it is known that the Killing form vanishes– this gives Ricµ = Mµ, and the stated
formula follows from Proposition 3.2.24.

3.2.6 A flow of Dorfman brackets

The fact that the Lie group L (see (3.34)) acts transitively on the space of generalized left-invariant metrics
MG on (g ⊕ g∗)H (Proposition 3.2.15) and the equivalence between acting on generalized metrics and
acting on Dorfman brackets (Proposition 3.2.20) lead us to consider what would be a natural counterpart
to the generalized Ricci flow of left-invariant metrics, on the space of Dorfman brackets D ⊂ Λ2(g ⊕
g∗)∗ ⊗ (g⊕ g∗).

As in previous subsections, we fix a left-invariant ECA (g ⊕ g∗)H̄ and a background left-invariant
generalized metric G = G(ḡ, 0) on it.

Definition 3.2.26. The generalized bracket flow with background
(
(g⊕ g∗)H ,G

)
is the initial value

problem for a curve of brackets µ(t) in Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗):

d

dt
µ = −Θ(Rcµ −Aµ)µ, µ(0) = µ0, (3.46)

where Rcµ and Aµ are respectively defined in (3.43) and (3.44).

Since a Dorfman bracket µ ∈ D (see Definition 3.2.16) is determined by its two projections µg,µΛ3 ,
it is natural to expect the generalized bracket flow to be equivalent to a coupled flow of Lie brackets on
g and of closed 3-forms. Indeed:

Proposition 3.2.27. The generalized bracket flow (3.46) with initial condition a Dorfman bracket µ0 ∈ D
is equivalent to the following coupled flow of brackets µ(t) and 3-forms H(t):{

d
dtµ = −θ(RicBµ,H)µ, µ(0) = µ0 := (µ0)g,
d
dtH = ∆µH − ρ(RicBµ,H)H, H(0) = H0 := (µ0)Λ3 .

(3.47)

Proof. Let (µt, Ht)t∈[0,T ) be a solution of (3.47). Then, we define

µt(X + ξ, Y + η) = µt(X,Y ) − η ◦ (µt)X + ξ ◦ (µt)Y + ιY ιXHt , X, Y ∈ g , ξ, η ∈ g∗, t ∈ [0, T ).

Using Lemma 3.2.17, we have that µt ∈ D , for all t ∈ [0, T ). Now, using (3.47) and Corollary 3.2.19, we
have that

d

dt
µt = −Θ(Rcµt

−Aµt
)µt , µ(0) = µ0 .

Then, since they solve the same ODE with the same initial datum, (µt)t∈[0,T ) coincides with the solution
of the generalized bracket flow starting from µ0.

Viceversa, let (µt)t∈[0,T ′) be a solution of the generalized bracket flow starting from µ0. For the sake

of simplicity, we will denote µ̃t := (µt)g and H̃t := (µt)Λ3 . By definition, µt belongs to the L-orbit of
µ0. Using the fact that the L-action does not change π and Corollary 3.2.19, we obtain that

d

dt
µ̃ = π

d

dt
µ = −πΘ(Rcµ −Aµ)µ = −θ(RicB

µ̃,H̃
)µ̃ . (3.48)
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Moreover, using again the fact that the L-action acts trivially on ⟨ · , · ⟩, we have, for all X,Y, Z ∈ g,

d

dt
H̃(X,Y, Z) = 2

d

dt
⟨µ(X,Y ), Z⟩ = −2⟨Θ(Rcµ −Aµ)µ(X,Y ), Z⟩

= − (Θ(Rcµ −Aµ)µ)Λ3(X,Y, Z) = (∆µ̃H̃ − ρ(RicB
µ̃,H̃

)H̃)(X,Y, Z) .
(3.49)

where the last equality is due again to Corollary 3.2.19. Equation (3.49) and Equation (3.48) readily
guarantees that (µ̃t, H̃t)t∈[0,T ′) coincides with the solution of (3.47), concluding the proof.

Before going deeply into the discussion on how the generalized bracket flow is connected to the
generalized Ricci flow, we state the following lemma which will be useful in what follows.

Lemma 3.2.28. Let ((g⊕ g∗)µ(t), Ḡ)t∈[0,T ) be a solution of the generalized bracket flow starting from µ.
Then,

d

dt
|d∗µH|2 = 2(ḡ(ρ(RicBµ,H)d∗µH, d

∗
µH) − 2ḡ(ρ(RicBµ,H)H, dµd

∗
µH) − |∆µH|2) .

In particular, if d∗µ(0)H(0) = 0, then d∗µH = 0, for any t ∈ [0, T ).

Proof. First of all, we easily see that, for all A ∈ gl(g) and brackets µ, one has

d∗θ(A)µ = [d∗µ, ρ(At)]. (3.50)

Then, we can use (3.50) to infer that

d

dt
d∗µH = [ρ(RicBµ,H), d∗µ]H − d∗µρ(RicBµ,H)H + ∆µd

∗
µH = ρ(RicBµ,H)d∗µH − 2d∗µρ(RicBµ,H)H + ∆µd

∗
µH .

Then, we easily obtain that

d

dt
|d∗µH|2 = 2(ḡ(ρ(RicBµ,H)d∗µH, d

∗
µH) − 2ḡ(ρ(RicBµ,H)H, dµd

∗
µH) − |∆µH|2) ,

as claimed. The second part follows trivially from the first one.

Remark 3.2.29. A similar approach was firstly introduced by Paradiso in [254]. As a main difference
from our setting, the author considered the action of GL(g) ⊂ L on D. This choice yields a coupled flow
as follows: {

d
dtµ = −θ(RicBµ,H)µ, µ(0) = µ0 := (µ0)g,
d
dtH = −ρ(RicBµ,H)H, H(0) = H0 := (µ0)Λ3 ,

which, in view of Lemma 3.2.28, is equivalent to (3.47) only in the particular case in which H0 is harmonic.

The following is the main result of this subsection. It shows that from a left-invariant solution of the
generalized Ricci flow one can construct a generalized bracket flow solution whose generalized geometry
is gauge-equivalent to the original solution, and that the converse is also true. This in particular implies
that the maximal existence times for both flows coincide, and that any generalized geometry question
can be studied by means of the generalized bracket flow.

Theorem 3.2.30. Let ((g⊕ g∗)H0 ,Gt)t∈[0,T ) be a left-invariant solution to the generalized Ricci flow

equation (1.31) and let (µ(t))t∈[0,T ′) be the solution to the generalized bracket flow (3.46) with back-
ground ((g⊕ g∗)H0

,G0) and initial condition µ(0) defined by µ(0)g = [·, ·]g, µ(0)Λ3 = H0, with both
solutions defined on a maximal interval of time. Then, T = T ′ and there exists a one-parameter family
of generalized isometries

Ft : ((g⊕ g∗)H0 ,Gt) −→
(
(g⊕ g∗)µ(t),G0

)
, t ∈ [0, T ).
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Proof. First, given any metric ECA ((g⊕ g∗)µ,G) , we define the endomorphism

Aµ,G := SkewG(d∗g
µ (H + dµb)) ∈ o(g⊕ g∗, ⟨G·, ·⟩),

where µ = µg, H := µΛ3 , and g ∈ Sym2
+(g), b ∈ Λ2g∗ satisfy

G = eb
(

0 g−1

g 0

)
e−b.

One readily checks that the map (µ,G) 7→ Aµ,G is L-equivariant: AF ·µ,F ·G = F · Aµ,G . Then, since the
generalized Ricci curvature is similarly L-equivariant, it follows from Equation (3.44) that

Rc(µ,G) −Aµ,G ∈ l,

where Rc(µ,G) is the generalized Ricci curvature of ((g⊕ g∗)µ,G).
Now, given a solution to the generalized bracket flow (µ(t))[0,T ′) (3.46), we define the family of

left-invariant endomorphisms (Gµ(t))t∈[0,T ′) as follows:

Gµ(t)(x) = Lµ(t)(x) · G0(e) , x ∈ G, (3.51)

where Lµ(t)(x) is the lift on g ⊕ g∗ of the left-translation in Gµ(t) by x while G0(e) and Gµ(t)(x) are,
respectively, the endomorphisms on the fibers in e and x. We easily see that Gµ(t) are left-invariant
generalized metric on g⊕ g∗. Let us then consider

d

dt
Ft = Ft(Rcµ(t) −Aµ(t)) , F0 = Id ,

where Aµ(t) ∈ so(g ⊕ g∗,G0) ∩ so(g ⊕ g∗, ⟨ · , · ⟩) is defined as in (3.44). By a standard result in ODE

theory, the family Ft is defined on [0, T ′) and (Ft)t∈[0,T ′) ⊆ L. We then define λ(t) := F−1
t ·µ(0) yielding

that
d

dt
λ = −Θ(F−1

t F ′
t )λ = −Θ(Rcµ(t) −Aµ(t))λ . (3.52)

Thus, λ(t) and µ(t) satisfy the same ODE with equal initial datum concluding that µ(t) = F−1
t · µ(0).

From this, we can deduce that

Ft : ((g⊕ g∗)µ(t),Gµ(t)) → ((g⊕ g∗)H0 , Ft · Gµ(t)) ,

is an isometry. So, denoting G̃t := Ft · Gµ(t) we obtain that, in e,

G̃−1
t

d

dt
G̃t =FtG−1

µ(t)(Rcµ(t) −Aµ(t))Gµ(t)F
−1
t − Ft(Rcµ(t) −Aµ(t))F

−1
t = −2Rc(G̃t) ,

where the last equality follows from Rc(G)G = −GRc(G) and from [Aµ(t),Gµ(t)] = 0. This allows us to

conclude that Gt = G̃t, since they solve the same ODE with the same initial condition.
Conversely, we define

d

dt
Ft = (Rc(Gt) −A(Gt))Ft , F (0) = Id,

where A(Gt) := Aµ,Gt
. As before, we consider G̃t := Ft · G0 and easily note that

G̃t
−1 d

dt
G̃t = G̃t

−1
(Rc(Gt) −A(Gt))G̃t − (Rc(Gt) −A(Gt)) .

On the other hand,

G−1
t

d

dt
Gt = −2Rc(Gt) = G−1

t (Rc(Gt) −A(Gt))Gt − (Rc(Gt) −A(Gt)),
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since, again, Rc(Gt)Gt = −GtRc(Gt) and [A(Gt),Gt] = 0. So, in particular, we have that

d

dt
G̃t = [Rc(Gt) −A(Gt), G̃t] ,

d

dt
Gt = [Rc(Gt) −A(Gt),Gt] ,

Then, G̃t and Gt satisfy the same ODE with the same initial condition yielding that Gt = Ft ·G0. Therefore,
if we let λ(t) = F−1

t · µ(0),

Ft : ((g⊕ g∗)λ(t),Gλ(t)) → ((g⊕ g∗)H0
,Gt)

is an isometry. In particular, this implies that

FtRcλ(t)F
−1
t = Rc(Gt) , FtAλ(t)F

−1
t = A(Gt),

using the Aut(E)-equivariance of the generalized Ricci curvature and the uniqueness of A(G) ∈ so(g ⊕
g∗,G) ∩ so(g⊕ g∗, ⟨ · , · ⟩) such that Rc(G) −A(G) ∈ l. Then we have that

d

dt
Ft = Ft(Rcλ(t) −Aλ(t)) , F0 = Id

and repeating the computations in (3.52), we infer that µ(t) = λ(t), concluding the proof.

Remark 3.2.31. We do not necessarily need to use G0 as background metric, but this simplifies the
formulas.

3.2.7 Global existence on solvmanifolds

As a first application of Theorem 3.2.30, we prove in this section the long-time existence of invariant
solutions on any solvmanifold. Recall from [149] that the generalized scalar curvature of a metric Courant
algebroid ((T ⊕ T ∗)H ,G(g, 0)) is given by

Sg,H := Rg − 1
12 |H|2, (3.53)

where Rg denotes the Riemannian scalar curvature of the metric g. Let us remark that this is not the
trace of the generalized Ricci curvature (which is in fact traceless), but it is obtained instead by studying
Lichnerowicz formulae for certain Dirac operators [149, §3.9]. Within the moving Dorfman bracket
framework, a direct consequence of [220, Lemma 4.2] allows us to infer that on a nilpotent Lie group

Sµ = − 1

12
(3|µ|2 + |H|2) = − 1

12
|µ|2 . (3.54)

Before stating the main theorem of this section, we will need a preliminary lemma.

Lemma 3.2.32. Let (µ(t))t∈(ε−,ε+) be a solution of the generalized bracket flow defined on its maximal
time interval. Then, there exists a uniform constant C > 0 such that:

1. if ε+ <∞, then

|µ(t)| ≥ C

(ε+ − t)
1
2

, t ∈ [0, ε+) ;

2. if ε− > −∞, then

|µ(t)| ≥ C

(t− ε−)
1
2

, t ∈ (ε−, 0] .
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Proof. For the ease of notation, we will always denote with C a uniform and positive constant which may
change from line to line. First of all, we observe that, as in [213, Lemma 3.1], we have |Ricµ|2 ≤ C|µ|4.
Moreover, one can easily show that |H2|2 ≤ C|H|4. Finally, we obtain that |d∗µH|2 ≤ C|µ|2|H|2 ≤ C|µ|4,
using that ∗µ is an isometry and that |dµα|2 ≤ C|µ|2|α|2, for any form α and any Lie bracket µ. Then,
one can deduce

|Rcµ −Aµ|2 = 2|RicBµ,H |2 +
1

6
|d∗µH|2 ≤ C|µ|4 . (3.55)

Now, we fix t0 ∈ [0, ε+) and we can use (3.55) and the linearity of the infinitesimal L-action Θ to infer
that

d

dt
|µ|2 = 2ḡ

(
µ,

d

dt
µ

)
≤ C|µ|4 , t ∈ [t0, ε+) .

This implies, by comparison, that

|µ|2 ≤ 1

−C(t− t0) + |µ(t0)|−2
, t ∈ [t0, ε+) . (3.56)

On the other hand, (3.56) readily guarantees that ε+ ≥ t0 + 1
C |µ(t0)|−2, giving us the first claim. The

second claim can be obtained by reversing the time variable.

We can now state the following blow-up result:

Theorem 3.2.33. Let (E,Gt)t∈(ε−,ε+) be a left-invariant solution of the generalized Ricci flow over a
simply-connected Lie group G defined in its maximal time interval. Then,

1. if ε+ <∞, then St → ∞, as t→ ε+ ;

2. if ε− > −∞, then St → −∞, as t→ ε− .

Proof. Fixing the preferred isotropic splitting σ0 associate with G0, we have the time-varying isometry
(E,Gt)t∈(ε−,ε+) ≃σ ((g ⊕ g∗)Ht

,G(gt, 0))t∈(ε−,ε+). By [301, Proposition 1.1], if φ : G × (ε−, ε+) → R
satisfies (

∂

∂t
− ∆gt

)
φt = 1

6 |Ht|2gt ; t ∈ (ε−, ε+), (3.57)

then,(
∂

∂t
− ∆gt

)(
Sgt,Ht

+ 2∆gtφt − |∇gtφt|2
)

= 2|RicBgt,Ht
+∇2

gtφt−
1
2 (d∗gtHt+ι∇gtφt

Ht)|2; t ∈ (ε−, ε+).

In this case, we set φt :=
∫ t
0

1
6 |Hs|2ds, which is constant in space and hence satisfies Equation (3.57).

Thus, by left-invariance, we have

d

dt
Sgt,Ht = 2|RicBgt,Ht

− 1
2d

∗
gtHt|2 = |Rc(Gt)|2. (3.58)

The remainder of the proof follows [213] for the classical Ricci flow. By Theorem 3.2.30, ((g⊕g∗)H0
,Gt)t∈(ε−,ε+)

is isometric to
(
(g⊕ g∗)µ(t),G(g0, 0)

)
t∈(ε−,ε+)

, where µ satisfies Equation (3.46). Let Sµ(t) = Sgt denote

the generalized scalar curvature of this latter metric ECA and note that by Equation (3.58) it satisfies
d
dtSµ(t) = |Rcµ(t)|2. Also observe that

d
dt |µ|

2 = −2 ⟨Θ(Rcµ −Aµ)µ,µ⟩ ≤ C|Rcµ −Aµ||µ|2,

for some constant C > 0. Hence, observing that |Rcµ −Aµ|2 ≤ 2|Rcµ|2, we have, for t ∈ (ε−, ε+),

log |µ(t)|2 − log |µ(0)|2 =

∫ t

0

d
ds log |µ(s)|2ds ≤ C

∫ t

0

|Rcµ(s) −Aµ(s)|ds ≤ C

∫ t

0

|Rcµ(s)|ds

≤ C

∫ t

0

1 + |Rcµ(s) −Aµ(s)|2ds = C
(
t+ Sµ(t) − Sµ(0)

)
.
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On the other hand, by Lemma 3.2.32, we have that |µ(t)|2 → ∞, as t → ε+, forcing Sµ(t) → ∞, as
t→ ε+. A similar argument shows the statement for t→ ε−.

Recall that left-invariant metrics on solvable Lie groups have non-positive scalar curvature, and zero
scalar curvature if and only if they are flat [50]. Hence, we yield the immediate corollary:

Corollary 3.2.34. Any left-invariant solution of the generalized Ricci flow on a solvable Lie group exists
for all positive times.

In the case of a left-invariant solution on a nilpotent group, we are able to say much more thanks
to Corollary 3.2.25. In particular, we can describe the precise asymptotic behaviour of the generalized
scalar curvature:

Theorem 3.2.35. For any left-invariant solution (gt, Ht) of the generalized Ricci flow on a nilpotent Lie
group G, the generalized scalar curvature satisfies Sgt,Ht

∼ − 1
t , as t→ ∞.

Proof. Let (gt, Ht) be a solution of the generalized Ricci flow on G and µ(t) the corresponding generalized
bracket flow. Then by Equation (3.46), Corollary 3.2.25 and Definition 3.2.22, we obtain

d

dt
|µ(t)|2 = −2

〈
Θ(Mµ(t))µ(t),µ(t)

〉
= −6gl(Mµ(t),Mµ(t)) = −6|Mµ(t)|2.

We now claim that |Mµ(t) |2 ≥ c|µ|4, for some small constant c > 0. To see this, first note that the map

S(Λ2(g⊕ g∗) ⊗ (g⊕ g∗)) ∋ µ 7→ |Mµ |2,

is never zero on the unit sphere. Indeed Mµ = 0 implies that 0 = tr(Mµ) = − 1
6 |µ|

2 = − 1
6 , which is a

contradiction. The claim therefore follows from compactness of the unit sphere. Thus,

−C|µ(t)|4 ≤ d

dt
|µ(t)|2 ≤ −c|µ(t)|4,

so |µ(t)|2 ∼ 1
t by ODE comparison. The result now follows from Equation (3.54).

3.2.8 Generalized nilsolitons

In this subsection, following the approach by Lauret in [222] and [217], we give the definition of algebraic
generalized solitons, proving their main properties in the nilpotent case. First of all, we introduce the
normalized generalized bracket flow.

Definition 3.2.36. The ℓ-normalized generalized bracket flow with background data ((g ⊕ g∗)H ,G) is
the initial value problem for a curve of brackets µ(t) and ℓ = ℓ(t):

d

dt
µ = −Θ(Rcµ −Aµ)µ + ℓµ , µ(0) = µ0 . (3.59)

The multiplication of µ in (3.59) by the factor ℓ has to be interpreted using Lemma 3.2.4 and Propo-
sition 3.2.21. On the other hand, given a function ℓ, one can obtain a solution of the ℓ-normalized
generalized bracket flow from a solution of the generalized bracket flow (3.46) via a time reparametriza-
tion and a scaling.

Lemma 3.2.37. Let ((g⊕g∗)H ,G) be a left-invariant metric ECA over a Lie group G. Let µℓ(t) and µ(t),
respectively, be the solution of the ℓ-normalized generalized bracket flow and the solution of the generalized
bracket flow starting from µ0. Then, there exist a family of scaling c(t) > 0 such that c(0) = 1 and a
time reparametrization τ = τ(t) so that

µℓ(t) = c(t)µ(τ) .
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Proof. Following [222], we choose

c′ = ℓc , c(0) = 1 and τ ′ = c2 , τ(0) = 0.

Then, we have
d

dt
(c(t)µ(τ)) = −c3Θ(Rcµ(τ) −Aµ(τ))µ(τ) + ℓcµ(τ).

Using that Rccµ −Acµ = c2(Rcµ −Aµ), we obtain the claim.

The case in which we will be interested the most is when we choose c = 1
|µ| . Applying Lemma 3.2.37,

we have that µ̄ := µ
|µ| is a solution of the ℓ-normalized generalized bracket flow with

ℓµ̄ =
ḡ(Θ(Rcµ −Aµ)µ,µ)

|µ|4
= 6ḡ(Rcµ̄ −Aµ̄,Mµ̄) .

With this choice of the normalization, we will refer to the corresponding normalized generalized bracket
flow as scalar-normalized generalized bracket flow. In this case, the norm of the solution of the scalar-
normalized generalized bracket flow will remain constantly 1, provided the initial datum has unit norm.
Indeed,

d

dt
|µ|2 = 2ḡ(Θ(Rcµ −Aµ)µ,µ)(−1 + |µ|2) ,

then |µ|2 = 1, since |µ0|2 = 1. Recalling (3.54), this also implies that Sµ = Sµ0
= − 1

12 along the
scalar-normalized generalized bracket flow.

With this in mind, we can give the definition of generalized algebraic soliton.

Definition 3.2.38. Let µ ∈ D. We say that µ is an algebraic soliton for the generalized Ricci flow if it
is a fixed point of the scalar-normalized generalized bracket flow, i.e. the following is satisfied

Θ(Rcµ −Aµ)µ = ℓµµ . (3.60)

We say that µ is expanding, steady or shrinking if, respectively, ℓµ > 0, ℓµ = 0 or ℓµ < 0.

Building from this definition, we can derive equivalent conditions for a Dorfman bracket to be an
algebraic soliton for the generalized Ricci flow.

Proposition 3.2.39. Let µ ∈ D. Then, the following are equivalent:

1. µ is an algebraic soliton;

2. the generalized bracket flow starting at µ evolves only by scaling;

3. Rcµ −Aµ = λId + D with D ∈ Derλ(µ) and λ ∈ R;

4. there exist D ∈ Der(µ) and λ ∈ R such that{
RicBµ,H = λId +D ,

∆µH = λH + ρ(RicBµ,H)H .
(3.61)

Proof. The equivalence between Item 1 and Item 2 is trivial using (3.60) and Lemma 3.2.37. On the other
hand, if µ is an algebraic soliton, the fact that Θ(Id)µ = −µ, for all µ ∈ D, implies Rcµ−Aµ = λId+D
with D ∈ Der(µ). Moreover, Rcµ −Aµ ∈ so(g⊕ g∗, ⟨ · , · ⟩), then, D has to satisfy

2λ⟨ · , · ⟩ + ⟨D·, ·⟩ + ⟨·,D·⟩ = 0 ,

which gives Item 3. Viceversa, it is easy to show that if Item 3 holds, then (3.60) is satisfied with ℓµ = −λ.
Furthermore, Corollary 3.2.19 guarantees the equivalence between (3.60) and{

θ(RicBµ,H + ℓµId)µ = 0 ,

ρ(RicBµ,H)H − ∆µH = ℓµH

which is equivalent to (3.61) with λ = −ℓµ, concluding the proof.
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Item 3 and Item 4 in Proposition 3.2.39 can be considered as the static definition, in terms of both
generalized and classical objects, of algebraic solitons and so Proposition 3.2.39 has to be regarded as the
analogue of Proposition 3.2.9 in the varying Dorfman bracket framework.

Moreover, Proposition 3.2.39 allows us to construct from algebraic solitons for the generalized Ricci
flow generalized metrics which are generalized Ricci solitons as in Definition 3.2.6.

Lemma 3.2.40. Let µ be an algebraic soliton for the generalized Ricci flow. Then, Gµ, defined as in
(3.51), is a generalized Ricci soliton.

Proof. The first equation in (3.61) can be equivalently written, in terms of symmetric (0, 2)-tensors, as

RicBgµ,H = λgµ +
1

2
(gµ(D·, ·) + gµ(·, D·) = λgµ − 1

2
LXD

gµ ,

where XD = d
dt

∣∣
t=0

φt with φt ∈ Aut(Gµ) such that deφt = etD. Moreover, plugging the first equation of
(3.61) into the second one, we have

∆µH = λH + ρ(λId +D)H = −2λH + ρ(D)H = −2λH + LXD
H .

The claim follows using Proposition 3.2.9.

Before going into the discussion of algebraic solitons in the nilpotent case, we will need the following
preliminary lemma about λ-derivations, which is nothing but an adaptation of Lemma 3.2.8 to the
invariant case.

Lemma 3.2.41. Let (g⊕ g∗)µ be a left-invariant ECA over a Lie group G. Then, we have that, for any
c ∈ R\{0} and λ ∈ R,

Aut(c · (g⊕ g∗)µ, (g⊕ g∗)µ) =
{
Āce

b | b ∈ Λ2g∗ , A ∈ Aut(µ) , A−1 ·H = c(H − db)
}

and

Derλ(µ) =

{(
D 0
α −2λId −D∗

) ∣∣∣∣ D ∈ Der(µ), ρ(D)H − dµα− 2λH = 0

}
.

Proof. The first assertion follows directly from the discussion in the non-invariant case. Definition 3.2.7
guarantees that a λ-derivation has to be of the form

D =

(
D 0
α −2λId −D∗

)
,

where D ∈ Der(µ) and ρ(D)H − dα− 2λH = 0 .

The moment map formulation in the nilpotent case allows us to derive many other properties con-
cerning algebraic solitons, which, in this particular case, will be called generalized nilsolitons, mimicking
the classical nomenclature, see [217].

Proposition 3.2.42. Let µ ∈ D be a generalized nilsoliton. Then, it is expanding. Moreover, the
derivation D satisfies the following property:

tr

((
D +

1

4
H2

)
D′
)

= −λtr(D′) ,

for all D′ ∈ Der(µ) defining D′ = (D′, α) ∈ Derλ′(µ), for some λ′ ∈ R. Finally, ḡ(ιXH, d
∗
µH) = 0, for

all X ∈ g.
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Proof. We have that

ℓµ = 6ḡ(Rcµ −Aµ,Mµ) = 6|Rcµ −Aµ|2 ≥ 0 ,

where the last equality follows from Corollary 3.2.25. On the other hand, |Rcµ − Aµ|2 = 0 would, in
particular, imply that

Ricµ =
1

4
H2 ≥ 0 ,

which cannot happen in the nilpotent case, see [220, Lemma 4.2, (iii)], giving us the first claim.
As regards the second, fixed D′ = (D′, α) ∈ Derλ′(µ), we have that

ḡl(λId + D, λ′Id + D′) =
1

6
ḡ(Θ(λ′Id)µ,µ) = −λ

′

6
|µ|2 = λ′

(
2Rµ − 1

6
|H|2

)
. (3.62)

On the other hand, we can use Proposition 3.2.39 to deduce that D = (D,−d∗µH) and then obtain

ḡl(λId + D, λ′Id + D′) = 2tr((λId +D)(λ′Id +D′)) − 1

6
ḡ(d∗µH,α) .

The fact that D′ ∈ Derλ′(µ) implies, thanks to Lemma 3.2.41, that dµα = ρ(D′)H − 2λ′H. This can be
used to infer that

ḡl(λId + D, λ′Id + D′) = 2λ′tr(RicBµ,H) + 2λtr(D′) + 2tr(DD′) − 1

6
ḡ(α, d∗µH)

= 2λ′
(

Rµ − 1

4
|H|2

)
+ 2λtr(D′) + 2tr(DD′) +

1

2
tr(H2D′) +

1

3
λ′|H|2

=λ′
(

2Rµ − 1

6
|H|2

)
+ 2λtr(D′) + 2tr(DD′) +

1

2
tr(H2D′) .

(3.63)

Now, it is sufficient to use (3.63) in (3.62) to obtain the claim. Finally, recall that for metric nilpotent Lie
algebras, any symmetric derivation D satisfies tr(adX D) = 0, for all X ∈ g. Then, the soliton equation
in µ implies

0 = tr(adX H
2) = −1

3
ḡ(ρ(adX)H,H) = −1

3
ḡ(LXH,H) = −1

3
ḡ(dµιXH,H) = −1

3
ḡ(ιXH, d

∗
µH),

as claimed.

Motivated by the wide range of results concerning classical nilsolitons proved throughout the years,
see for instance [217], many questions about generalized nilsolitons can be raised. First of all, as usual, let
(E,G) be a left-invariant metric ECA over a nilpotent Lie group G and assume that G is a generalized nil-
soliton. Using the preferred isotropic splitting induced by G, we can identify (E,G) ≃ ((g⊕g∗)H ,G(ḡ, 0)),
for some closed H ∈ Λ3g∗. So, in this setting, one can wonder if G is unique, up to scaling and up
to the action of Aut([·, ·]), among left-invariant generalized metrics defining a preferred representative
H ′ ∈ [H] ∈ H3(g,R).

Remark 3.2.43. Considering [H] ∈ H3(G,R), the uniqueness is not true in general. Indeed, on n3 =
Lie(Heis(3,R)), the following

µ(e1, e2) = e3 , H = e123 , λ = −2 , D = diag(1, 1, 2)

defines a generalized nilsoliton, see Proposition 3.2.63 for the proof, with [H] = 0 ∈ H3(Heis(3,R),R).
One can easily observe that the above generalized nilsoliton defines exactly the expanding soliton for the
generalized Ricci flow described in Example 3.2.11. On the other hand, µ(e1, e2) = e3 defines also the
classical nilsoliton, see [218, Theorem 4.2], i.e. H = 0.
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In order to address the uniqueness question, we need to understand better the geometric properties
of the space of left-invariant generalized metrics.

As we saw in Proposition 3.2.15, fixed E a left-invariant ECA over a Lie group G, not necessarily
nilpotent, the space of left-invariant generalized metric MG can be presented as a homogeneous space
where L is acting transitively by conjugation.

Of course, Proposition 3.2.15 gives also that the action of SO(⟨·, ·⟩) is transitive on MG. This allows
us to present MG as a homogeneous space in a different manner. Clearly, the isotropy of SO(⟨·, ·⟩) in
G ∈ MG is

GSO(⟨·,·⟩) =
{
F ∈ SO(⟨·, ·⟩) |FGF−1 = G

}
=: Isom(G,SO) .

On the other hand, we observe that

θ : SO(⟨·, ·⟩) → SO(⟨·, ·⟩) , σ(F ) = GFG ,

is an automorphism of SO(⟨·, ·⟩) which is clearly involutive, and the set of fixed points of θ precisely
coincides with Isom(G,SO). Thus, we obtain that (SO(⟨·, ·⟩), Isom(G,SO)) is a Riemannian symmetric
pair, as defined in [184, IV 3.4]. As a consequence, we obtain a reductive decomposition of so(⟨·, ·⟩) = h⊕m
such that [m,m] ⊂ h, where, using (E,G) ≃ ((g⊕ g∗)H ,G(ḡ, 0)),

h := Lie(Isom(G,SO)) = so(g⊕ g∗,G) =

{(
A ḡ−1αḡ−1

α −A∗

) ∣∣∣∣ A ∈ so(n) , α ∈ Λ2g∗
}

and

m := ker(dθ + Id) =

{(
A −ḡ−1αḡ−1

α −A∗

) ∣∣∣∣ A ∈ Sym(n) , α ∈ Λ2g∗
}
.

As usual, we will be identifying m with TGMG. Now, using again the identification (E,G) ≃ ((g ⊕
g∗)H ,G(ḡ, 0)), we can define a non degenerate bilinear form ḡ on so(⟨ · , · ⟩) such that, for all (A,α), (A′, α′) ∈
m and (B, β), (B′, β′) ∈ h,

ḡ((A,α), (A′, α′)) = 2tr(AA′) + 2ḡ(α, α′) , ḡ((B, β), (B′, β′)) = −3

4
(tr(BB′) + ḡ(β, β′)) .

It is not hard to see that ḡ is an Ad(Isom(G,SO))-invariant bilinear form which, when restricted to l,
coincides with the inner product ḡl defined in (3.42). Moreover, using [209, Theorem 3.5], the SO(⟨·, ·⟩)-
invariant Riemannian metric induced by it on MG will be naturally reductive. This readily guarantees
that all the geodesics emanating from G are of the form exp(tX) · G, for some X ∈ m, see [209, Theorem
3.3]. Finally, [209, Theorem 3.5] guarantees that (MG, ḡ) has all non-positive sectional curvatures.

Keeping in mind this and building from [182], we can define the generalized scalar functional

S : MG → R ,

which associates to a given left-invariant generalized metric its generalized scalar curvature as in (3.53).
We will study some analytic properties of this functional.

Proposition 3.2.44. Let E be a left-invariant ECA over a nilpotent Lie group G. Then, we have:

1. the gradient of S at any G ∈ MG is given by

∇GS = M̃(G) :=

(
RicBḡ,H

1
6 ḡ

−1d∗ḡHḡ
−1

− 1
6d

∗
ḡH −(RicBḡ,H)∗

)
after using (E,G) ≃σ ((g⊕ g∗)H ,G(ḡ, 0));

2. S is concave along geodesics, i.e. if γ is a geodesic emanating from G ∈ MG, then (S ◦ γ)
′′
(0) ≤ 0;

3. (S ◦ γ)
′′
(0) = 0 if and only if γ(t) = exp(tX) · G where X ∈ Der0([·, ·]) ∩ m. In this case, S ◦ γ is

constant.
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Proof. We fix G ∈ MG and, as usual, we identify (E,G) ≃σ ((g⊕ g∗)H ,G(ḡ, 0)). We will make use of the
moving Dorfman brackets approach. First of all, we observe that, if α ∈ Λ2g∗ and µ ∈ D, we have that

2

〈
GΘ

(
0 −ḡ−1αḡ−1

0 0

)
µ(ei, ej),µ(ei, ej)

〉
= −µijkµ

s
ijαks ,

while

4

〈
GΘ

(
0 −ḡ−1αḡ−1

0 0

)
µ(ei, e

j),µ(ei, e
j)

〉
= −2µjisµiksαjk

which gives us that

ḡ

(
Θ

(
0 −ḡ−1αḡ−1

0 0

)
µ,µ

)
= 3µijkµ

s
ijαsk = −ḡ(dµα,H) . (3.64)

Then, combining (3.64) with (3.45), we obtain that, for X = (A,α) ∈ m,

ḡ(Θ(X)µ,µ) = ḡ

(
Θ

(
A 0
α −A∗

)
µ,µ

)
+ ḡ

(
Θ

(
0 −ḡ−1αḡ−1

0 0

)
µ,µ

)
= 12tr(RicBµ,HA) − 2ḡ(dµα,H) .

On the other hand, considering

M̃µ =

(
RicBµ,H

1
6 ḡ

−1d∗µHḡ
−1

− 1
6d

∗
µH −(RicBµ,H)∗

)
we then obtain that

ḡ(M̃µ, X) = 2tr(RicBµ,HA) − 1

3
ḡ(α, d∗µH) =

1

6
ḡ(Θ(X)µ,µ) =

1

12

d

dt

∣∣∣
t=0

|exp(tX) · µ|2 .

We now compute the gradient of S at G. If µ ∈ D is the given Dorfman bracket on E, we know that,
for any t, the generalized metric exp(tX) · G is isometric to Gexp(−tX)·µ. So, given X ∈ m, we have that

dGS(X) =
d

dt

∣∣∣
t=0

S(exp(tX) · G) = − 1

12

d

dt

∣∣∣
t=0

|exp(−tX) · µ|2 =
1

6
ḡ(Θ(X)µ,µ) = ḡ(M̃µ, X) = ḡ(M̃(G), X) ,

giving us the first claim.
Let now γ(t) = exp(tX) · G, for some X ∈ m, be a geodesic emanating from G, we have

(S ◦ γ)
′′
(0) = − 1

12

d2

dt2

∣∣∣
t=0

|exp(−tX) · µ|2 = −1

6
(ḡ(Θ(X)Θ(X)µ,µ) + |Θ(X)µ|2) = −1

3
|Θ(X)µ|2 ≤ 0 ,

(3.65)
giving us the second claim.

Finally, clearly, if X ∈ Der0(µ)∩m, exp(tX) ∈ Aut(µ) which guarantees that S ◦ γ is constant for all
t, the viceversa holds too thanks to (3.65).

Remark 3.2.45. The element M̃µ ∈ m can also be viewed as the moment map of the SO(⟨ · , · ⟩)-action
on the space of Dorfman brackets D. Indeed, it precisely satisfies the relation:

ḡ(M̃µ, X) =
1

6
ḡ(Θ(X)µ,µ) , X ∈ m .

Unfortunately, M̃µ coincides with the generalized Ricci curvature only on the subspace of Dorfman bracket
with harmonic torsion.

Proposition 3.2.44 can be considered as the analogue, in the generalized setting, of [182, Lemma 3.3]
specialized in the nilpotent case. So, following the steps in [217, Theorem 3.5], we can give a partial
answer to the uniqueness question, proving that generalized nilsolitons with harmonic torsion are unique.
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Theorem 3.2.46. Let E be a left-invariant ECA over a nilpotent Lie group G and let G be a generalized
nilsoliton with harmonic torsion. Then, up to scaling and up to the action of Aut(E), G is unique.

Proof. Let us now consider the following closed Lie subgroup of SO(⟨ · , · ⟩):

K := ±
∏
c∈R+

c−
1
2 Aut(c · E,E) .

First of all, we need some clarifications about K. The action of an element in K on G ∈ MG is defined as
follows: an element c−

1
2F ∈ K acts on G as the following composition:

c−
1
2F : (E, ⟨ · , · ⟩, c− 1

2µ,G) → (c · E,G) → (E,F · G) (3.66)

where the first arrow is defined, using the isometry induced by the preferred isotropic splitting of G, by
the transformation

c−
1
2 Id : ((g⊕ g∗)

c−
1
2 µ
,G(ḡ, 0)) → ((g⊕ g∗)cH ,G(cḡ, 0))

which is an isometry of ECA’s thanks to Proposition 3.2.21. Furthermore, we can use the explicit isometry
in Remark 3.2.5 to identify

((g⊕ g∗)cH ,G(cḡ, 0)) ≃ (c · E,G) .

In conclusion, the first arrow in (3.66) is the composition of the above isometries and it is then induced

by the transformation c−
1
2 Id. Finally, the last arrow in (3.66) is just the usual action of the element

F ∈ Aut(c · E,E). Moreover, by Lemma 3.2.41, any element c−
1
2F can be represented with

c−
1
2 Id ◦ Āceb =

(
c−

1
2A 0

((c−
1
2A)−1)∗b ((c−

1
2A)−1)∗

)
= c−

1
2Aeb ∈ SO(⟨ · , · ⟩) ,

where b ∈ Λ2g∗ , and A ∈ Aut(µ) such that A−1 · H = c(H − db). Finally, −c 1
2F is given by the

composition of
−Id : ((g⊕ g∗)

−c−
1
2 µ
,G(ḡ, 0)) → ((g⊕ g∗)

c−
1
2 µ
,G(ḡ, 0))

with the previously defined action. Now, we can prove that K is actually a Lie subgroup of SO(⟨ · , · ⟩).
Clearly, it is sufficient to prove that, if c−

1
2F ∈ c−

1
2 Aut(c · E,E) and γ−

1
2G ∈ γ−

1
2 Aut(γ · E,E), then

c−
1
2F (γ−

1
2G)−1 ∈ K. It is not hard to see that

c−
1
2Ace

b(γ−
1
2Bγe

b′)−1 =

(
c

γ

)− 1
2

(AB−1) c
γ
eβ , β := γB · (b− b′) .

Then, we observe that B ·H = 1
γH +B · db′. This implies that

BA−1 ·H = c(B ·H −B · db) =
c

γ
(H − dβ) ,

giving us the claim. Moreover, K is closed in SO(⟨ · , · ⟩). Thanks to the structure of the subgroup K, the
claim is equivalent to prove that if

c
− 1

2
i Aut(ci · E,E) ∋ c

− 1
2

i Fi → F∞ ∈ SO(⟨ · , · ⟩) , i→ ∞ ,

then F∞ ∈ K. Following [182, Remark 3.7], let us fix a generalized metric G ∈ MG, then

c
− 1

2
i Fi · G → G̃ ∈ MG.

But, as a consequence of (3.53), the effect of scaling on the scalar curvature and on |H|2, recalling that
Fi preserves the Dorfman bracket, for all i, we have that,

S(c
− 1

2
i Fi · Ḡ) = ciS(Fi · Ḡ) = ciS(Ḡ) → S(G̃) , i→ ∞ .
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If S(G̃) ̸= 0, then ci → c, as i → ∞. This, in particular, implies that Fi → F̃ ∈ SO(⟨ · , · ⟩) and

so F∞ = c−
1
2 F̃ . We just need to prove that F̃ ∈ Aut(c · E,E). This is guaranteed by the fact that

Fi = (Ai)cie
bi ∈ Aut(ci · E,E) if and only if

A−1
i ·H = ci(H − dbi) and Ai ∈ Aut(µ)

and passing to the limit in the last equality gives us the claim. Finally, if S(G̃) = 0, then, automatically,
the Dorfman bracket on E is abelian, i.e. H = 0 and µ is abelian. In this case,

Aut(c · E,E) = {Āceb |A ∈ GL(g) , b ∈ Λ2g∗} .

Then, K = Aut(E), which is clearly closed.
Easily, we see that

TG(K · G) =
⊕
λ∈R

(λId + (Derλ(µ) ∩m)) .

Moreover, we note that, using again Lemma 3.2.41

λId + (Derλ(µ) ∩m) =

{(
λId +D 0

0 −λId −D∗

) ∣∣∣∣ D ∈ Der(µ) ∩ Sym(n), ρ(D)H − 2λH = 0

}
.

Now, suppose that G and G′
are two generalized nilsolitons with harmonic torsion which do not belong

to the same K-orbit. Since O = K · G and O′ = K · G′
consist in generalized nilsolitons, we can assume

that d(G,G′
) = d(O,O′) and that the unique geodesic γ : [0, 1] → MG such that γ(0) = G and γ(1) = G′

meets O and O′ orthogonally. Thanks to Remark 3.2.45, we know M̃(G) = Rc(G) = λId + D , D ∈
Derλ(µ) ∩ m and using Proposition 3.2.44 (1), we have that 0 = g(γ′(0),∇GS) = g(γ′(0),Rc(G)) and

0 = g(γ′(1),∇G′S) = g(γ′(1),Rc(G′
)) which gives us that

(S ◦ γ)′(0) = (S ◦ γ)′(1) = 0 .

On the other hand, using Proposition 3.2.44 (2), S is concave along the geodesics, so S ◦ γ is constant,
which, thanks to Proposition 3.2.44 (3), happens if and only if γ = exp(tX) · G where X ∈ Der0(µ) ∩m,
giving us a contradiction.

A first consequence of Theorem 3.2.46 is the uniqueness among generalized nilsolitons within 0 ∈
H3(g,R) of the classical nilsoliton, if it exists.

Unfortunately, the proof of Theorem 3.2.46 is exclusive of the harmonic torsion case. In view of this
and of Theorem 3.2.46 itself, we can weaken the uniqueness question as follows.

Question 3.2.47. Let (E,G) a left-invariant metric ECA over a nilpotent Lie group G and assume G is
a generalized nilsoliton. Using (E, Ḡ) ≃ ((g⊕ g∗)H ,G(ḡ, 0)), is it H ḡ-harmonic?

With last objective of addressing Question 3.2.47, we can find a equivalent condition for it to be true.

Proposition 3.2.48. Let µ ∈ D be an algebraic soliton. Then, d∗µH = 0 if and only if tr((d∗µH)2RicBµ,H) ≤
0.

Proof. Using the fact that (3.39) completely determines µ ∈ D and (3.60), we have that µ can be viewed
as a pair (µ,H) solving {

θ(RicBµ,H)µ = −λµ,
ρ(RicBµ,H)H + dµd

∗
µH = −λH,

for some λ ∈ R. Applying d∗ to the second equation yields, using (3.50),

0 = λd∗µH + d∗µρ(RicBµ,H)H + d∗µdµd
∗
µH = ρ(RicBµ,H)d∗µH + d∗µdµd

∗
µH, (3.67)
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where in the last equality we used θ(RicBµ,H)µ = −λµ. Now, just as in the proof of Proposition 3.2.24,
we have that ḡ(ρ(A)α, α) = −2 tr(α2A), for all 2-forms α ∈ Λ2g∗ and A ∈ gl(g). Now taking an inner
product of (3.67) with d∗µH gives

0 = ḡ(ρ(RicBµ,H)d∗µH, d
∗
µH) + |dµd∗µH|2 = −2 tr((d∗µH)2RicBµ,H) + |dµd∗µH|2.

Since − tr((d∗µH)2RicBµ,H) ≥ 0, then, we yield d∗µH = 0 as required.

Besides Question 3.2.47, one can also pose a finiteness question on generalized nilsolitons, namely:

Question 3.2.49. Let G be a nilpotent Lie group. Is the set of generalized nilsolitons on G finite?

In Section 3.2.11 we will provide, within the full classification of generalized nilsolitons up to dimension
4, a counterexample to Question 3.2.49.

Finally, it is well known, see for instance [217], that there exist nilpotent Lie algebras which do not
admit any classical nilsoliton. So, one may hope to produce generalized nilsolitons even on such Lie
algebras. This cannot be done in general. Indeed, on characteristically nilpotent Lie algebras, i.e. such
that the Lie algebra of derivations is nilpotent, we cannot find neither classical nor generalized nilsolitons,
due to the fact that any derivation is nilpotent, see [317, Theorem 5].

3.2.9 Long-time behaviour on nilmanifolds

In this section, we will recall a definition of Cheeger-Gromov convergence for exact Courant algebroids
introduced in [149]. Then, we will discuss the long-time behaviour of the generalized Ricci flow on
nilpotent Lie groups in the particular case in which the starting ECA has harmonic torsion, showing
that, in this case, the asympotics are precisely the generalized nilsolitons defined in Subsection 3.2.8.

Given a subset V ⊂M of a manifold, we will denote by iV : V →M the inclusion map.

Definition 3.2.50 ([149, Definition 5.25]). A sequence of pointed metric ECAs (Ei → Mi,Gi, pi)i≥1

converges to (E → M,G, p) in the generalized Cheeger–Gromov topology if there exists a sequence
{Ui}i≥1 of neighbourhoods of p exhausting M and Courant algebroid isomorphisms

(Fi, fi) : (i∗Ui
E → Ui) → (Fi(i

∗
Ui
E) → fi(Ui)) ⊂ (Ei →Mi),

satisfying:

1. f−1
i (pi) → p, as i→ ∞;

2. F−1
i ◦ Gi ◦ Fi → G in C∞

loc(E), as i→ ∞ .

As usual, fixing isotropic splittings of any ECA of the sequence, we can rewrite this definition as
follows.

Lemma 3.2.51. The sequence ((TMi⊕T ∗Mi)Hi
,G(gi, bi), pi)i≥1 converges to ((TM⊕T ∗M)H ,G(g, b), p)

in the generalized Cheeger–Gromov topology if and only if there exists an exhaustion {Ui}i≥1 of M con-
sisting in neighbourhoods of p, diffeomorphisms fi : Ui → fi(Ui) ⊂ Mi, and 2-forms ai ∈ Λ2(Ui) such
that

1. i∗Ui
H = f∗i Hi + dai, for all i ≥ 1;

2. f−1
i (pi) → p, as i→ ∞;

3. f∗i gi → g in C∞
loc(M), as i→ ∞;

4. f∗i bi − ai → b in C∞
loc(M), as i→ ∞.
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Proof. For the first direction, we see that in these isotropic splittings, the isomorphisms in Defini-
tion 3.2.50 are given by

(Fi, fi) = (fi ◦ eai , fi),
for some 2-forms ai ∈ Λ2(Ui) satisfying

i∗Ui
H = f∗i Hi + dai.

In this case
F−1
i ◦ Gi(gi, bi) ◦ Fi = G(f∗i gi, f

∗
i bi − ai),

so Fi ◦ Gi(gi, bi) ◦ F−1
i → G(g, b) if and only if Item 3 and Item 4 hold. The converse is easily seen.

Moreover, we can specify Lemma 3.2.51 when the preferred isotropic splitting of Gi are chosen.

Corollary 3.2.52. The sequence ((TMi⊕T ∗Mi)Hi ,G(gi, 0), pi) converges to ((TM ⊕T ∗M)H ,G(g, 0), p)
in the generalized Cheeger–Gromov topology if and only if there is an exhaustion {Ui ∋ p} of M , diffeo-
morphisms fi : Ui → fi(Ui) ⊂Mi, and 2-forms ai ∈ Λ2(Ui) such that

1. i∗Ui
H = f∗i Hi + dai, for all i ≥ 1;

2. f−1
i (pi) → p, as i→ ∞;

3. f∗i gi → g in C∞
loc(M), as i→ ∞;

4. ai → 0 in C∞
loc(M), as i→ ∞.

In particular, f∗i Hi → H in C∞
loc(M), as i→ ∞.

We now describe how such convergence is achieved at the level of Lie brackets. Fix a vector space
g and a generalized metric G = G(ḡ, 0) on g ⊕ g∗. For a Dorfman bracket µ on g ⊕ g∗, denote by
((g⊕ g)µ,Gµg

,Gµ) the corresponding metric ECA.

Theorem 3.2.53. Let (µi)i≥1 be a sequence of nilpotent Dorfman brackets converging to µ on g ⊕
g∗. Then,

(
(g⊕ g∗)µi

,G(µi)g ,Gµi
, e
)
i≥1

converges to
(

(g⊕ g∗)µ,Gµg
,Gµ, e

)
in the generalized Cheeger–

Gromov topology.

Proof. As usual, we consider G(g, 0) as a background generalized metric, hence(
(g⊕ g∗)µi ,G(µi)g ,Gµi , e

)
= ((g⊕ g∗)Hi ,Gµi ,G(gµi , 0), e) ,

where Hi = µΛ3 and µi = µg. We also set µ = µg and H = µΛ3 . Then by nilpotence, the exponential
maps of Gµi and Gµ are diffeomorphisms. We consider

fi := expµi
◦ exp−1

µ : Gµ → Gµi
,

which is a diffeomorphism with fi(e) = e. Recall (see for instance [221]) that for X ∈ g, the exponential
map expµ : g → Gµ of the Lie bracket µ ∈ Λ2g∗ ⊗ g satisfies

(d expµ)X = (dLexpµ(X))e ◦
Id−e− adµX

adµX
,

where
Id−e− adµX

adµX
=

∞∑
k=0

(−1)k

(k + 1)!
(adµX)k.

Hence, dfi depends continuously on µi, and an argument analogous to [221, Corollary 6.10] shows that
f∗i gµi

→ gµ and f∗i Hi → H smoothly and uniformly on compact subsets. Then, we define

ai := ιId(H − f∗i Hi),
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where Id ∈ Γ(TRn) is the identity vector field on Rn. By Cartan’s formula,

dai = LId(H − f∗i Hi) = H − f∗i Hi.

Hence, H = f∗i Hi+dai with ai → 0 smoothly and uniformly on compact subsets. Thus, the result follows
by Corollary 3.2.52.

With the technical details established, we now turn to studying the long-time behaviour of the gen-
eralized Ricci flow on nilpotent Lie groups when the initial metric ECA has harmonic torsion.

Proposition 3.2.54. Let (µ(t))t∈[0,∞) be a solution to the generalized bracket flow (3.46) such that µ(0)g

is a nilpotent Lie bracket and µ(0)Λ3 is harmonic. Then, the rescaled brackets µ(t)
|µ(t)| converge as t → ∞

to an algebraic soliton bracket µ∞ ̸= 0.

Proof. Long-time existence follows immediately from Corollary 3.2.34. Up to a time-reparametrization,

the rescaled brackets µ(t) = µ(t)
|µ(t)| solve (3.59) with ℓ = ℓµ, defined in Subsection 3.2.8. That is, the

scalar-normalized bracket flow. Since the brackets are nilpotent, Corollary 3.2.25 implies that

d

dt
µ = −Θ(Mµ + 6|Mµ|2 Id)µ.

On the other hand, using the same strategy as in [53, Lemma 7.2], Lemma 3.2.28 and similar computations
as in the proof of Proposition 3.2.44, one can easily see that this is, up to scaling, the negative gradient
flow of the real-analytic functional

Λ2(g⊕ g∗)∗ ⊗ (g⊕ g∗) ∋ µ 7−→ |Mµ|2

|µ|4
∈ R.

By compactness and  Lojasiewicz’s Theorem on real-analytic gradient flows [237], the ω-limit consists of
a unique fixed point µ∞ to the scalar-normalized bracket flow, and hence it is an algebraic soliton.

Let us remark some important facts. First of all, we should observe that the group L is not reduc-
tive. This does not allow us, in general, to use directly [53, Lemma 7.2] to deduce the fact that the
scalar-normalized bracket flow is a gradient flow. Moreover, it is easy to be shown that, removing the
harmonicity of the initial torsion, the scalar-normalized bracket flow is not the negative gradient flow the
above functional. Finally, this gives an alternative and dynamical proof of the uniqueness of generalized
nilsolitons with harmonic torsion.

Let us now prove the main convergence results on nilpotent Lie groups.

Theorem 3.2.55. Let (E → G,Gt) be a left-invariant solution of the generalized Ricci flow on a
left-invariant ECA over a simply-connected, nilpotent, non-abelian Lie group G. Assume that the pre-
ferred representative of the Ševera class of E determined by G0 is harmonic. Then, the scaled ECA’s
(−S(Gt) · E,Gt) converge in the generalized Cheeger–Gromov sense to a left-invariant, nilpotent, non-
abelian, generalized Ricci soliton.

Proof. After choosing an isotropic splitting, the left-invariant solution is equivalent to the bracket flow
(3.46) by Theorem 3.2.30. Denoting this solution by (µ(t))t∈[0,∞), we have by (3.54) and Proposi-

tion 3.2.54 that the rescaled brackets µ(t)
(−S(Gt))1/2

converge to a nilpotent, non-abelian algebraic soliton

bracket. These rescaled brackets correspond to the rescaled ECA’s (−S(Gt) ·E,Gt) by Proposition 3.2.21
and Lemma 3.2.4. Finally, by Theorem 3.2.53, we obtain convergence of (−S(Gt) ·E,Gt) to an algebraic
soliton.

From a more classical perspective, we obtain the following slightly weaker statement:

Corollary 3.2.56. Let (G, Ht, gt) be a left-invariant solution of the generalized Ricci flow on a simply-
connected, non-abelian, nilpotent Lie group G and assume that H0 is g0-harmonic. Then, the rescaled
family (G,−S(Ht, gt)Ht,−S(Ht, gt)gt) converges to a nilpotent, generalized soliton (G, H, g) in the follow-
ing sense: for every sequence of times, there is a subsequence tk → ∞, and diffeomorphisms fk : G → G
fixing the identity, such that (f∗kHtk , f

∗
kgtk) → (H, g), as k → ∞, in C∞

loc(G).
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3.2.10 Connections to the pluriclosed flow

In this subsection, we show how all the machinery developed in the previous subsections applies to the
special case of pluriclosed flow.

First of all, as a direct consequence of Proposition 1.1.60, Remark 1.2.14 and Corollary 3.2.34, we
have the following.

Corollary 3.2.57. Let (G, J, g) be a solvable Lie group endowed with a left-invariant SKT structure.
Then, the solution of the pluriclosed flow starting from g is immortal.

Corollary 3.2.57 recovers many known results in the literature such as those in [54] on compact
complex surfaces, in [99] on SKT nilmanifolds, in [32] on almost-abelian SKT solvmanifolds and on
Oeljeklaus-Toma manifolds, as saw in Section 3.1.

The gauge-equivalence between pluriclosed and generalized Ricci flow allows us also to give an equiv-
alent condition for a generalized Ricci soliton to be a pluriclosed soliton.

Theorem 3.2.58. Let (M,J) be a complex manifold endowed with a SKT Hermitian metric g. Then, a
soliton (g,H,X) for the generalized Ricci flow is a pluriclosed soliton if and only if H = dcω and X + θ♯

is holomorphic.

Proof. We recall that (ω,X) is a pluriclosed soliton if and only if

(RicB(ω))1,1 = λω +
1

2
LXω , X holomorphic , λ ∈ R .

By means of the holomorphicity of X, we have that [LX , J ] = 0 on any form on M , yielding that
dcLXω = LXdcω. Then, using [305, Proposition 6.4] and defining H = dcω, we obtain

1

2
∆gH − 1

2
Lθ♯H = −dc(RicB(ω))1,1 = −λH − 1

2
LXH ,

which gives us
∆gH = −2λH − LX−θ♯H .

On the other hand, we have that

RicBg,H +
1

2
Lθ♯g = (RicB(ω))1,1(·, J ·) = λg +

1

2
LXg.

This guarantees that

RicBg,H = λg +
1

2
LX−θ♯g ,

giving us the first claim. The converse can be proved following the same steps backwards.

In view of Proposition 1.1.60 and Remark 1.2.14, we readily obtain the gauge-equivalence between the
generalized bracket flow and the bracket flow for the pluriclosed flow introduced in [32] and [99]. First of
all, we recall the definition of the latter.

Definition 3.2.59. Let (G, µ0) be a Lie group endowed with left-invariant complex structure J and a
left-invariant SKT metric ω. The bracket flow is the following evolution equation:

d

dt
µ = −1

2
θ(P )µ , µ(0) = µ0 (3.68)

where P ∈ gl(g, J) defined by ω(P ·, ·) = (RicB(ω))1,1(·, ·).

Combining Theorem 3.2.30, Proposition 1.1.60, Remark 1.2.14 and [99, Theorem 4.2], we have the
following.
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Corollary 3.2.60. Up to a time reparametrization by 2, the bracket flow (3.68) is gauge equivalent to
the generalized bracket flow (3.46).

Finally, Theorem 3.2.58 can be specialized in the case of algebraic solitons, as defined in Defini-
tion 3.2.38 and in [32, Definition 2.7]. For the sake of clarity, we quickly recall the definition of algebraic
solitons for the pluriclosed flow.

Definition 3.2.61 ([32], Definition 2.7). A Lie group G endowed with a left-invariant SKT structure
(J, g) is called algebraic pluriclosed soliton if there exists D ∈ Der(g) ∩ gl(g, J) and λ ∈ R such that

P = λId +
1

2
(D +Dt).

Corollary 3.2.62. Let G be a Lie group endowed with a left-invariant SKT structure (J, g). Then, an
algebraic soliton (g,H,D) for the generalized Ricci flow is an algebraic pluriclosed soliton if and only if
D − adθ♯ ∈ Der(g) ∩ gl(g, J) and H = dcω.

Proof. By Lemma 3.2.40, (g,H,D) is an algebraic soliton for the generalized Ricci flow if and only if
(g,H,−XD) is a soliton for the generalized Ricci flow where XD is the vector field defined by

XD =
d

dt

∣∣∣
t=0

φt with φt ∈ Aut(G) such that deφt = etD .

On the other hand, by Theorem 3.2.58, (g,H,−XD) is a pluriclosed soliton if and only if H = dcω and
−XD + θ♯ is holomorphic. But, −XD + θ♯ is holomorphic if and only if D − adθ♯ ∈ gl(g, J), giving the
claim.

3.2.11 Classification of solitons up to dimension 4

In this subsection, we will provide a classification of generalized nilsolitons on nilpotent Lie algebras of
dimension up to 4. As it is clear from the discussion in Subsection 3.2.8, we can only hope to classify
generalized nilsolitons up to scaling and up to generalized automorphisms of the ECA we are considering.
Classical nilsolitons were classified in [218]. So, we will focus on classifying the non-classical ones.

As it is well known, besides the abelian ones, nilpotent Lie algebras of dimension up to 4 are 3: n3,
the Lie algebra associated to the Heisenberg group Heis(3,R), which is the only non-abelian nilpotent
Lie algebra of dimension 3, n3 ⊕R and n4, the only indecomposable non-abelian nilpotent Lie algebra of
dimension 4.

We will go through the classification case by case using (3.61).
In dimension 3, there is only one generalized soliton which is non-classic. This is mainly due to the

fact that H3(n3,R) = R.

Proposition 3.2.63. On n3, the unique non-classic generalized nilsoliton is given by:

µ(e1, e2) = e3 , H = e123 , λ = −2 , D = diag(1, 1, 2) .

Proof. Given a left-invariant metric on Heis(3,R), thanks to [242, pag 305, (4.2)], we can always find an
orthonormal basis {e1, e2, e3} of n3 such that

µ(e1, e2) = ae3 , a ∈ R\{0} .

Moreover, thanks to [242, Theorem 4.3], we know that

Ricµ =
1

2
a2diag(−1,−1, 1) .

Now, every 0 ̸= H ∈ Λ3n∗3, it will be of the form H = be123 with b ̸= 0 and it will be trivially closed and
harmonic. On the other hand, we have that

H2 = 2b2Id
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which implies that

RicBµ,H =
1

2
diag(−(a2 + b2),−(a2 + b2), a2 − b2) .

Moreover, every D ∈ Der(n3, µ) has to satisfy

D3
3 = D1

1 +D2
2 .

This guarantees that

RicBµ,H − λId ∈ Der(n3, µ)

if and only if

λ = −1

2
(3a2 + b2) .

On the other hand, by straightforward computations we have that

0 = ρ(RicBµ,H)H − ∆µH + λH = −(a2 − b2)H ,

which is satisfied if and only if a2 = b2, giving us the claim, using Proposition 3.2.39.

Now, we will focus on the 4-dimensional case. A first difference between the 3-dimensional one is a
larger third cohomology group which allows a wider possibility for a generalized metric to be a generalized
nilsoliton.

We will, first of all, analyse the case of n3 ⊕ R. An important remark to be done is that this Lie
algebra is the only one among the 4-dimensional ones which admits left-invariant complex structures,
see for instance [238] or [279]. The complex structure on n3 ⊕ R is unique up to biholomorphisms and
quotients by co-compact lattices give rise to the so-called primary Kodaira surfaces, the only compact
complex surfaces with zero Kodaira dimension and first Betti number equal to 3. Clearly, every left-
invariant Hermitian metric on n3 ⊕ R is SKT. So, using Corollary 3.2.62, we will be able to detected
which generalized nilsoliton on n3 ⊕ R is an algebraic pluriclosed soliton.

Proposition 3.2.64. On n3 ⊕ R, the only non-classic generalized nilsolitons are the following:

1. µ(e1, e2) = e3 , H = e123 , λ = −2 , D = diag(1, 1, 2, 2) .

2. µ(e1, e2) = e3 , H = λ1e
234 + λ2e

134 , λ21 + λ22 = 1 , λ = −3

2
, D = diag

(
1 − λ22

2
, 1 − λ21

2
,

3

2
, 1

)
.

In particular, the first one is the unique algebraic pluriclosed soliton on n3 ⊕ R.

Proof. Thanks to [328, Theorem 3.1], every inner product on n3 ⊕ R is isometric to an inner product
such that an orthonormal basis {e1, . . . , e4} satisfies the following

µ(e1, e2) = ae3 , a ̸= 0 .

We know that D ∈ Der(n3 ⊕ R, µ) ∩ Sym(n3 ⊕ R) if and only if

D =


a1 a3 0 a5
a3 a2 0 a6
0 0 a1 + a2 0
a5 a6 0 a4

 , ai ∈ R , i = 1, . . . , 6 ,

with respect to the frame {e1, . . . , e4}. Moreover, using [220, Lemma 4.2], it is easy to see that

Ricµ =
1

2
a2diag(−1,−1, 1, 0) .
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It is straightforward to check that a generic closed H ∈ Λ3(n3 ⊕ R)∗ is of the form:

H = λ4e
123 + λ3e

124 + λ2e
134 + λ1e

234 , λi ∈ R , i = 1, . . . , 4 .

Consequently, we have that ∆µH = −a2λ3e124 and

H2 = 2


λ24 + λ22 + λ23 λ2λ1 −λ3λ1 λ4λ1

λ2λ1 λ24 + λ21 + λ23 λ2λ3 −λ4λ2
−λ3λ1 λ3λ2 λ21 + λ22 + λ24 λ4λ3
λ4λ1 −λ4λ2 λ4λ3 λ21 + λ22 + λ23

 . (3.69)

This readily implies that we need to impose that λ3 = 0 or λ4 = λ2 = λ1 = 0 in order to hope for
RicBµ,H − λId ∈ Der(n3 ⊕ R, µ).

First of all, we suppose λ3 = 0. In this case, RicBµ,H − λId ∈ Der(n3 ⊕ R, µ) if and only if

λ = −1

2
(λ24 + 3a2) .

The condition
ρ(RicBµ,H)H − ∆µH + λH = 0

is equivalent to 
λ4(−2a2 + 3λ22 + 2λ24 + 3λ21) = 0 ,

λ2(−3a2 + 3λ22 + 2λ24 + 3λ21) = 0 ,

λ1(−3a2 + 3λ22 + 2λ24 + 3λ21) = 0 .

(3.70)

However, the first equation implies that a2 = 1
2

(
3λ22 + 2λ24 + 3λ21

)
or λ4 = 0 . On the other hand, if

a2 = 1
2 (3λ22 + 2λ24 + 3λ21), we have that

−3a2 + 3λ22 + 2λ24 + 3λ21 = −a2 ̸= 0 .

From this, we obtain that λ1 = λ2 = 0 , giving us Item 1.
Now let λ4 = λ3 = 0. In this case, the second equation in (3.70) implies that λ2 = 0 or λ2 = λ21 + λ22.

If the last condition holds, then, the third equation is satisfied too, giving us Item 2. It remains to analyse
when λ4 = λ3 = λ2 = 0. In this case, the third equation in (3.70) gives us that a2 = λ21, since λ1 ̸= 0 if we
want non-classical generalized nilsoliton. Thus, we recover a particular generalized nilsoliton belonging
to Item 2.

It remains to analyse when λ3 ̸= 0 and λ4 = λ2 = λ1 = 0. In this case, RicBµ,H −λId ∈ Der(n3 ⊕R, µ)

if and only if λ = − 1
2 (3a2 + 2λ23). On the other hand, the condition

ρ(RicBµ,H)H − ∆µH + λH = 0

is equivalent to λ3(a2 + λ23) = 0 which cannot happen unless λ3 = 0, concluding the classification.
To address the last part of the statement, we define Je1 = e2, Je4 = e3 and consider

ω1 =
1√
2

(e1 +
√
−1e2) , ω2 =

1√
2

(e4 +
√
−1e3)

obtaining that

dω1 = 0 , dω2 =
a√
2
ω11̄ ,

which, in particular, gives us the integrability of J . The fundamental form of the metric is then ω =√
−1(ω11̄ + ω22̄), which is SKT, while the torsion of the Bismut connection is given by

H := dcω =
√
−1(∂̄ω − ∂ω) = − 1√

2
a(ω11̄2̄ − ω11̄2) = ae123 .
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On the other hand, we have that

dω =

√
−1√
2
a(ω11̄2 + ω11̄2̄) = ae124 .

Then, it is easy to see that Lee form associated to ω has the following form:

θ =
a√
2

(ω2 + ω2̄) = ae4 .

This gives easily that adµθ
♯ = 0. Moreover, given a diagonal derivation D, it will commute with J if and

only if it is of the form
D = bdiag(1, 1, 2, 2) , b ∈ R .

But, the derivation in Item 1 is of the above form. Then, applying Theorem 3.2.58, we obtain the claim,
concluding the proof.

Item 2 in Proposition 3.2.64 in particular provides the first example of nilpotent Lie group admitting
a infinite family of generalized nilsolitons, answering negatively to Question 3.2.49. Now, we focus on the
study of generalized nilsolitons in the case of n4.

Proposition 3.2.65. On n4, the unique non-classic generalized nilsolitons are the following:

1. µ(e1, e2) = e3 , µ(e1, e3) =

√
3

2
e4 , H =

√
3

2
e134 , λ = −3

2
, D = diag

(
2

3
, 1,

5

4
,

3

2

)
,

2. µ(e1, e2) = e3 , µ(e1, e3) = e4 , H = e234 , λ = −3

2
, D = diag

(
1

2
,

1

2
, 1,

1

2

)
.

Proof. Thanks to [328, Theorem 3.2], up to isometries, given any inner product on n4, we can always find
an orthonormal frame {e1, . . . , e4} of n4 such that

µ(e1, e2) = ae3 + be4 , µ(e1, e3) = ce4 , a, c > 0 .

In this framework, a symmetric derivation D is of the form

D = diag(α, β, α+ β, 2α+ β) , β, α ∈ R ,

see for instance [315, Lemma 1]. Moreover, the Ricci endomorphism, using again [220], takes the following
form:

Ricµ =
1

2


−(a2 + b2 + c2) 0 0 0

0 −(a2 + b2) −bc 0
0 −bc a2 − c2 ab
0 0 ab b2 + c2

 . (3.71)

Again, a generic closed H ∈ Λ3n∗4 will be of the following form:

H = λ4e
123 + λ3e

124 + λ2e
134 + λ1e

234 , λi ∈ R , i = 1, . . . , 4 .

Consequently, it is easy to see that

∆µH = (−λ4(c2 + b2) + λ3ab)e
123 + (−λ3a2 + λ4ab)e

124

and the endomorphism H2 will have the same form as in (3.69). Combining (3.71) and (3.69), we can
see that, in order for RicBµ,H − λId to be a derivation, we need to impose that

λ2λ1 = λ3λ1 = λ4λ1 = λ4λ2 = 0 , λ4λ3 = ab , λ2λ3 = −bc ,
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which gives us that b = 0 and just one among λi’s can be non-zero.
First of all, we consider λ1 ̸= 0. In this particular case, we have that RicBµ,H − λId ∈ Der(n3 ⊕ R, µ)

if and only if

λ = −3

2
a2 and c2 = a2 .

On the other hand,

0 = ρ(RicBµ,H)H − ∆µH + λH =
3

2
λ1
(
λ21 − a2

)
e234

which is satisfied if and only if λ21 = a2, giving us Item 2.
Now, we assume λ2 ̸= 0. In this case, we have that RicBµ,H − λId ∈ Der(n4, µ) if and only if

λ = −3

2
a2 and 3c2 + λ22 = 3a2 . (3.72)

On the other hand,
ρ(RicBµ,H)H − ∆µH + λH = 0

is equivalent to
λ2
2

(c2 + 3λ22 − 3a2) = 0

which gives that 3a2 = c2 + 3λ22. Combining this last equality with the second relation in (3.72), we
obtain that c2 = λ21 = 3

4a
2, giving us Item 1. Now, we consider the case in which λ3 ̸= 0. Then, we have

that RicBµ,H − λId ∈ Der(n4, µ) if and only if

λ = −1

2
(2λ23 + 3a2) and c2 = a2 +

2

3
λ23 .

Moreover, the condition
ρ(RicBµ,H)H − ∆µH + λH = 0

is equivalent to
1

2
λ3
(
a2 + λ23

)
= 0

which is impossible since we are assuming that λ3 ̸= 0.
The left case to analyse is that in which λ4 ̸= 0. In this hypothesis, we have that RicBµ,H − λId ∈

Der(n3 ⊕ R, µ) if and only if

λ = −1

2
(3a2 + λ24) and a2 =

1

3
(λ24 + 3c2) . (3.73)

Moreover,
ρ(RicBµ,H)H − ∆µH + λH = 0

is equivalent to
λ4(−a2 + 2c2 + λ24) = 0

which is satisfied if and only if 2c2 +λ24 = a2. On the other hand, combining this with the second relation
in (3.73) gives that c2 = − 2

3λ
2
4 which is not possible, concluding the proof.



Chapter 4

Special metrics in hypercomplex
Geometry

As mentioned in the previous chapters, the study of special Hermitian metrics has gained great importance
throughout the last decades. This is the case also in the hypercomplex setting. As we saw in Subsection
1.3.2, a great amount of conditions on a hyperHermitian metric can be imposed in order for it to be
considered special. This chapter has the purpose of giving a detailed treatment of many of the notions
arising in the hypercomplex scenario. The present chapter is divided as follows.

Section 4.1 is devoted to the introduction and study of two canonical forms arising in hyperHermitian
Geometry which have a close relation with the Lee form.

In Section 4.2, we define an analogue of the first Bott-Chern class in the hypercomplex setting,
highlighting the main consequences of the vanishing of this invariant.

Sections 4.3, 4.4 and 4.5 are dedicated, respectively, to the study of the main properties of quaternionic
Gauduchon, quaternionic balanced and strong HKT metrics. Among them, we prove sufficient conditions
for a quaternionic Gauduchon metric to exist in a fixed conformal class, see Theorem 4.3.9. Moreover,
we obtain an incompatibility result between strong HKT metrics and balanced hyperhermitian metrics,
see Theorem 4.5.3, ultimately proving Theorem E.

In Section 4.6, a relevant Einstein condition in the hypercomplex setting is defined and discussed. This
condition coupled with the HKT one is the object of a conjecture mimicking the analogous conjecture
concerning Fano Kähler-Einstein metrics.

Finally, in Section 4.7, we collect several examples of compact hypercomplex manifolds admitting
a type of special metrics but not stronger ones. We study, moreover, a construction by Arroyo and
Nicolini and another by Barberis and Fino, and we prove that Joyce’s examples admit Chern-Einstein
hyperHermitian metrics.

The following chapter is a collection of results proved in a joint work with Giovanni Gentili, see [139].

4.1 Canonical forms in hyperHermitian geometry

In this section, we recover some results found in the literature and prove new ones about hyperHermitian
metrics making use of two new 1-forms: α and β. The section will be divided in four subsections.
Subsection 4.1.1 will be dedicated to the definition of the forms α and β and to their basic properties.
Among all, we will rewrite the Lee form and the Bismut and Chern-Ricci forms in terms of α and β.
Subsection 4.1.2 will be concerned in the study of the Obata connection using the form α. Then, in
Subsection 4.1.3, we will study Chern and Bismut scalar curvature, showing that they do not depend on
the preferred choice of the pair of anti-commuting complex structure we consider. Finally, in the last
subsection, we will write in terms of hyperHermitian data the classical definition of special metric coming
from complex Geometry.

127
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4.1.1 The forms α and β

Let us immediately start this subsection with the definition of the forms α and β.

Definition 4.1.1. Let (Mn,H,Ω) be a hyperHermitian manifold. We define the forms αΩ, βΩ ∈ Λ1,0
I M

via the relations:
∂Ω̄n = αΩ ∧ Ω̄n , ∂Ωn−1 = βΩ ∧ Ωn−1 .

To lighten the notation, whenever there is no confusion about the hyperHermitian metric in use, we
shall write α and β in place of αΩ and βΩ. Let us explain why such forms are well-defined. Regarding α,
it is well-known that α+ ᾱ is the connection 1-form ηI of the Obata connection on the canonical bundle
K(M,I), see, for instance, [331]. Since for any L ∈ H the volume induced by ΩL is the same, we see that

ηI ⊗
ΩnI ∧ Ω̄nI

(n!)2
= ∇Ob

(
ΩnL ∧ Ω̄nL

(n!)2

)
= ηL ⊗ ΩnL ∧ Ω̄nL

(n!)2
= ηL ⊗ ΩnI ∧ Ω̄nI

(n!)2
.

Therefore the connection 1-form ηI = α + ᾱ actually does not depend on I. This fact will be very
important in what follows and for this reason we shall drop the reference to the complex structure and
simply denote it η.
On the other hand, using Proposition 1.3.20, we see that β is well-defined.

Lemma 4.1.2. Let (Mn,H,Ω) be a hyperHermitian manifold. Then, α is ∂-closed and ∂Jα is q-real.

Proof. The proof can be found in [329, Section 10.1]. It boils down to expanding the identities ∂2Ω̄n = 0
and (∂∂J + ∂J∂)Ω̄n = 0.

Remark 4.1.3. Observe that β does not satisfy the same properties as α, in general. The same argument
above with Ωn−1 in place of Ω̄n only shows that trΩ(∂β) = 0 and trΩ(∂Jβ) = trΩ(∂Jβ̄).

The next lemma gives an alternative definition of α and β providing explicit expressions for them in
terms of Λ, defined in Definition 1.3.19.

Lemma 4.1.4. Let (Mn,H,Ω) be a hyperHermitian manifold. Then

α = Λ̄(∂Ω̄) , β = Λ(∂Ω) .

Proof. First of all, we fix Z ∈ Γ(T 1,0
I M). Then, we have

ιZΛ̄(∂Ω̄) = g(ιZ∂Ω̄, Ω̄) = ∗
(
ιZ∂Ω̄ ∧ Ωn ∧ Ω̄n−1

n!(n− 1)!

)
= − ∗

(
∂Ω̄ ∧ ιZΩn ∧ Ω̄n−1

n!(n− 1)!

)
= − ∗

(
α ∧ ιZΩn ∧ Ω̄n

(n!)2

)
= ιZα .

Then, α = Λ̄(∂Ω̄). In a similar fashion, we have

ιZΛ(∂Ω) = g(ιZ∂Ω,Ω) = ∗
(
ιZ∂Ω ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= − ∗

(
∂Ω ∧ ιZΩ ∧ Ωn−2 ∧ Ω̄n

n!(n− 2)!

)
= ∗

(
ιZΩ ∧ β ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= − ∗

(
β ∧ ιZΩn ∧ Ω̄n

(n!)2

)
= ιZβ ,

concluding the proof.

The interest of the forms α and β, as it turns out, is that they are strictly related to other well-known
quantities.

Proposition 4.1.5. Let (Mn,H,Ω) be a hyperHermitian manifold. Then, the following hold:
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(a) the Lee forms of ωL, for L ∈ H, all coincide and they are equal to

θΩ := α+ ᾱ+ β + β̄ ;

(b) the first Chern-Ricci form of ωI is

RicCh(ωI) = dI(α+ ᾱ) = dIη ;

(c) the Bismut-Ricci form of ωI is
RicB(ωI) = −dI(β + β̄) ;

(d) the Ricci tensor of the Obata connection is

RicOb = d(α+ ᾱ) = dη ,

in particular the Obata scalar curvature always vanishes.

Proof. To prove (a) let θL = −Ld∗ωL be the Lee form of ωL. We first observe that

d∗Ω = − ∗ ∂
(

Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= − ∗

(
(α+ β) ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= J(ᾱ+ β̄) .

Hence
JθJ = d∗ωJ = d∗(Ω + Ω̄) = J(ᾱ+ β̄ + α+ β)

and similarly
KθK = d∗ωK = −

√
−1d∗(Ω − Ω̄) = K(ᾱ+ β̄ + α+ β) ,

therefore θJ = θK . The same argument replacing J and K with K and I respectively, shows that θK = θI .
Thus we have θI = θJ = θK =: θΩ and actually, for any L = aI + bJ + cK ∈ H

θL = −Ld∗ωL = −Ld∗(aωI + bωJ + cωK) = L(aI−1 + bJ−1 + cK−1)θΩ = θΩ ,

using the fact that aI−1 + bJ−1 + cK−1 = L−1.
To show (b), we fix local I-holomorphic coordinates and, for simplicity, set P := pf(Ωij) and G :=

det(grs̄). From (1.41), it follows that ∂̄P = Pᾱ. Then, from (1.42), we get

∂̄G = P ∂̄P + P∂P = Gᾱ+ P∂P .

Hence

RicCh(ωI) = −
√
−1∂

(
G−1∂̄G

)
= −

√
−1
(
∂ᾱ+ ∂(G−1P∂P )

)
=

√
−1
(
−∂ᾱ+G−2∂G ∧ (P∂P ) −G−1∂(P∂P )

)
=

√
−1
(
−∂ᾱ+G−1Pα ∧ ∂P +G−1∂P ∧ ∂P −G−1∂P ∧ ∂P +G−1P ∂̄∂P

)
=

√
−1
(
−∂ᾱ+G−1Pα ∧ ∂P +G−1P ∂̄(Pα)

)
=

√
−1
(
∂̄α− ∂ᾱ

)
.

Now (c) follows from (a) and (b) together with the well-known identity

RicCh(ωI) − RicB(ωI) = dIθΩ .

It remains to prove (d). Let ∇Ob and ∇̃Ob be the Obata connections on TM and K(M,I) respectively.

Here the Obata-Ricci tensor is RicOb(X,Y ) = tr(Z 7→ R∇Ob

(Z,X)Y ), where

R∇Ob

(Z,X)Y =
(
∇Z∇X −∇X∇Z −∇[Z,X]

)
Y , X, Y, Z ∈ Γ(TM) .
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We know that η = α+ ᾱ is the connection 1-form of ∇̃Ob, therefore the curvature endomorphism can be
expressed as

R∇̃Ob

= dη + η ∧ η = dη .

On the other hand, for every X,Y ∈ Γ(TM), we have

R∇̃Ob

(X,Y ) = −trC(R∇Ob

(X,Y )) = −1

2
trR(R∇Ob

(X,Y ))

=
1

2

(
RicOb(X,Y ) − RicOb(Y,X)

)
,

where the last identity follows from the Bianchi identity, which holds because ∇Ob is torsion-free. To
conclude, we only need to observe that the Ricci tensor of the Obata connection is skew-symmetric, see
[6, Theorem 5.6].

Remark 4.1.6. Some of the descriptions obtained in Proposition 4.1.5 were previously known only in
the special case when the hyperHermitian metric is HKT. In detail, the fact that the Lee forms coincide
was due to Ivanov and Papadopoulos [196], and their relation with the Obata connection 1-form was
shown in [47, Lemma 2.2]; finally, the formula for the Obata-Ricci tensor was obtained by Alekseevsky
and Marchiafava [5, Proposition 15] in the general case and rediscovered by Ivanov and Petkov [197,
Proposition 4.1] in the HKT case.

Remark 4.1.7. Again, the role of I is not preferential: the formulae for the Ricci forms in Proposition
4.1.5 hold more generally for any complex structure L ∈ H, in other words

RicCh(ωL) = dLη , RicB(ωL) = −dL(βΩL
+ β̄ΩL

) ,

where complex conjugation is now intended with respect to L.

For convenience, we write here down some formulae for conformal changes. For the ease of notation,
we write αf = αefΩ, βf = βefΩ, θf = θefΩ and ωf = efωI , where f ∈ C∞(M,R). It is easy to check that

αf = α+ n∂f , βf = β + (n− 1)∂f . (4.1)

From these, it follows that

θf = θΩ + (2n− 1)df ,

RicCh(ωf ) = RicCh(ωI) − 2n
√
−1∂∂̄f , (4.2)

RicB(ωf ) = RicB(ωI) + 2(n− 1)
√
−1∂∂̄f . (4.3)

4.1.2 Holonomy of the Obata connection

We now derive some interesting consequences stemming from the formulae we have found. To begin, we
recall the following general lemma:

Lemma 4.1.8. A connection on a trivial line bundle is flat if and only if the connection 1-form is closed.
Furthermore, the bundle admits a global parallel section if and only if the connection 1-form is exact.

Recall that the canonical bundle of a hypercomplex manifold (M,H) is always topologically trivial as
a trivialization is given by the top wedge power of the (2, 0)-form Ω corresponding to any hyperHermitian
metric.

Proposition 4.1.9. Let (Mn,H) be a hypercomplex manifold. Then, the following are equivalent:

1. the restricted holonomy group of the Obata connection is contained in SL(n,H) ;

2. the Obata-Ricci tensor vanishes, for any hyperHermitian metric Ω on (M,H) ;
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3. the Obata-connection 1-form on K(M,L) is closed, for all L ∈ H, i.e. dη = 0.

Proof. The restricted holonomy group of the Obata connection is contained in SL(n,H) if and only if the
Obata connection on the canonical bundle K(M,I) = Λ2n,0

I M is flat (see e.g. [331]) and by Lemma 4.1.8
this happens if and only if the Obata-Ricci tensor computed with respect to any hyperHermitian metric
vanishes: RicOb = dη = 0.

The equivalence of (1) and (2) in Proposition 4.1.9 is well-known and goes back to Alekseevsky and
Marchiafava [6, Theorem 5.6]. We now prove the global counterpart of Proposition 4.1.9, which can be
seen as a generalization of [197, Theorem 2.2].

Proposition 4.1.10. Let (Mn,H) be a hypercomplex manifold. Then, the following are equivalent:

1. the holonomy group of the Obata connection is contained in SL(n,H);

2. the (1, 0)-form αΩ is ∂-exact, for any hyperHermitian metric Ω on (M,H);

3. in any hyperHermitian conformal class there exists a unique (up to scaling) metric Ω on (M,H)
such that αΩ = 0.

Proof. The holonomy group of the Obata connection ∇Ob is contained in SL(n,H) if and only if there
exists a global ∇Ob-parallel section and by Lemma 4.1.8 this is equivalent to (2). Obviously (3) implies
(2); to see the converse suppose αΩ = ∂f for some f ∈ C∞(M,R), then the conformally rescaled metric

Ωf = e−
f
n Ω satisfies αΩf

= 0, thanks to (4.1). The uniqueness of such a metric is clear.

4.1.3 Scalar curvatures

In this subsection, we will focus on scalar curvatures of hyperHermitian metrics. From (1.44) and Lemma
1.3.7 we infer that

ΛΩ(∂Jα) = ΛωI
(
√
−1∂̄α) =

1

2
ΛωI

(
√
−1∂̄α−

√
−1∂ᾱ) =

1

2
ΛωI

RicCh(ωI) =
1

2
sCh(ωI) ,

where we also used Proposition 4.1.5 (b). In the same way one shows that the Bismut scalar curvature
satisfies

sB(ωI) = −2ΛΩ(∂Jβ) .

Proposition 4.1.11. Let (Mn,H,Ω) be a hyperHermitian manifold. The Chern scalar curvatures of any
L ∈ H coincide. The same property holds for the Bismut scalar curvatures.

Proof. We prove the proposition for Chern scalar curvatures, for Bismut scalar curvatures the argument
is analogous. Observe that it is enough to identify sCh(ωP ) with sCh(ωL) for all L ∈ H that anti-commute
with P and by symmetry we may assume P = I. To see this, recall that each complex structure in H
corresponds to a point on the sphere S2 and, supposing P corresponds to the north pole of S2, then the
L’s correspond to points on the equator. Assume we are able to prove that the relative Chern scalar
curvatures are equal, then the same argument repeated replacing P with all L’s allows to cover the entire
sphere, thus identifying all Chern scalar curvatures.

Let then L = aJ + bK ∈ H be the generic complex structure that anti-commutes with I. Note that

ωL = aωJ + bωK = a(Ω + Ω̄) −
√
−1b(Ω − Ω̄) = (a−

√
−1b)Ω + (a+

√
−1b)Ω̄ (4.4)

and set w = a−
√
−1b for simplicity. Keeping in mind that |w| = 1, we compute

ω2n−1
L =

(
2n− 1

n

)
w̄Ωn−1 ∧ Ω̄n +

(
2n− 1

n

)
wΩn ∧ Ω̄n−1 ,

ω2n
L =

(
2n

n

)
Ωn ∧ Ω̄n .
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Thus for any 2-form ξ we have

ΛωL
ξ = nw̄

ξ2,0 ∧ Ωn−1 ∧ Ω̄n

Ωn ∧ Ω̄n
+ nw

ξ0,2 ∧ Ωn ∧ Ω̄n−1

Ωn ∧ Ω̄n
= w̄ΛΩ(ξ2,0) + wΛΩ̄(ξ0,2) .

Now, to conclude the proof we only need to compute the (2, 0) and (0, 2) parts of RicCh(ωL). We observe,
by expanding the Chern-Ricci forms of ωJ and ωK , that:

RicCh(ωJ) = JRicCh(ωJ) = JdJη = ∂Jα+ ∂J ᾱ+ ∂̄Jα+ ∂Jα , (4.5)

RicCh(ωK) = IJ−1dJI(α+ ᾱ) =
√
−1
(
−∂Jα− ∂J ᾱ+ ∂̄Jα+ ∂Jα

)
. (4.6)

Then, since RicCh(ωL) = dLη = aRicCh(ωJ) + bRicCh(ωK), we get

(RicCh(ωL))2,0 = w∂Jα , (RicCh(ωL))0,2 = w∂Jα . (4.7)

Finally, we conclude

sCh(ωL) = ΛωL
RicCh(ωL) = w̄ΛΩ

(
(RicCh(ωL))2,0

)
+ wΛΩ̄

(
(RicCh(ωL))0,2

)
= sCh(ωI) .

In view of Proposition 4.1.11 we will omit the reference to the (1, 1)-form with respect to which we are
considering scalar curvatures and simply denote them by sCh and sB. To avoid ambiguity, if we need
to specify the hyperHermitian metric Ω with respect to which scalar curvatures are considered, we shall
write them as sCh(Ω) and sB(Ω).

4.1.4 Special metrics

We shall now study equivalent conditions, in terms of the hyperHermitian data, for a hyperHermitian met-
ric to satisfy the Gauduchon condition, see Definition 1.1.34, and the balanced one, see Definition 1.1.47.

The following lemma identifies conditions on the canonical (2, 0)-form Ω in order for ωL to be Gaudu-
chon.

Lemma 4.1.12. Let (Mn,H,Ω) be a hyperHermitian manifold. Then, the following are equivalent:

1. ωI is Gauduchon ;

2. ωL is Gauduchon for any L ∈ H ;

3. sCh − sB − 2|α+ β|2 = 0 ;

4. ∂∗∂∗JΩ = 0 ;

5. ∂∂J(Ωn−1 ∧ Ω̄n) = 0.

Proof. By definition, if ωI is Gauduchon then d∗θωI
= 0. Hence, the equivalence of (1) and (2) follows

from Proposition 4.1.5 (a). Next, we compute

d∗(α+ β) = ∗d
(
J(ᾱ+ β̄) ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= trΩ(∂J(α+ β)) − |α+ β|2

=
sCh

2
− sB

2
− |α+ β|2 ,

where we used q-realness of ∂Jα and Remark 4.1.3. Therefore

d∗θΩ = 2Re(d∗(α+ β)) = sCh − sB − 2|α+ β|2 ,
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giving the equivalence between (1) and (3). On the other hand, we also have

∂∗∂∗JΩ = − ∗ ∂∂J
(

Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= ∗ ∂

(
J(ᾱ+ β̄) ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= d∗(α+ β) ,

concluding the proof.

The following is an adaptation of Lemma 4.1.12 to the balanced case. The proof is analogous.

Lemma 4.1.13. Let (Mn,H,Ω) be a hyperHermitian manifold. The following are equivalent

1. ωI is balanced ;

2. ωL is balanced for any L ∈ H ;

3. α+ β = 0 ;

4. ∂∗Ω = 0 ;

5. ∂(Ωn−1 ∧ Ω̄n) = 0.

The following lemma will be useful later.

Lemma 4.1.14. Let (Mn,H,Ω) be a compact hyperHermitian manifold with non-negative Bismut scalar
curvature. Then Ω cannot have negative Chern scalar curvature, furthermore Ω is balanced if and only if
it is Chern scalar flat.

Proof. Let ΩG = efΩ be the Gauduchon metric in the conformal class of Ω. Then

0 = sCh(ΩG) − sB(ΩG) − 2|αΩG + βΩG |2ΩG

= e−f
(
sCh(Ω) − sB(Ω) − 2|αΩ + βΩ + (2n− 1)∂f |2Ω − 2(2n− 1)∆Ωf

)
Since Ω has non-negative Bismut scalar curvature we deduce

2(2n− 1)∆Ωf ≤ sCh(Ω) − 2|αΩ + βΩ + (2n− 1)∂f |2Ω . (4.8)

If we had sCh(Ω) < 0 the maximum principle would imply that f is constant yielding the inequality
sCh(Ω) ≥ 2|αΩ + βΩ|2Ω which contradicts the negativity of sCh(Ω). Furthermore, it is clear from (4.8)
that if sCh(Ω) = 0 then θΩ = αΩ + βΩ = 0. Conversely, if Ω is balanced, sCh(Ω) = sB(Ω) ≥ 0. On the
other hand, we have that ∫

M

sCh(Ω)
Ωn ∧ Ω̄n

(n!)2
= 2

∫
M

∂JαΩ ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!
= 0 ,

integrating by parts and using Lemma 4.1.13, but thus is possible only if sCh(Ω) = 0, giving the claim.

By using Definition 1.1.49 and Proposition 1.1.50, in [110, Proof of Theorem 3.1], the authors show
that if M is equipped with an invariant hypercomplex structure H and a compatible HKT metric, then
it is also equipped with a compatible invariant HKT metric. The same holds for all the other kind of
special metrics we are interested in.

Theorem 4.1.15. Let (Mn := G/Γ,H) be a compact quotient of a Lie group by a lattice equipped with
a left-invariant hypercomplex structure. If (M,H) admits a metric which is weak HKT (resp. strong
HKT, quaternionic balanced, quaternionic strongly Gauduchon, quaternionic Gauduchon) then it admits
an invariant one.

Proof. Let Ω be a hyperHermitian metric on (M,H). Since µ commutes with I, J and d it also commutes
with ∂ and ∂J . Moreover, if µ(Ωn−1) is a q-positive (2n − 2, 0)-form, then by Lemma 1.3.4 there exists
an invariant hyperHermitian metric Ω̃ such that Ω̃n−1 = µ(Ωn−1). From this point the conclusion is
straightforward.
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4.2 The first quaternionic Bott-Chern class

In this section, we will introduce and study an invariant of the hypercomplex structure which we call first
quaternionic Bott-Chern class. It will play an important role in what follows.

Let E be a I-holomorphic line bundle over a hypercomplex manifold (Mn,H). The curvature R of any
I-Hermitian metric h on E is a closed real (1, 1)-form on M and we shall consider the q-real, (2, 0)-form
corresponding to the J-anti-invariant part of R:

Φ

(
R− JR

2

)
=

1

4

(√
−1R(JX, Y ) +

√
−1R(X, JY ) −R(KX,Y ) −R(X,KY )

)
.

It is well-known that R is locally ∂∂̄-exact. This guarantees that Φ(R−JR
2 ) is locally ∂∂J -exact. We then

are led to give the following definition.

Definition 4.2.1. Let (Mn,H) be a hypercomplex manifold and (E, h) be a I-Hermitian line bundle
over (Mn,H) with curvature R. The first quaternionic Bott-Chern class of E with respect to J is the
Bott-Chern cohomology class of Φ(R−JR

2 ) in the quaternionic sense:

cqBC
1 (E, J) :=

[
Φ

(
R− JR

2

)]
qBC

∈ H2,0
qBC(M) .

This class does not depend on the choice of h. Indeed, any other I-Hermitian metric on E has
curvature R′ = R +

√
−1∂∂̄f , for some f ∈ C∞(M,R), hence the corresponding (2, 0)-forms are related

by Φ(R
′−JR′

2 ) = Φ(R−JR
2 ) + 1

2∂∂Jf , thanks to Lemma 1.3.7.

If E = −K(M,I) is the anticanonical bundle of (M, I) we call cqBC
1 (−K(M,I), J) the first quaternionic

Bott-Chern class of M with respect to (I, J) and denote it cqBC
1 (M, I, J). Note that for any hyperHermi-

tian metric Ω on (M,H) with corresponding (1, 1)-form ωI , we can choose a Hermitian metric on −K(M,I)

so that R = RicCh(ωI). As a matter of fact, we can show that ∂Jα is a representative of cqBC
1 (M, I, J).

Lemma 4.2.2. Let (M,H,Ω) be a hyperHermitian manifold. Then, under the bijection of Lemma 1.3.6,
the J-anti-invariant part of the Chern-Ricci form RicCh(ωI) corresponds to ∂Jα.

Proof. From Item b of Proposition 4.1.5, we obtain the identity

RicCh(ωI) − JRicCh(ωI)

2
=

√
−1

2

(
∂̄α− ∂ᾱ− J∂̄α+ J∂ᾱ

)
=

√
−1
(
∂̄α− J∂̄α

)
,

where we used that ∂̄α − J∂̄α = −∂ᾱ + J∂ᾱ which follows from Lemma 1.3.7 and the fact that ∂Jα is
q-real. Therefore using again Lemma 1.3.7 and applying the bijection of Lemma 1.3.6 we obtain precisely
∂Jα.

We may actually give an equivalent definition of the first quaternionic Bott-Chern class as follows.
Let Θ ∈ Λ2n,0

I M be any q-positive section of the canonical bundle, then there exists αΘ ∈ Λ1,0
I M such

that
∂Θ̄ = αΘ ∧ Θ̄ .

Similarly as before, the quaternionic Bott-Chern cohomology class of ∂JαΘ does not depend on the choice
of Θ. Indeed, if Θ′ is another q-positive (2n, 0)-form, there exists a function f ∈ C∞(M,R) such that
Θ′ = fΘ. Therefore, ∂JαΘ′ = ∂JαΘ − ∂∂Jf , which shows that [∂JαΘ′ ]BC = [∂JαΘ]BC.

In particular, we observe that cqBC
1 (M, I, J) = 0 if and only if there exists a metric in each hyper-

Hermitian conformal class such that ∂Jα = 0, equivalently by Lemma 4.2.2 the Chern-Ricci form of ωI
is J-invariant. Clearly, the definition of the first quaternionic Bott-Chern class depends on the choice of
a basis (I, J) for the hypercomplex structure. However, it turns out that the vanishing of such class is

independent from it. For this reason, when this occurs, we will unambiguously write cqBC
1 (M,H) = 0.
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Proposition 4.2.3. Let (M,H) be a hypercomplex manifold. If cqBC
1 (M, I, J) = 0 then also cqBC

1 (M,L, P ) =
0, for any other pair of anti-commuting complex structures L,P ∈ H.

Proof. First of all, note that by the same symmetry argument at the beginning of the proof of Proposition
4.1.11, it is enough to show the claim for P = I and L = aJ + bK ∈ H. Then, for any hyperHermitian
metric Ω, keeping in mind the identities (4.7), we have

RicCh(ωL) − IRicCh(ωL)

2
= (RicCh(ωL))2,0 + (RicCh(ωL))0,2 = (a−

√
−1b)∂Jα+ (a+

√
−1b)∂Jα . (4.9)

Observe that, since cqBC
1 (M, I, J) = 0, we can choose Ω so that ∂Jα = 0, which allows us to conclude

that cqBC
1 (M,L, I) = 0.

We now observe that cqBC
1 is additive with respect to the tensor product of line bundles. Indeed, for

any pair of I-holomorphic line bundles E and F over a hypercomplex manifold (M,H) equipped with

connections ∇E and ∇F respectively, the induced connection ∇ on E⊗F has curvature R∇ = R∇E

+R∇F

.
Then clearly

cqBC
1 (E ⊗ F, J) = cqBC

1 (E, J) + cqBC
1 (F, J) .

The first consequence of the vanishing of the first quaternionic Bott-Chern class that we prove is the
following.

Proposition 4.2.4. Let (M,H) be a compact hypercomplex manifold. If cqBC
1 (M,H) = 0, then κ(M,L) ≤

0 for all L ∈ H, where κ(M,L) denotes the Kodaira dimension of (M,L), recall Definition 1.1.10.
Moreover, κ(M,L) = 0 if and only if K(M,L) is holomorphically torsion.

Proof. Without loss of generality we prove the statement for L = I. Let Ω be any hyperHermitian metric
on (M,H). Since cqBC

1 (K(M,I), J) = −cqBC
1 (M, I, J) = 0, there exists an I-Hermitian metric h on K(M,I)

such that Φ(Rh−JRh

2 ) = 0. Now, for any k ≥ 1 and any section ψ ∈ H0(M,K⊗k
(M,I)), a straightforward

computation gives

∆ωI
|ψ|2 = |∇ψ|2 − k|ψ|2trωI

(Rh) = |∇ψ|2 − 2k|ψ|2ΛΩ

(
Φ

(
Rh − JRh

2

))
= |∇ψ|2 ≥ 0 ,

where | · |2 and ∇ are the pointwise squared norm and the Chern connection with respect to the metric
hk induced on the power K⊗k

(M,I), respectively. The strong maximum principle now implies that |ψ|2 is

constant, whence ∇ψ ≡ 0. Consequently, for any k ≥ 0 we have dimH0(M,K⊗k
(M,I)) ≤ 1 from which it

follows κ(M, I) ≤ 0. Indeed, any non-trivial ψ1, ψ2 ∈ H0(M,K⊗k
(M,I)) are parallel and nowhere vanishing.

Thus, fixed any point x ∈ M , there exists c ∈ C \ {0} such that ψ1(x) = c ψ2(x). Now, the section
ψ1 − c ψ2 is parallel and vanishes at x implying ψ1 ≡ c ψ2.

Finally, we have κ(M, I) = 0 if and only if there is at least a power k ≥ 1 such that

dimH0(M,K⊗k
(M,I)) = 1 ,

i.e. there exists a global holomorphic section of K⊗k
(M,I), which is then parallel and nowhere vanishing.

Be aware that, in general, for two different complex structures in H the corresponding Kodaira dimensions
need not be equal (see Subsection 4.7.9).

Lemma 4.2.5. Let (M,H,Ω) be a compact hyperHermitian manifold with cqBC
1 (M,H) = 0. Then the

following are equivalent:

1. sCh = 0;

2. sCh is constant;
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3. ∂Jα = 0.

Proof. The assumption cqBC
1 (M,H) = 0 implies ∂Jα = ∂∂Jf , for some f ∈ C∞(M,R). But then

sCh = 2ΛΩ(∂Jα) = 2ΛΩ(∂∂Jf) = 2∆Ωf .

By the maximum principle, if sCh is constant then so is f , implying ∂Jα = 0 and sCh = 0.

Remark 4.2.6. Let (Mn,H) be a hypercomplex manifold. In [331, Claim 1.2], Verbitsky observed that
being SL(n,H) implies that K(M,I) is holomorphically trivial, for any L ∈ H. This can also be deduced
from Proposition 4.1.10. Of course, the holomorphic triviality if K(M,I) implies that it is holomorphically
torsion. Finally, in [320, Proposition 1.1], it is shown that the assumption that K(M,I) is holomorphically
torsion implies cBC

1 (M, I) = 0. We now show that the vanishing of the first Bott-Chern class forces the
quaternionic Bott-Chern class to vanish as well. For simplicity we show it for L = I. If cBC

1 (M, I) = 0,
for any hyperHermitian metric Ω on (M,H), we have RicCh(ωI) =

√
−1∂∂̄f , for some f ∈ C∞(M,R).

The hyperHermitian metric Ωf = e
f
2n Ω is Chern-Ricci flat, thanks to (4.2), then clearly cqBC

1 (M,H) = 0.
In general, all the implications above cannot be reversed, counterexamples can be found in [17, Example
6.3] for the first and second implications, in [320, Examples 3.1, 3.2] for the third, and we refer to
Example 4.7.9 for the last one. However, as we shall see in the next section, there is a quite broad class
of hypercomplex manifolds for which these conditions are actually equivalent.

4.3 Quaternionic Gauduchon metrics

In this section we will study in detail quaternionic Gauduchon metrics, recall Definition 1.3.31, on a
compact hypercomplex manifold, providing equivalent and sufficient conditions for the existence of such
metrics.
Firstly, we characterize the quaternionic Gauduchon condition in terms of the (1, 0)-form β.

Lemma 4.3.1. Let (Mn,H,Ω) be a hyperHermitian manifold. Then, Ω is quaternionic Gauduchon if
and only if sB + 2|β|2 = 0.

Proof. Since

∂∂JΩn−1 = (−∂Jβ + β ∧ J−1β̄) ∧ Ωn−1 =
1

n

(
1

2
sB + |β|2

)
Ωn ,

we clearly have the lemma.

Note that, by Proposition 4.1.5 (a) and the fact that the Obata connection 1-form η = α+ᾱ is independent
from the choice of the complex structure in H, the same is true for β + β̄. In particular, thanks to
Proposition 4.1.11, we see that the quaternionic Gauduchon condition holds on ΩI if and only if it holds
replacing I, J with any other pair of anti-commuting complex structures in H. We shall observe in
Example 4.7.11 that this is no longer true for the quaternionic strongly Gauduchon condition.

As a first difference with the compact complex case, where Gauduchon metrics exist in any conformal
class, see Theorem 1.1.35, we emphasize that there are examples of compact hypercomplex manifolds
which do not admit any quaternionic Gauduchon metric, see Example 4.7.9.
We can use Lemma 4.3.1 to give an alternative proof of the following result by Grantcharov, Lejmi and
Verbitsky, which determines a sufficient condition to the existence of quaternionic Gauduchon metrics.

Lemma 4.3.2 ([172, Proposition 16]). Let (Mn,H) be a compact SL(n,H)-manifold. Then, there exist
a unique, up to scaling, quaternionic Gauduchon metric in any hyperHermitian conformal class.

Proof. Let ΩG be a Gauduchon hyperHermitian metric which then, by Lemma 4.1.12, satisfies sCh(ΩG)−
sB(ΩG) − 2|αΩG + βΩG |2ΩG

= 0. Since (M,H) is SL(n,H), applying Proposition 4.1.10, we have αΩG =
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(n − 1)∂f , for some f ∈ C∞(M,R) and thus sCh(ΩG) = −2(n − 1)∆ΩG
f . Therefore, the conformally

rescaled metric Ω = efΩG satisfies

sB(Ω) + 2|βΩ|2Ω = e−f
(
sB(ΩG) + 2(n− 1)∆ΩGf + 2|βΩG + (n− 1)∂f |2ΩG

)
= e−f

(
sB(ΩG) − sCh(ΩG) + 2|βΩG

+ αΩG
|2ΩG

)
= 0 ,

i.e. it is quaternionic Gauduchon.

In the invariant setting we can make the above stronger.

Lemma 4.3.3. Let (M := G/Γ,H) be a SL(n,H) compact quotient of a Lie group by a lattice equipped
with a left-invariant hypercomplex structure. Then, every invariant hyperHermitian metric is Gauduchon
and quaternionic Gauduchon.

Proof. Let Ω be an invariant hyperHermitian metric on M . We know that Ω is conformal to a Gauduchon
metric ΩG and, applying Definition 1.1.49 and Proposition 1.1.50, we see that µ(ΩG) is an invariant
Gauduchon metric which is a constant multiple of Ω. Therefore, Ω itself is Gauduchon. Now, the
SL(n,H) condition implies that αΩ = ∂f , for some f ∈ C∞(M,R), but by invariance we must have
αΩ = 0. In conclusion, the quaternionic Gauduchon condition sB(Ω) + 2|βΩ|2Ω = 0 is equivalent to the
Gauduchon one.

Observe that quaternionic Gauduchon metrics exist on hypercomplex manifolds that are not SL(n,H),
indeed there even exist HKT non-SL(n,H) manifolds such as the ones constructed by Joyce (see Subsection
4.7.3) or Swann [310].

We now study some interesting consequences of the existence of a quaternionic Gauduchon metric.

Proposition 4.3.4. Let (Mn,H,Ω) be a compact hyperHermitian manifold admitting a compatible quater-
nionic Gauduchon metric. Then, the following are equivalent:

1. α = 0;

2. RicCh(ωL) = 0 , for all L ∈ H;

3. ∂Jα = 0 .

Proof. From Proposition 4.1.5 (b), we know that α = 0 always implies Chern-Ricci flatness and this in
turn implies ∂Jα = 0 by Lemma 4.2.2. Therefore, we only need to show that ∂Jα = 0 implies α = 0. Let
Ω̃ be a quaternionic Gauduchon metric on (M,H). We compute

∂∂J Ω̄n =
(
−∂Jα+ α ∧ J−1ᾱ

)
∧ Ω̄n . (4.10)

Assuming ∂Jα = 0 and wedging with Ω̃n−1

n!(n−1)! , we get

Ω̃n−1 ∧ ∂∂J Ω̄n

n!(n− 1)!
= |α|2

Ω̃

Ω̃n ∧ Ω̄n

(n!)2

and integrating by parts yields

0 =

∫
M

∂∂J Ω̃n−1 ∧ Ω̄n

n!(n− 1)!
=

∫
M

Ω̃n−1 ∧ ∂∂J Ω̄n

n!(n− 1)!
=

∫
M

|α|2
Ω̃

Ω̃n ∧ Ω̄n

(n!)2
,

showing that we must have α = 0.

From Proposition 4.3.4 we obtain the following corollary.

Corollary 4.3.5. A compact hypercomplex manifold (Mn,H) is SL(n,H) if and only if it admits a

compatible quaternionic Gauduchon metric and cqBC
1 (M,H) = 0.
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Proof. We already know that the SL(n,H) condition implies cqBC
1 (M,H) = 0 and the existence of a

quaternionic Gauduchon metric. Let us show the converse. The assumption cqBC
1 (M,H) = 0 implies

that any hyperHermitian conformal class contains a hyperHermitian metric such that ∂Jα = 0, therefore
α = 0 thanks to Proposition 4.3.4 and then (M,H) is SL(n,H), by Lemma 4.1.10.

Thus, on a compact quaternionic Gauduchon manifold (M,H,Ω) all the implications in Remark 4.2.6 can
be reversed.

It is clear that the ∂∂J -Lemma implies cqBC
1 (M,H) = 0 and if (M,H) admits a HKT metric then

the ∂∂J -Lemma is implied by the SL(n,H) condition (see [172, Theorem 6]). Therefore the following
corollary follows from Corollary 4.3.5.

Corollary 4.3.6. Let (Mn,H) be a compact hypercomplex manifold admitting a compatible HKT metric.
Then, the SL(n,H) condition and the ∂∂J -Lemma are equivalent.

Note that the HKT assumption cannot be weakened, as there are examples of quaternionic balanced
SL(n,H)-manifolds without HKT metrics on which the ∂∂J -Lemma does not hold (see Example 4.7.1).
We observe here an important difference with the complex setting. In general, the ∂∂̄-Lemma does not
force neither the Chern nor the Bott-Chern class to vanish. Of course, examples of this are Fano or
anti-Fano manifolds.

Lemma 4.3.7. Let (Mn,H) be a compact hypercomplex manifold satisfying the ∂∂J -Lemma. Then, the
following are equivalent:

1. (M,H) is a SL(n,H)-manifold;

2. There exists a quaternionic Gauduchon metric on (M,H);

3. There exists a quaternionic strongly Gauduchon metric on (M,H).

Proof. The fact that (1) implies (2) follows from Lemma 4.3.2 and the converse is a consequence of
Corollary 4.3.5. We only need to prove that (2) implies (3). Let Ω be a quaternionic Gauduchon metric,
in other words ∂∂JΩn−1 = 0. This means that ∂JΩn−1 is ∂-closed and ∂J -exact. Thanks to the ∂∂J -
Lemma, it is therefore ∂∂J -exact so that Ω is quaternionic strongly Gauduchon.

By conjunction of Lemma 4.3.7, Corollary 4.3.6 and [232, Theorem 10.1] we infer

Corollary 4.3.8. Let (M2,H) be a compact hypercomplex manifold. Then, any two of the following
conditions implies the third:

1. (M,H) is SL(2,H);

2. There exists a HKT metric on (M,H);

3. The ∂∂J -Lemma holds on (M,H).

We should mention that the combination of [172, Theorem 25] and [172, Theorem 1] already gives that,
assuming (1), (2) and (3) are equivalent.

In view of these results, it becomes particularly relevant to provide characterizations to the existence
of quaternionic Gauduchon metrics on compact hypercomplex manifolds. Our next result fulfils this
purpose for what regards conformal classes. Before we state the theorem, we want to highlight some easy
necessary conditions for a quaternionic Gauduchon metric to exist. So, first of all, let Ω be a quaternionic
Gauduchon metric and let ΩG be the Gauduchon metric with unit volume in the conformal class of Ω.
Now, we have that

0 =

∫
M

∂∂JΩn−1 ∧ Ω̄nG
n!(n− 1)!

=

∫
M

Ωn−1 ∧ ∂∂J Ω̄nG
n!(n− 1)!

.
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But, keeping in mind (4.10), we obtain

0 =

∫
M

(∂JαΩG
− αΩG

∧ J−1ᾱΩG
) ∧ Ωn−1 ∧ Ω̄nG

n!(n− 1)!
=

∫
M

(
ΛΩ(∂JαΩG

) − |αΩG
|2Ω
) Ωn ∧ Ω̄nG

(n!)2
.

On the other hand, since ΩG and Ω are conformal, we can find f ∈ C∞(M,R) such that Ω = e
f

n−1 ΩG.
Then ∫

M

ef
(
sCh(ΩG) − 2|αΩG

|2ΩG

) ΩnG ∧ Ω̄nG
(n!)2

= 0 . (4.11)

Identity (4.11) tells us that if a quaternionic Gauduchon metric exists in the conformal class of Ω then

A =

{
f ∈ C∞(M,R)

∣∣∣∣ ∫
M

ef
(
sCh(ΩG) − 2|αΩG |2ΩG

) ΩnG ∧ Ω̄nG
(n!)2

= 0

}
̸= ∅ .

One can easily show that the above condition is equivalent to the following

sCh(ΩG) − 2|αΩG
|2ΩG

either vanishes identically or it changes sign . (4.12)

Notice that on a compact quotient of a Lie group, either locally homogeneous or homogeneous, we can
only hope for a quaternionic Gauduchon metric in the conformal class of an invariant Gauduchon metric
when

sCh(ΩG) = 2|αΩG
|2ΩG

.

This, in particular, forces the Gauduchon degree of the conformal class of ΩG to be non-negative. On the
other hand, when the latter is zero, automatically, we obtain αΩG

= 0 which in particular implies that
the manifold is SL(n,H).

Since we will be searching for a quaternionic Gauduchon metric in the conformal class of a given
hyperHermitian metric, we can always consider the latter as the unique Gauduchon metric ΩG in there.

Using Lemma 4.3.1, if Ωf = e
f

n−1 ΩG is quaternionic Gauduchon, for some f ∈ C∞(M,R), we have

ΛΩf
(∂JβΩf

) − |βΩf
|2Ωf

= 0 ,

which is readily seen to be equivalent to

∆ΩG
f + |βΩG

+ ∂f |2 +
1

2
sB(ΩG) = 0 . (4.13)

Integrating (4.13) with respect to the volume induced by ΩG gives

ΓB({ΩG}) =

∫
M

sB(ΩG)
ΩnG ∧ Ω̄nG

(n!)2
≤ 0 , (4.14)

namely the Gauduchon-Bismut degree of the conformal class of ΩG, introduced in [39], has to be non-
positive. Conditions (4.12) and (4.14) are thus necessary in order for a quaternionic Gauduchon metric
to exist in the conformal class of ΩG. We are now in the position to prove that they are also sufficient.

Theorem 4.3.9. Let (Mn,H,ΩG) be a compact hyperHermitian manifold and ΩG be a Gauduchon metric.
Suppose (4.12) and (4.14) are satisfied, then, there exists a unique quaternionic Gauduchon metric of
unit volume in the conformal class of ΩG.

Proof. First of all, we show the uniqueness part. Assume Ω and Ωf := e
f

n−1 Ω are both quaternionic
Gauduchon metrics with unit volume, then

0 = sB(Ωf ) + 2|βΩf
|2Ωf

= e−
f

n−1
(
sB(Ω) + 2∆Ωf + 2|βΩ + ∂f |2Ω

)
= 2e−

f
n−1

(
∆Ωf + 2Re(g(βΩ, ∂f)) + |∂f |2Ω

)
.
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Since we have ∆Ωf + 2Re(g(βΩ, ∂f)) = −|∂f |2Ω ≤ 0, we can regard f as a supersolution of the linear
equation

∆Ωφ+ 2Re(g(βΩ, ∂φ)) = 0 .

Applying the minimum principle, we obtain that f must be constant. On the other hand, the fact that
both Ωf and Ω have unit volume guarantees that f = 0.

We now prove the existence part of the theorem. Let ΩG be a Gauduchon metric of unit volume and
fix h ∈ A. Up to addition of a constant, we may and do assume that h has zero mean with respect to

ΩG. We consider Ωh = e
h

n−1 ΩG and, as done above, we have that

e
h

n−1

(
1

2
sB(Ωh) + |βΩh

|2Ωh

)
=

1

2
sB(ΩG) + ∆ΩGh+ |βΩG + ∂h|2ΩG

. (4.15)

Now, the equation to be solved is (4.13). We perform the classical method of continuity. We consider the
following family of equations for t ∈ [0, 1]

∆ΩG
f + |βΩG

+ ∂f |2ΩG
+

1

2
sB(ΩG) = (1 − t)e

h
n−1

(
1

2
sB(Ωh) + |βΩh

|2Ωh

)
. (4.16)

We will search for solutions in A with zero mean with respect to ΩG. For t = 0, we easily observe
that h is a solution. Now, consider t ∈ [0, 1] such that the corresponding equation admits a solution
f ∈ C2,α(M,R) and define the operator Ft : A

2,α
0 → R such that

Ft(φ) := ∆ΩGφ+ |βΩG + ∂φ|2ΩG
+

1

2
sB(ΩG) − (1 − t)e

h
n−1

(
1

2
sB(Ωh) + |βΩh

|2Ωh

)
,

for any t ∈ [0, 1], where

A2,α
0 =

{
φ ∈ C2,α

0 (M,R)

∣∣∣∣ ∫
M

eφ
(
sCh(ΩG) − 2|αΩG

|2ΩG

) ΩnG ∧ Ω̄nG
(n!)2

= 0

}
.

Here C2,α
0 (M,R) denotes the functions in C2,α(M,R) with zero mean with respect to ΩG. It is easy to

show that A2,α
0 is a Banach manifold. Moreover, we can infer that, for any f ∈ A2,α

0 ,

TfA
2,α
0 =

{
v ∈ C2,α

0 (M,R)

∣∣∣∣ ∫
M

v ef
(
sCh(ΩG) − 2|αΩG

|2ΩG

) ΩnG ∧ Ω̄nG
(n!)2

= 0

}
.

Then, the linearization of Ft at f is

dfFt(v) = ∆ΩG
v + 2Re(g(βΩG

+ ∂f, ∂v)) , v ∈ TfA
2,α
0 ,

which is a second order linear elliptic operator whose kernel, thanks to the maximum principle, is zero
when imposing the zero mean condition on v. On the other hand, its index is equal to that of the
Laplacian, implying that it is invertible. Applying the Implicit Function Theorem, we can conclude
openness of the set of t ∈ [0, 1] for which (4.16) is solvable.

Now, in order to show closedness and conclude the proof, we need some a priori estimates. First of
all, we prove an L2-gradient estimate. Integrating (4.16) and using (4.15) we get:

∥βΩG + ∂f∥2L2(ΩG) = − t

2
ΓB({ΩG}) + (1 − t)∥βΩG + ∂h∥2L2(ΩG) ≤ C ,

thanks to the fact that h is a datum. Here and in what follows C will be a positive constant that
does not depend on f and t, which may change value from line to line. We may and do assume that
∥∂f∥2L2(ΩG) ≥ ||βΩG

||2L2(ΩG), otherwise we are done. Consequently

∥∂f∥2L2(ΩG) − ∥βΩG
∥2L2(ΩG) =

∣∣∣∥∂f∥2L2(ΩG) − ∥βΩG
∥2L2(ΩG)

∣∣∣ ≤ ∥∂f + βΩG
∥2L2(ΩG) ≤ C ,
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which gives the desired estimate
∥∂f∥2L2(ΩG) ≤ C . (4.17)

Using the Poincaré inequality we then get an estimate on the L2-norm of the solution f . Now, setting

ψ := −
(

1

2
sB(ΩG) + |βΩG

|2ΩG
+ |∂f |2ΩG

)
+ (1 − t)e

h
n−1

(
1

2
sB(Ωh) + |βΩh

|2Ωh

)
and rearranging equation (4.16), we can consider f as a solution of the linear equation

∆ΩG
φ+ 2Re(g(βΩG

, ∂φ)) = ψ .

This allows us to use the Calderón-Zygmund inequality [163, Theorem 9.11] to deduce

∥f∥W 2,2(ΩG) ≤ C
(
∥f∥L2(ΩG) + ∥ψ∥L2(ΩG)

)
≤ C ,

thanks to (4.17). We can obtain higher-order estimates by bootstrapping. Using the Sobolev embeddings
gives us the estimates we were looking for, concluding the existence part of the theorem.

Remark 4.3.10. If (Mn,H) is a compact SL(n,H)-manifold we can recover Lemma 4.3.2 as a corollary
of Theorem 4.3.9. Indeed, the SL(n,H) condition implies that αΩG

= ∂f , for some f ∈ C∞(M,R), where
ΩG is any Gauduchon hyperHermitian metric on (M,H). The metric ΩG then satisfies

sB(ΩG) = sCh(ΩG) − 2|αΩG + βΩG |2ΩG
= −2∆ΩGf − 2|∂f + βΩG |2ΩG

which, integrated gives (4.14). Observe that for this argument is actually enough to impose cqBC
1 (M,H) =

0. Also, suppose sCh(ΩG) − 2|αΩG
|2ΩG

= −2∆ΩG
f − 2|∂f |2ΩG

has a sign, then the same is true for

ef
(
|∂f |2ΩG

+ ∆ΩG
f
)

= ∆ΩG
(ef ) .

By the maximum principle sCh(ΩG) − 2|αΩG |2ΩG
must vanish identically, so that (4.12) is satisfied.

Remark 4.3.11. In the previous remark we observed that the vanishing of the first quaternionic Bott-
Chern class implies (4.14). Therefore, invoking Theorem 4.3.9, we can rephrase Corollary 4.3.5 by stating

that the SL(n,H) condition is equivalent to cqBC
1 (M,H) = 0 together with the fact that (4.12) holds in

some conformal class.

One can observe that the search for a quaternionic Gauduchon metric within a conformal class can
be considered as a particular instance of the problem of prescribing the Bismut scalar curvature on a
compact complex manifold. As far as the author is aware, this problem was taken into account only in
the constant case, i.e. the Bismut-Yamabe problem, in [39]. On the other hand, many results about the
related problem of prescribing the Chern scalar curvature can be found in the literature, see for instance
[23, 138, 343] and the references therein.

We now give another characterization of the existence of a quaternionic Gauduchon metric in terms
of currents.

Proposition 4.3.12. Let (Mn,H) be a compact hypercomplex manifold with n ≥ 2. Then, M admits
no quaternionic Gauduchon metric if and only if there exists a non-zero, ∂∂J -exact, q-real and q-positive
(2, 2n)-current.

Proof. We consider the following spaces:

W1 = {φ ∈ Λ2n−2,0
I M | Jφ̄ = φ , φ q-positive} , W2 = {ψ ∈ Λ2n−2,0

I M | ∂∂Jψ = 0} .

On the other hand, every φ ∈ W1 can be written as φ = Ωn−1 for some hyperHermitian metric Ω.
Then, it easy to see that the non existence of quaternionic Gauduchon metrics on M is equivalent to
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W1 ∩W2 = ∅. Thus, thanks to the Hahn-Banach Theorem, see for instance [172, Theorem 31], we can
find a current T ∈ D2,2n

I (M) such that

T |W1
> 0 , T |W2

= 0 .

The fact that T is positive on W1 guarantees that T is both q-real and q-positive. On the other hand,
we have that, for any γ ∈ Λ2n−3,0

I M ,
∂T (γ) = T (∂γ) = 0 ,

since ∂γ ∈ W2 and T |W2
= 0. Then, ∂T = 0 and analogously ∂JT = 0. Hence, T defines a cohomology

class

[T ]qBC ∈ H
′2,2n
qBC (M,R) :=

{T ∈ D2,2n
I (M) | ∂T = ∂JT = 0}
∂∂JD0,2n

I (M)
.

Now, the claim is equivalent to prove that [T ]BC = 0. In order to do this, we identify T ∈ Λ2,2n
I M ⊗

D0(M), where D0(M) are the distributions on M . This identification is compatible with ∂ and ∂J and

H
′2,2n
BC (M,R) ≃ H2,2n

BC (M,R), the quaternionic Bott-Chern cohomology. Moreover, we have that

⟨·, ·⟩ : H2,2n
qBC(M) ×H2n−2,0

qA (M) → R ⟨[φ]qBC, [ψ]qA⟩ =

∫
M

φ ∧ ψ

is well-defined and non-degenerate, To see the non-degeneracy, fix a hyperHermitian metric g on M , so
that

H∗,∗
qA (M,R) ≃ HqA := ker ∆qA , H∗,∗

qBC(M,R) ≃ HqBC := ker ∆qBC ,

where ∆qA and ∆qBC are, respectively, the so-called quaternionic Aeppli and Bott-Chern Laplacian. ∆qA

and ∆qBC are fourth-order elliptic operators and their explicit expression can be found in [172]. Moreover,
we have that, on compact hypercomplex manifolds,

HqA = ker ∂∗ ∩ ker ∂∗J ∩ ker ∂∂J , HqBC = ker ∂ ∩ ker ∂J ∩ ker ∂∗∂∗J .

In view of this, it is easy to check that if φ ∈ HqBC, then ∗φ ∈ HqA. Consequently, for every [φ]qBC ∈
H2,2n

qBC(M), we have

⟨[φ]qBC, [∗φ]qA⟩ =

∫
M

φ ∧ ∗φ = ∥φ∥2L2 ,

giving the non-degeneracy of the pairing ⟨·, ·⟩. Now, since ⟨[T ]qBC, [ψ]qA⟩ = 0, for any ∂∂J -closed (2n−
2, 0)-form ψ, then [T ]qBC = 0, proving the claim.

As highlighted by Theorem 4.3.9 and Example 4.7.9, it is not always possible to find quaternionic
Gauduchon metrics on a given compact hypercomplex manifold. This can also be understood from
Proposition 4.3.12. Indeed, comparing with the complex case, the characterization of the hypothetical
non-existence of Gauduchon metrics on a compact complex manifold would be equivalent to the existence
of a non-zero, positive ∂∂̄-exact (1, 1)-current. Of course, such a current does not exist due to the fact
that, on compact complex manifolds, any plurisubharmonic function is constant. On the other hand,
this phenomenon might not happen in the hypercomplex setting. Indeed, chosen Θ ∈ Λ2n,0

I M to be a
q-positive volume form on M , any ∂∂J -exact, q-real and q-positive (2, 2n)-current can be written as

T = ∂∂J(fΘ̄) = ∂∂Jf ∧ Θ̄ + ∂f ∧ ∂JΘ̄ − ∂Jf ∧ ∂Θ̄ + f∂∂JΘ̄ , f ∈ D0(M,C) , (4.18)

which, in general, does not allow us to use the theory of quaternionic plurisubharmonic functions. On
the other hand, when M is SL(n,H), we can always choose Θ to be holomorphic. This, together with the
fact that quaternionic plurisubharmonic functions on a compact hypercomplex manifold are constant,
gives another proof of Lemma 4.3.2. Although we are choosing Θ to be q-positive, the distribution f
might be complex valued. However, if we further impose ∂∂JΘ̄ = 0, then f can be chosen, up to additive
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constants, to admit only real values. Indeed, imposing q-realness of T in these hypothesis, we obtain

that, defined h = −
√
−1
2 (f − f̄),

∂∂Jh ∧ Θ̄ + ∂h ∧ ∂JΘ̄ − ∂Jh ∧ ∂Θ̄ = 0 .

Then, h ∈ D0(M,R) satisfies a second order elliptic equation without zero order terms. So, applying
standard elliptic regularity, h ∈ C∞(M,R), then, by the maximum principle, h is constant. On the other
hand, we can observe that, if c is a constant, then, of course, ∂∂J(cΘ̄) = 0. Thanks to this, we can add
a suitable constant to f in order for it to be real-valued, as claimed.
Stemming from this discussion, we can give a weaker sufficient condition for the existence of quaternionic
Gauduchon metrics.

Proposition 4.3.13. Let (Mn,H) be a compact hypercomplex manifold. If there exists a q-positive
volume form Θ ∈ Λ2n,0

I M such that ∂∂JΘ̄ = 0, then, there exists a quaternionic Gauduchon metric.

Proof. Thanks to Proposition 4.3.12, the existence of a quaternionic Gauduchon metric is equivalent to
the fact that any ∂∂J -exact, q-real and q-positive (2, 2n)-current is zero. Now, as above, any such current
T can be written as in (4.18). Suppose ∂∂JΘ̄ = 0 and consider the following closed convex cone

C = {f ∈ D0(M,R) | ∂∂J(fΘ̄) ≥ 0} . (4.19)

It is not so hard to prove that C ∩ C∞(M,R) is dense in C in the weak sense of distributions. So, fixed
f ∈ C, we can find {fn}n ⊆ C ∩ C∞(M,R) such that fn → f in the weak sense of distributions. On the
other hand, fn satisfies

∂∂Jfn ∧ Θ̄ + ∂fn ∧ ∂JΘ̄ − ∂Jfn ∧ ∂Θ̄ ≥ 0

and so we can apply the maximum principle obtaining that fn is constant. This implies that f is constant,
giving the claim.

We conclude this section remarking that the hypothesis of q-positivity of Θ cannot be removed. Indeed,
we can consider a non-SL(n,H)-manifold (M,H) with K(M,I) holomorphically trivial. Then, we can find
an holomorphic volume form Θ which is, in particular, ∂̄∂̄J -closed but not q-positive, since the manifold
is not SL(n,H). On the other hand, Proposition 4.3.13 will guarantee the existence of a quaternionic
Gauduchon metric. Then, applying Corollary 4.3.5, we will obtain that (M,H) is SL(n,H), reaching a
contradiction. An example of a non-SL(n,H)-manifold with holomorphically trivial canonical bundle can
be found in Example 4.7.9.

4.4 Quaternionic balanced metrics

Let (Mn,H,Ω) be a hyperHermitian manifold. The quaternionic balanced condition ∂Ωn−1 = 0 does not
imply that the metric is HKT or even that M admits any HKT metric, see Examples 4.7.1,4.7.2 and
4.7.3. On the contrary, for any 1 ≤ k < n − 1, requiring ∂Ωk = 0 would imply that the metric is HKT
thanks to Proposition 1.3.20. Moreover, the form βΩ is ∂-exact if and only if there exists a quaternionic
balanced metric in the conformal class of Ω which is unique, up to scaling. Note that, as it happens for
quaternionic Gauduchon metrics, the quaternionic balanced conditions do not depend on the choice of
the complex structure in H.

On SL(n,H)-manifolds, the existence of quaternionic balanced metrics turns out to be equivalent to
the existence of balanced metrics.

Lemma 4.4.1. Let (Mn,H) be a SL(n,H)-manifold. Then, there exists a quaternionic balanced metric if
and only if there exists a balanced hyperHermitian metric and the two metrics are conformal. Moreover,
if M is a compact quotient of a Lie group by a lattice and the hypercomplex structure H is left-invariant,
then an invariant hyperHermitian metric is quaternionic balanced if and only if it is balanced.



144 CHAPTER 4. SPECIAL METRICS IN HYPERCOMPLEX GEOMETRY

Proof. In order to prove the first assertion, we simply note that, by Lemma 4.1.13, a hyperHermitian
metric is balanced if and only if α+ β = 0 and, by the SL(n,H) condition, this implies that β is ∂-exact.
Conversely, if β is ∂-exact we can find a hyperHermitian balanced metric performing a conformal change.

Now, suppose M is a compact quotient of a Lie group by a lattice and let Ω be an invariant hyper-
Hermitian metric. As shown in Lemma 4.3.3, the invariance of Ω and the SL(n,H) condition allow to use
the symmetrization and deduce α = 0. Consequently, the Lee form is θΩ = β + β̄, thus Ω is quaternionic
balanced if and only if it is balanced.

Lemma 4.4.1 can be considered as a generalization of [43, Proposition 4.11] and [156, Theorem 5.1].

Furthermore, Theorem 4.3.9 can be specialized in the quaternionic balanced case to give the following
characterization.

Corollary 4.4.2. Let (M,H,ΩG) be a compact hyperHermitian manifold, where ΩG is a Gauduchon
metric. Then, there exists a unique quaternionic balanced metric of unit volume in the conformal class
of ΩG if and only if (4.12) holds and ΓB({ΩG}) = 0.

Proof. Firstly, suppose that there exists a quaternionic balanced metric of unit volume in the conformal
class of ΩG. Then, it is, in particular, quaternionic Gauduchon and thus (4.12) holds. On the other hand,
quaternionic balanced metrics are Bismut-Ricci flat. Hence, using (4.3), we see that the Bismut-Ricci
form of ΩG with respect to I is ∂∂̄-exact giving ΓB({ΩG}) = 0. Conversely, using Theorem 4.3.9, we
can find a solution f ∈ C∞(M,R) to (4.13). On the other hand, integrating again (4.13) and using that
ΓB({ΩG}) = 0 we obtain that βΩG

= −∂f . This gives us the claim.

Next, we give a characterization of the existence of quaternionic balanced metrics in terms of currents
which can be considered as the analogue of [240, Proposition 4.5] for balanced metrics.

Proposition 4.4.3. Let (Mn,H) be a compact hypercomplex manifold with n ≥ 2. Then, M admits
no quaternionic balanced metrics if and only if there exists a non-zero, ∂-exact, q-real and q-positive
(2, 2n)-current.

Proof. The strategy of the proof follows that of Proposition 4.3.12. Indeed, it is sufficient to choose

W1 = {φ ∈ Λ2n−2,0
I M | Jφ̄ = φ , φ q-positive} , W2 = {ψ ∈ Λ2n−2,0

I M | ∂ψ = 0}

and use the non-degenerate pairing

⟨·, ·⟩ : H2,2n
∂ (M) ×H2n−2,0

∂ (M) → R , ⟨[φ], [ψ]⟩ =

∫
M

φ ∧ ψ

to conclude.

We shall use Proposition 4.4.3 to provide examples of compact quaternionic strongly Gauduchon manifolds
not admitting quaternionic balanced metrics, see Examples 4.7.4, 4.7.5 and 4.7.6.

Combining Lemma 4.1.14 with Proposition 4.1.5 (b) and Proposition 4.3.4 we get the following equiv-
alences, generalizing [47, Lemma 2.2].

Corollary 4.4.4. Let (Mn,H,Ω) be a compact quaternionic balanced manifold. Then Ω cannot have
negative Chern scalar curvature. Furthermore, the following are equivalent:

1. sCh = 0;

2. Ω is balanced;

3. α = 0;

4. RicCh(ωL) = 0 , for all L ∈ H;
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5. ∂Jα = 0.

The quaternionic balanced condition also restricts the possibilities for the Kodaira dimension.

Proposition 4.4.5. Let (M,H) be a compact hypercomplex manifold admitting a compatible quaternionic
balanced metric Ω. Then, κ(M,L) ≤ 0, for all L ∈ H. Moreover, if the Gauduchon metric in the conformal
class of Ω is not balanced then κ(M,L) = −∞ for all L ∈ H.

Proof. It follows from the fact that the quaternionic balanced condition implies Bismut-Ricci flatness and
[14, Proposition 3.1].

Corollary 4.4.6. Let (Mn,H) be a compact hypercomplex manifold admitting a compatible quaternionic

balanced metric. Then, cqBC
1 (M,H) = 0 if and only if κ(M,L) = 0 for all L ∈ H, and cqBC

1 (M,H) ̸= 0 if
and only if κ(M,L) = −∞, for all L ∈ H.

Proof. We know from Corollary 4.3.5 that cqBC
1 (M,H) = 0 is equivalent to K(M,L) being holomorphically

torsion for all L ∈ H and, by Proposition 4.2.4, this implies κ(M,L) = 0, for all L ∈ H. On the other

hand, if cqBC
1 (M,H) ̸= 0 the Gauduchon metric ΩG in the conformal class of any quaternionic balanced

metric cannot be balanced, otherwise the manifold would be SL(n,H). Indeed, the form βΩG must be
∂-exact, but then, if ΩG was balanced, αG would also be ∂-exact, implying the SL(n,H) condition.

By very well-know results, recall Theorem 1.1.52 and Theorem 1.1.53, the class of compact balanced
manifolds is closed under products, proper holomorphic submersions and proper holomorphic modifica-
tions. In what follows, we will study some of the same closedness properties for the class of compact
quaternionic balanced manifolds. First of all, we will recall the definition of hyperHermitian submersion,
see for instance [6, 192, 193].

Definition 4.4.7. Let (M,H, g) and (M ′,H′, g′) be two hypercomplex manifolds. A map f : M →M ′ is
called hypercomplex if, for any L ∈ H, there exists L′ ∈ H′ such that f : (M,L) → (M ′, L′) is holomorphic.
If f is also a Riemannian submersion, then f will be called a hyperHermitian submersion.

Examples of hyperHermitian submersions between compact manifolds can be produced standardly
looking, for instance, at finite coverings of compact hyperHermitian manifolds. Moreover, the projection
onto the quotient of a Lie group by a lattice, endowed with a left-invariant hypercomplex structure, gives
an example of hypercomplex map between a compact and a hypercomplex manifold, not necessarily com-
pact. This can also be seen as a hyperHermitian submersion for a suitable choice of the hyperHermitian
metrics, for instance a left-invariant hyperHermitian metric on the quotient and its pullback on the group.
Another example can be found in [192, Section 4].

Proposition 4.4.8. Let (M,H) and (M ′,H′) be two quaternionic balanced manifolds and (M ′′,H′′) be
a hypercomplex manifold. Then, (M ×M ′,H ⊕ H′) is quaternionic balanced. Moreover, if f : (M,H) →
(M ′′,H′′) is a proper hyperHermitian submersion, then (M ′′,H′′) is quaternionic balanced.

Proof. The first claim is trivial. Indeed, if ΩM and ΩM ′ are quaternionic balanced metrics on (M,H) and
(M ′,H′) respectively, then Ω = ΩM + ΩM ′ is quaternionic balanced on (M ×M ′,H⊕ H′).

Let us now prove the second assertion. Let n and m be the quaternionic dimensions of M and M ′′

respectively. We fix ΩM to be a quaternionic balanced metric on M . For the sake of simplicity, we will
also fix basis (I, J) and (I ′′, J ′′) for the hypercomplex structures H and H′′, respectively, such that f is
both (I, I ′′) and (J, J ′′)-holomorphic. Then, since f is proper we can consider

γ = f∗Ωn−1
M ,

which is the (2m − 2)-form given by integration of Ωn−1
M along the fibers of f . Now, since f is (I, I ′′)-

holomorphic and ∂Ωn−1
M = 0, then γ ∈ Λ2m−2,0

I′′ M ′′ and ∂γ = 0. Thus, it is sufficient to prove that γ
is q-real and q-positive. Indeed, if this is true, we know that there will exist a hyperHermitian metric
ΩM ′′ such that γ = Ωm−1

M ′′ , giving the claim. First of all, we note that q-realness is trivial because f is
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(J, J ′′)-holomorphic and then J ′′f∗ = f∗J . Fixed a point x ∈ M and any (1, 0)-frame {Z1, . . . , Z2n} of
TxM such that JZ2i−1 = Z̄2i, we can write at x

Ωn−1
M = aijζ

1 ∧ ζ2 ∧ . . . ∧ ζ̂i ∧ . . . ∧ ζ̂j ∧ . . . ∧ ζ2n ,

where {ζi} is the dual coframe with respect to {Zi} and (aij) is a skew-symmetric matrix which is positive

in the sense that aijζ
i ∧ ζj is q-positive. Now, fix p ∈M ′′ and choose {Z̃1, . . . , Z̃2m} a (1, 0)-frame with

respect to I ′′ of TpM
′′ such that J ′′Z̃2i−1 = ¯̃Z2i, for all i = 1, . . . ,m. We then consider x ∈ F := f−1(p)

and, using that f is hypercomplex, we can lift {Z̃1, . . . , Z̃2m} to {Z1, . . . , Z2m} ⊂ T 1,0
x,IM such that

JZ2i−1 = Z̄2i, for all i = 1, . . . ,m and complete it to a (1, 0)-frame {Z1, . . . , Z2n} of TxM such that
JZ2j−1 = Z̄2j , for all j = m+ 1, . . . , n. We can moreover assume that volF = ζm+1 ∧ ζm+2 ∧ . . . ∧ ζ2n is
a volume form when restricted to F . Now, we easily see that

γ = ãij ζ̃
1 ∧ ζ̃2 ∧ . . . ˆ̃

ζi ∧ . . . ∧ ˆ̃
ζj ∧ . . . ∧ ζ̃2m , ãij =

∫
F

aijvolF

which is again skew-symmetric and positive, concluding the proof.

A direct consequence of the second statement is that if f : M → M ′′ is a finite covering, then M is
quaternionic balanced if and only if M ′′ is quaternionic balanced.

As regards the closedness under modifications, we leave the question open. Before going into the
problem, it is necessary to understand whether a smooth proper modification, compatible with the hy-
percomplex structures, of a HKT manifold stays HKT or not. The analogue of this problem in the
Kähler setting was settled by Hironaka in [185] where a smooth proper modification of a Kähler manifold
which is non-Kähler is provided. This example is nothing but a blow-up of CP3 along a singular curve.
However, it is not even clear how one can blow-up a hypercomplex manifold obtaining another one or
which operation can substitute the blow-up.

4.5 Strong HKT metrics

In this section, we will study properties of compact strong HKT manifolds, recall Definition 1.3.29,
establishing Theorem E, namely, that on a compact hypercomplex manifold a strong HKT metric and a
balanced hyperHermitian one cannot coexist without forcing the manifold to be hyperKähler.

First of all, we prove two preliminary formulae which hold in the hyperHermitian setting. One of
these can be considered as the quaternionic analogue of [14, Formula (2.13)].

Proposition 4.5.1. Let (Mn,H,Ω) be a hyperHermitian manifold with n ≥ 2. Then, for any Z ∈
Γ(T 1,0

I M), we have

∂Jα(Z, JZ̄) = |ιZ∂Ω̄|2 + |ιJZ̄∂Ω̄|2 − n
ιJZ̄ιZ

(
∂∂J Ω̄

)
∧ Ω̄n−1

Ω̄n
. (4.20)

Moreover,
1

2
sCh(Ω) + g(∂∂J Ω̄,Ω ∧ Ω̄) − |∂Ω̄|2 = 0 . (4.21)

Proof. We have that

∂∂J Ω̄n = n∂∂J Ω̄ ∧ Ω̄n−1 + n(n− 1)∂Ω̄ ∧ ∂J Ω̄ ∧ Ω̄n−2 .

Now, we fix Z ∈ Γ(T 1,0
I M) and compute

ιJZ̄ιZ
(
∂Ω̄ ∧ ∂J Ω̄ ∧ Ω̄n−2

)
= (ιZ∂Ω̄) ∧ (ιJZ̄∂J Ω̄) ∧ Ω̄n−2 − (ιJZ̄∂Ω̄) ∧ (ιZ∂J Ω̄) ∧ Ω̄n−2 .
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Using (1.46) and Lemma 4.1.4, we infer that

ιJZ̄ιZ
(
∂Ω̄ ∧ ∂J Ω̄ ∧ Ω̄n−2

)
=

1

n(n− 1)

(
|α(Z)|2 + |α(JZ̄)|2 − |ιZ∂Ω̄|2 − |ιJZ̄∂Ω̄|2

)
Ω̄n

=
1

n(n− 1)

(
(α ∧ J−1ᾱ)(Z, JZ̄) − |ιZ∂Ω̄|2 − |ιJZ̄∂Ω̄|2

)
Ω̄n .

This, together with (4.10), gives (4.20).
Finally, choosing I-holomorphic coordinates (z1, . . . , z2n) at a point where Ω takes the expression

Ω =
∑n
i=1 dz

2i−1 ∧ dz2i, we may choose Z = ∂
∂z2i−1 in (4.20) and sum over i to deduce (4.21).

The next theorem we want to present goes in the direction of the so-called Fino-Vezzoni conjecture,
see Conjecture 1.1.57.

It is clear from Definition 1.3.29 that a HKT metric Ω is strong if and only if ωL are all simultaneously
SKT, for L ∈ H, recall Definition 1.1.56. Hence, the question of whether strong HKT and balanced
hyperHermitian metrics can coexist on a non-hyperKähler manifold or not can be viewed as a particular
instance of the Fino-Vezzoni conjecture.

Before we prove the announced Theorem E we need the following preliminary incompatibility result.

Proposition 4.5.2. Let (Mn,H) be a hypercomplex manifold with n ≥ 2. If Ω is a strong HKT metric

compatible with H which is not hyperKähler, then ∂JαΩ ≥ 0 and ∂JαΩ ̸= 0. In particular, cqBC
1 (M, I, J)

admits a q-semipositive representative and, if M is compact, it is non zero.

Proof. From (4.20) using that ∂∂J Ω̄ = 0, we see that

∂JαΩ(Z, JZ̄) = |ιZ∂Ω̄|2 + |ιJZ̄∂Ω̄|2 ≥ 0 , Z ∈ Γ(T 1,0
I M)

and since Ω is not hyperKähler there exists at least one Z ∈ T 1,0
I M such that ∂JαΩ(Z, JZ̄) > 0 , proving

the first statement.
Furthermore, suppose M is compact and cqBC

1 (M,H) = 0, then there would be a function f ∈ C∞(M,R)
such that

0 ≤ ∂JαΩ = ∂∂Jf.

The above equation, in particular, implies that f is a quaternionic plurisubharmonic function. By this,
since we are working on a compact manifold, f must be constant, forcing ∂JαΩ = 0 which is impossible,
thanks to the first part of the proof.

The existence of a balanced HKT metric forces a compact hypercomplex manifold (Mn,H) to be SL(n,H)

and thus cqBC
1 (M,H) = 0. Hence, a fortiori, a non-hyperKähler strong HKT manifold admits no balanced

HKT metrics. We are now ready to prove Theorem E.

Theorem 4.5.3. Let (Mn,H, Ω̃) be a compact non-hyperKähler strong HKT manifold. Then, there is
no balanced hyperHermitian metric on (M,H).

Proof. If n = 1 balanced metrics coincide with Kähler metrics, thus the result is obvious.
Suppose n ≥ 2 and assume by contradiction that there is a balanced hyperHermitian metric Ω on M
compatible with H, then∫

M

sCh(Ω)
Ωn ∧ Ω̄n

(n!)2
= 2

∫
M

∂JαΩ ∧ Ωn−1 ∧ Ω̄n

n!(n− 1)!
= 2

∫
M

αΩ ∧ ∂J
(

Ωn−1 ∧ Ω̄n

n!(n− 1)!

)
= 0

which implies that there exists f ∈ C∞(M,R) such that sCh(Ω) = ∆Ωf . On the other hand, we know
that ∂JαΩ̃ = ∂JαΩ + ∂∂Jφ, for some φ ∈ C∞(M,R). Tracing this last relation with respect to Ω yields

trΩ(∂JαΩ̃) =
1

2
sCh(Ω) + ∆Ωφ =

1

2
∆Ω(f + 2φ) .
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But then Proposition 4.5.2 gives ∆Ω(f+2φ) ≥ 0 and from the maximum principle we get trΩ(∂JαΩ̃) = 0.
We claim that this entails ∂JαΩ̃ = 0 contradicting Proposition 4.5.2. To see this, take I-holomorphic
local coordinates (z1, . . . , z2n) at a point where

Ω =

n∑
i=1

dz2i−1 ∧ dz2i , ∂JαΩ̃ =

n∑
i=1

λidz
2i−1 ∧ dz2i ,

where λi ≥ 0 by q-semipositivity of ∂JαΩ̃. Then 0 = trΩ(∂JαΩ̃) =
∑n
i=1 λi as claimed, concluding the

proof.

From Corollary 4.4.6 we also deduce the following fact about the Kodaira dimension.

Corollary 4.5.4. Let (M,H) be a hypercomplex manifold admitting a compatible strong HKT metric.
Then, κ(M,L) = −∞, for all L ∈ H.

4.6 Chern-Einstein hyperHermitian metrics

Let (M,J, ω) be a Hermitian manifold. The metric is called first Chern-Einstein if the (1, 1)-form ω
satisfies

RicCh(ω) = λω , λ ∈ C∞(M,R) .

The function λ is called the Einstein factor. On compact complex manifolds the problem of finding a
Hermitian metric such that the Chern-Ricci form is a multiple of the metric itself is essentially understood
[24]. First Chern-Einstein metrics with non-identically-zero Einstein factor exist if and only if they are
conformal to a Kähler metric in ±c1(M). Furthermore, such a metric is unique, up to scaling, in its
conformal class. On the other hand, assuming the necessary condition cBC

1 (M,J) = 0, a Chern-Ricci flat
metric always exists in any conformal class, and it is unique up to scaling.

Let us show how, in the hypercomplex setting, a natural Einstein condition arises by looking at a
suitable geometric flow.

Definition 4.6.1. Let (M,H,Ω0) be a hyperHermitian manifold. The hyperHermitian Chern-Ricci flow
is the following evolution equation: {

∂
∂tΩ = −∂JαΩ ,

Ω(0) = Ω0 .
(4.22)

Such a flow is strictly related to the quaternionic Monge-Ampère equation and it was already con-
sidered in [47]. Indeed, [47, Equation (5)] is equivalent to (4.22) by means of Lemma 4.2.2. This new
formulation of the flow makes evident that the HKT condition is preserved along it.

Definition 4.6.2. Let (M,H) be a hypercomplex manifold. A hyperHermitian metric Ω is Chern-Einstein
if it is a static point of (4.22), namely if it is satisfied the following:

∂JαΩ = λΩ (4.23)

for some λ ∈ C∞(M,R). If moreover Ω is HKT we say that it is HKT-Einstein.

We observe that, tracing (4.23), λ is proportional to the Chern scalar curvature:

sCh = 2nλ .

With the next lemma we rephrase the definition in terms of the forms ωL, for L ∈ H.

Lemma 4.6.3. Let (M,H,Ω) be a hyperHermitian manifold. Then, the following are equivalent:

1. Ω is Chern-Einstein with Einstein factor λ;
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2. ωI satisfies

RicCh(ωI) − JRicCh(ωI)

2
= λωI ;

3. For any pair of anti-commuting complex structures L,P ∈ H,

RicCh(ωL) − PRicCh(ωL)

2
= λωL .

Proof. We already observed that the equivalence of (1) and (2) follows from Lemma 4.2.2. The fact that
(1) is equivalent to (3) can be obtained using the symmetry argument as in the proof of Proposition
4.1.11, thanks to which it is sufficient to assume P = I and L = aJ + bK ∈ H. On the other hand, this
case follows from (4.4) and (4.9).

Remark 4.6.4. It has been pointed out to us by M. Lejmi that a hyperHermitian metric Ω is Chern-
Einstein if and only if (

RicCh(ωJ) +
√
−1RicCh(ωK)

2

)(2,0)

= λΩ .

This follows directly from (4.5) and (4.6).

4.6.1 The 1-dimensional case

We start with compact hyperHermitian manifolds of quaternionic dimension 1. These are always HKT
for dimensional reasons and they have been classified by Boyer in [56]. Up to conformal equivalence, the
complete list is the following:

• Tori with the flat metric;

• K3 surfaces with a hyperKähler metric;

• Quaternionic Hopf surfaces, recall Example 1.3.2, with the standard locally conformally flat metric,
see (1.38).

The first two classes are hyperKähler while Hopf surfaces are HKT non-Kähler, therefore they are the
right candidate to check the HKT-Einstein condition. Kato [207] has described all complex Hopf surfaces
admitting a hypercomplex structure.

We may endow the Hopf surface with the hyperHermitian metric Ω corresponding to ωI as in (1.38).
It is easy to check that ωI is SKT. We claim that it is also HKT-Einstein. We have

RicCh(ωI) = 2ωI −
2
√
−1

|z|4
(z̄1dz1 + z̄2dz2) ∧ (z1dz̄1 + z2dz̄2)

concluding

RicCh(ωI) − JRicCh(ωI)

2
= ωI .

Then, ωI is HKT-Einstein with Einstein factor identically equal to 1.

From this perspective the classification result of Boyer can be regarded as a hypercomplex version
of the classical uniformization Theorem. The fact that there is no representative with negative Einstein
constant is not an accident. As a matter of fact we will see that this peculiar fact happens in any
dimension for compact HKT-Einstein manifolds.
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4.6.2 The case λ ̸≡ 0

Let (Mn,H) be a hypercomplex manifold. If cqBC
1 (M, I, J) has a sign, it admits a representative ±Ω where

Ω is a hyperHermitian metric which is necessarily HKT. Notice that this implies that cqBC
1 (M,P,L) has

the same sign as cqBC
1 (M, I, J) for any pair of anti-commuting P,L ∈ H. For this reason we will write

cqBC
1 (M,H) ≷ 0. Now, by definition [∂JαΩ]qBC = [±Ω]qBC, thus there exists f ∈ C∞(M,R) such that

∂JαΩ = ±Ω + ∂∂Jf .

It is then easy to show that Ω is conformal to a hyperHermitian Einstein metric. Indeed, Ωf = e
f
n Ω

satisfies
∂JαΩf

= ∂JαΩ − ∂∂Jf = ±Ω = ±e−
f
n Ωf .

We shall however observe that the condition cqBC
1 (M,H) < 0 can never occur in the compact setting.

Indeed, this would give the contradiction

0 > −
∫
M

Ωn ∧ Ω̄nf
(n!)2

=

∫
M

∂JαΩf
∧

Ωn−1 ∧ Ω̄nf
(n!)2

=

∫
M

αΩf
∧

Ωn−1 ∧ ∂J Ω̄nf
(n!)2

=
1

n

∫
M

|αΩf
|2Ω

Ωn ∧ Ω̄nf
(n!)2

.

It is however important to observe that this behaviour is exclusive of the compact case. Indeed, in
Subsection 4.7.4, we will provide examples of HKT-Einstein metrics with negative Einstein factor on
suitable solvable Lie groups.
Let us now consider the case cqBC

1 (M,H) > 0 and the conformal rescaling ΩG = e
h
n Ω where ΩG is the

Gauduchon metric with unit volume. Then,

∂JαΩG = ∂JαΩ − ∂∂Jh = Ω + ∂∂J(f − h) = e−
h
n ΩG + ∂∂J(f − h) .

Tracing and integrating against the Gauduchon volume, it implies that

Γ({Ω}) :=

∫
M

sCh(ΩG)
ΩnG ∧ Ω̄nG

(n!)2
= 2

∫
M

e−
h
n

ΩnG ∧ Ω̄nG
n!(n− 1)!

> 0 .

Now, we shall show that quaternionic Gauduchon metrics conformal to hyperHermitian Einstein ones
with non-identically zero Einstein factor are actually HKT.

Proposition 4.6.5. Let (Mn,H,Ω) be a compact hyperHermitian manifold with n ≥ 2 and admitting a
quaternionic Gauduchon metric Ω̃ conformal to Ω. If

∂Jα = λΩ

for some λ ∈ C∞(M,R), λ ̸≡ 0, then Ω̃ is HKT. Moreover, in this case, cqBC
1 (M,H) > 0.

Proof. Let f ∈ C∞(M,R) be such that Ω̃ = efΩ. Applying ∂J to the Einstein equation, we obtain that

∂J(λe−f ) ∧ Ω̃ + λe−f∂J Ω̃ = 0 . (4.24)

Let us now set ψ = (λe−f )n−1. Then, (4.24) implies ∂Jψ ∧ Ω̃n−1 + ψ∂J Ω̃n−1 = 0. Applying ∂ to this
identity, we get

∂∂Jψ ∧ Ω̃n−1 − ∂Jψ ∧ ∂Ω̃n−1 + ∂ψ ∧ ∂J Ω̃n−1 + ψ∂∂J Ω̃n−1 = 0 .

Using the quaternionic Gauduchon condition and the definition of βΩ̃, we obtain

∆Ω̃ψ + g̃(dψ, βΩ̃ + β̄Ω̃) = 0 .

Consequently, by the maximum principle, ψ must be constant. Now also λe−f is a non-zero constant and
(4.24) reveals that Ω̃ is HKT.
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4.6.3 The HKT case

Now we move on to study the HKT case. Let (Mn,H,Ω) be compact HKT-Einstein of quaternionic
dimension n ≥ 2. Let λ be the Einstein factor. Since α and Ω are ∂-closed we have

0 = ∂∂Jα = ∂λ ∧ Ω

therefore, for n ≥ 2

0 = ∂λ ∧ ∂Jλ ∧ Ωn−1 =
1

n
|∂λ|2Ωn

showing that λ is constant. Moreover, since cqBC
1 (M,H) cannot be negative, then λ ≥ 0. Furthermore,

we can deduce an explicit formula for it. To see this, we simply integrate by parts

λ =
1∫

M
Ωn∧Ω̄n

(n!)2

∫
M

λ
Ωn ∧ Ω̄n

(n!)2
=

1∫
M

Ωn∧Ω̄n

(n!)2

∫
M

∂Jα ∧ Ωn−1 ∧ Ω̄n

(n!)2
=

1

n

1∫
M

Ωn∧Ω̄n

(n!)2

∫
M

|α|2 Ωn ∧ Ω̄n

(n!)2

This is a striking difference with the usual behaviour of the Einstein factor in other settings. We sum-
marize this as follows.

Proposition 4.6.6. Let (M,H) be a compact hypercomplex manifold. Then, a Chern-Einstein hyperHer-
mitian metric with non-identically zero Einstein factor has constant Chern scalar curvature if and only
if it is HKT. When this is the case, the Chern scalar curvature is necessarily non-negative.

It is fairly easy to come up with examples of compact hyperHermitian Einstein manifolds with λ = 0
but not admitting compatible HKT metrics. For instance, any hypercomplex nilmanifold M with a
non-abelian hypercomplex structure H, by [43, Theorem 4.6], does not have any compatible HKT metric.
However, since hypercomplex nilmanifolds are SL(n,H), as in the proof of Lemma 4.3.3, any left-invariant
hyperHermitian metric Ω satisfies α = 0. In Subsection 4.7.3, we will provide examples of HKT-Einstein
metrics with strictly positive Einstein factor.

Within our framework, the quaternionic Calabi conjecture formulated by Alesker and Verbitsky in [9,
Conjecture 1.5] can be phrased as follows: on a compact HKT manifold (M,H,Ω), for any representative

Ψ ∈ cqBC
1 (M,H) it should always be possible to find another HKT metric Ωφ := Ω + ∂∂Jφ, for some

φ ∈ C∞(M,R), such that ∂JαΩφ
= Ψ. If this turns out to be true, when cqBC

1 (M,H) = 0 we would be
able to find HKT-Einstein metrics with vanishing Einstein factor (cf. [332]), i.e. that are balanced and
Chern-Ricci flat.
In a similar fashion, one is led to speculate on the existence of HKT-Einstein metrics on compact HKT
manifolds with positive first quaternionic Bott-Chern class. More precisely, we wonder:

Question 4.6.7. Let (Mn,H,Ω) be a compact HKT manifold such that cqBC
1 (M,H) > 0. Does it always

exist φ ∈ C∞(M,R) such that Ωφ is a HKT-Einstein metric?

Proceeding similarly to the Kähler case, the question turns out to be equivalent to the solvability of the
following quaternionic Monge-Ampère equation:

(Ω + ∂∂Jφ)
n

= ef−φΩn , Ω + ∂∂Jφ > 0 ,

where φ ∈ C∞(M,R) is the unknown and f ∈ C∞(M,R) is the datum. Unfortunately, this case is the
quaternionic analogue of the Fano case in the Kähler setting, hence, when approaching the problem with
the classical method of continuity, the same difficulties arise. Furthermore, it is natural to expect that
certain obstructions may emerge in our context, similar to those found by Futaki [142] and Matsushima
[239]. It is extremely likely that more sophisticated tools are necessary to approach this problem.
As a final remark, since in the compact HKT case the Einstein factor is non-negative, the quaternionic
Monge-Ampère equation corresponding to negative Chern scalar curvature can never be solved.
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4.7 Examples and constructions

In this section, we collect several examples and two interesting constructions, one inspired by Arroyo and
Nicolini [33, Section 5], the other due to Barberis and Fino [44]. The purpose of the first part of this
section is to exhibit examples admitting one type of metrics listed in Definition 1.3.31 but none of the one
immediately stronger. We shall provide several explicit examples with different dimensions, because these
will serve the purpose of “building blocks” in Subsection 4.7.1 to provide examples in any quaternionic
dimension for which it is possible. In Subsection 4.7.3 we study the examples constructed by Joyce [201]
and Spindel, Sevrin, Troost, Van Proeyen [291] showing that they are HKT-Einstein with positive Einstein
constant. Finally, Subsection 4.7.4 is devoted to present some non-compact HKT-Einstein manifolds, two
of which have negative Einstein factor.

In what follows, we will work on Lie algebras endowed with a hypercomplex structure. So, we will
always fix a coframe {e1, . . . , e4n} for the Lie algebra and, unless otherwise stated, use the following
hypercomplex structure: for all k = 1, . . . , n,

Ie4k−3 = −e4k−2 , Ie4k−1 = −e4k , Je4k−3 = −e4k−1 , Je4k−2 = e4k ,

In view of this, the (1, 0)-coframe {ζ1, . . . , ζ2n} with respect to I will be ζj = e2j−1 +
√
−1e2j , for all

j = 1, . . . , 2n, and J will act on it as Jζ2i−1 = −ζ̄2i, for all i = 1, . . . , n.
We start our inspection from manifolds which admit quaternionic balanced metrics but not HKT

ones. An example of such manifold can be found, for instance, in [112]. Here we present three other such
examples. Note that in quaternionic dimension 2 the quaternionic balanced condition coincides with the
HKT condition, hence we need to work in dimension at least 3. The examples we provide are, 3, 4 and
5-dimensional respectively.

Example 4.7.1. We consider the nilpotent Lie algebra in [232, Example 3] with structure constants:

dei = 0 , i = 1, . . . , 8 ,

de9 = e1 ∧ e5 , de10 = e1 ∧ e6 , de11 = e1 ∧ e7 , de12 = e1 ∧ e8 .

The (1, 0)-basis (ζ1, . . . , ζ6) with respect to I satisfies:

dζi = 0 , i = 1, . . . , 4 , dζ5 =
1

2
(ζ1 ∧ ζ3 + ζ̄1 ∧ ζ3) , dζ6 =

1

2
(ζ1 ∧ ζ4 + ζ̄1 ∧ ζ4) .

Since the hypercomplex structure is not abelian, by [43, Theorem 4.6] the nilmanifold N does not admit
any HKT metric. However, we shall show that N admits an invariant quaternionic balanced metric.
Indeed, the invariant hyperHermitian metric on N that makes the coframe unitary, which corresponds
to the q-real, q-positive (2, 0) form

Ω = ζ1 ∧ ζ2 + ζ3 ∧ ζ4 + ζ5 ∧ ζ6 ,

satisfies ∂Ω2 = 0 meaning that it is quaternionic balanced.
Observe that this example does not satisfy the ∂∂J -Lemma because of [230, Theorem 5] and the obser-
vation of Lejmi and Weber [232, Example 3] that it is not C∞-pure nor C∞-full.

Example 4.7.2. Consider the nilpotent Lie algebra with structure equations:

dei = 0 , i = 1, . . . , 12 ,

de13 = e1 ∧ e5 + e1 ∧ e9 , de15 = e1 ∧ e7 + e1 ∧ e11 ,
de14 = e1 ∧ e6 + e1 ∧ e10 , de16 = e1 ∧ e8 + e1 ∧ e12 .
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It is easy to show that the hypercomplex structure is non-abelian. The (1, 0)-basis (ζ1, . . . , ζ8) with
respect to I satisfies:

dζi = 0 , i = 1, . . . , 6 ,

dζ7 =
1

2

(
ζ1 ∧ ζ3 + ζ̄1 ∧ ζ3 + ζ1 ∧ ζ5 + ζ̄1 ∧ ζ5

)
,

dζ8 =
1

2

(
ζ1 ∧ ζ4 + ζ̄1 ∧ ζ4 + ζ1 ∧ ζ6 + ζ̄1 ∧ ζ6

)
.

Again, the metric that makes the coframe unitary is quaternionic balanced.

Example 4.7.3. Consider the nilpotent Lie algebra with structure equations:

dei = 0 , i = 1, . . . , 16 ,

de17 = e1 ∧ e5 + e9 ∧ e13 , de19 = e1 ∧ e7 + e9 ∧ e15 ,
de18 = e1 ∧ e6 + e9 ∧ e14 , de20 = e1 ∧ e8 + e9 ∧ e16 .

Again, the hypercomplex structure is non-abelian. The (1, 0)-basis (ζ1, . . . , ζ10) with respect to I satisfies:

dζi = 0 , i = 1, . . . , 8 ,

dζ9 =
1

2

(
ζ1 ∧ ζ3 + ζ̄1 ∧ ζ3 + ζ5 ∧ ζ7 + ζ̄5 ∧ ζ7

)
,

dζ10 =
1

2

(
ζ1 ∧ ζ4 + ζ̄1 ∧ ζ4 + ζ5 ∧ ζ8 + ζ̄5 ∧ ζ8

)
.

Also in this case, the hyperHermitian metric with respect to which the given frame is unitary satisfies
the quaternionic balanced condition.

We now exhibit examples of compact quaternionic strongly Gauduchon nilmanifolds on which no
quaternionic balanced metric exists. Notice that the minimum quaternionic dimension for which it is
possible to provide such an example as a nilmanifold is 3, indeed all hypercomplex nilmanifolds are
SL(n,H), see [43, Corollary 3.3]. Therefore, in real dimension 8, they admit a quaternionic strongly
Gauduchon metric if and only if they admit a HKT metric by [232, Theorem 10.1].

Example 4.7.4. Consider the nilpotent Lie algebra with structure equations:

dei = 0 , i = 1, . . . , 8 ,

de9 = e1 ∧ e3 , de10 = e1 ∧ e4 + e7 ∧ e8 , de11 = e5 ∧ e7 , de12 = −e3 ∧ e4 + e5 ∧ e8 .

The structure equations can be rewritten in terms of the (1, 0)-coframe (ζ1, . . . , ζ6) as follows:

dζi = 0 , i = 1, . . . , 4 ,

dζ5 =
1

2
(ζ1 ∧ ζ2 + ζ̄1 ∧ ζ2 − ζ4 ∧ ζ̄4) , dζ6 =

1

2
(ζ3 ∧ ζ4 + ζ̄3 ∧ ζ4 + ζ2 ∧ ζ̄2) .

In particular, we have that:

∂ζ1 = ∂ζ2 = ∂ζ3 = ∂ζ4 = 0 , ∂ζ5 =
1

2
ζ1 ∧ ζ2 , ∂ζ6 =

1

2
ζ3 ∧ ζ4 ,

∂Jζ
1 = ∂Jζ

2 = ∂Jζ
3 = ∂Jζ

4 = 0 , ∂Jζ
5 = −1

2
ζ3 ∧ ζ4 , ∂Jζ

6 =
1

2
ζ1 ∧ ζ2 .

The invariant hyperHermitian metric Ω that renders the coframe unitary is quaternionic strongly Gaudu-
chon as

∂Ω2 = 2∂J(ζ3 ∧ ζ4 ∧ ζ5 ∧ ζ6 − ζ1 ∧ ζ2 ∧ ζ5 ∧ ζ6) .
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Since the structure constants are rational, the Lie algebra admits a lattice and the metric above descends
to the compact quotient N . On the other hand, we claim that there are no quaternionic balanced metrics
on the nilmanifold N . Indeed, the form ζ1 ∧ ζ2 = 2∂ζ5 induces a q-positive, ∂-exact, (2, 2n)-current T
given by integration

T (γ) :=

∫
N

ζ1 ∧ ζ2 ∧ γ ∧ Θ̄ , γ ∈ Λ2n−2,0
I N ,

where Θ is any holomorphic volume form in Λ2n,0
I N . We conclude applying Proposition 4.4.3.

Example 4.7.5. Consider the nilpotent Lie algebra with structure equations:

dei = 0 , i = 1, . . . , 12 ,

de13 = e1 ∧ e3 , de15 = e5 ∧ e7 + e9 ∧ e11 ,
de14 = e1 ∧ e4 + e7 ∧ e8 + e11 ∧ e12 , de16 = −e3 ∧ e4 + e5 ∧ e8 + e9 ∧ e12 .

The complex structure equations are:

dζi = 0 , i = 1, . . . , 6 ,

dζ7 =
1

2
(ζ1 ∧ ζ2 + ζ̄1 ∧ ζ2 − ζ4 ∧ ζ̄4 − ζ6 ∧ ζ̄6) ,

dζ8 =
1

2
(ζ3 ∧ ζ4 + ζ̄3 ∧ ζ4 + ζ5 ∧ ζ6 + ζ̄5 ∧ ζ6 + ζ2 ∧ ζ̄2) .

The invariant hyperHermitian metric that makes such coframe unitary is quaternionic strongly Gaudu-
chon. On the other hand, as in the previous example, it is easy to see that there are no quaternionic
balanced metrics.

Example 4.7.6. Consider the nilpotent Lie algebra with structure equations:

dei = 0 , i = 1, . . . , 16 ,

de17 = e1 ∧ e3 + e5 ∧ e7 , de18 = e1 ∧ e4 + e5 ∧ e8 + e11 ∧ e12 + e15 ∧ e16 ,
de19 = e9 ∧ e11 + e13 ∧ e15 , de20 = −e3 ∧ e4 − e7 ∧ e8 + e9 ∧ e12 + e13 ∧ e16 .

The structure equations can be rewritten in terms of a (1, 0)-coframe with respect to I as follows:

dζi = 0 , i = 1, . . . , 8 ,

dζ9 =
1

2
(ζ1 ∧ ζ2 + ζ̄1 ∧ ζ2 + ζ3 ∧ ζ4 + ζ̄3 ∧ ζ4 − ζ6 ∧ ζ̄6 − ζ8 ∧ ζ̄8) ,

dζ10 =
1

2
(ζ5 ∧ ζ6 + ζ̄5 ∧ ζ6 + ζ7 ∧ ζ8 + ζ̄7 ∧ ζ8 + ζ2 ∧ ζ̄2 + ζ4 ∧ ζ̄4) .

The invariant hyperHermitian metric that makes the (1, 0)-coframe unitary is quaternionic strongly
Gauduchon and the same argument of Example 4.7.4 shows that there exists no quaternionic balanced
metric.

Remark 4.7.7. Both the quaternionic balanced condition and the strongly Gauduchon condition are not
preserved under small deformations of the hypercomplex structure. Indeed, in [110], the authors provide
an example of an 8-dimensional nilmanifold on which the existence of HKT metrics is not preserved
along a deformation of the hypercomplex structure. However, HKT metrics in quaternionic dimension
2 coincide with quaternionic balanced ones while, as remarked above, on hypercomplex nilmanifolds of
real dimension 8 the existence of HKT metrics is equivalent to the existence of quaternionic strongly
Gauduchon metrics.
It would be interesting to know if the same phenomenon occurs for the quaternionic Gauduchon condition.
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We now focus on manifolds admitting quaternionic Gauduhcon metric but no strongly quaternionic
Gauduchon ones.

We already mentioned that any 8-dimensional hypercomplex nilmanifold with non-abelian hyper-
complex structure admits no quaternionic strongly Gauduchon metric. On the other hand it admits a
quaternionic Gauduchon metric by Lemma 4.3.2. Notice that, as a consequence of Lemma 4.3.7, no
example in this class can satisfy the ∂∂J -Lemma.
Here we present an example in each dimension.

Example 4.7.8. For n ≥ 2, consider the 4n-dimensional nilpotent Lie algebra with structure equations:

dei = 0 , i = 1, . . . , 4n− 3 ,

de4n−2 =

n−1∑
k=1

e4k−3 ∧ e4k−2 , de4n−1 =

n−1∑
k=1

e4k−3 ∧ e4k−1 , de4n =

n−1∑
k=1

e4k−3 ∧ e4k .

The (1, 0)-basis (ζ1, . . . , ζ2n) with respect to I satisfies:

dζi = 0 , i = 1, . . . , 2n− 2 ,

dζ2n−1 = −1

2

n−1∑
k=1

ζ2k−1 ∧ ζ̄2k−1 , dζ2n =
1

2

n−1∑
k=1

(ζ2k−1 ∧ ζ2k + ζ̄2k−1 ∧ ζ2k) .

We shall check that the generic invariant hyperHermitian metric

Ω = Aijζ
i ∧ ζj , Aij ∈ C ,

is not quaternionic strongly Gauduchon. We compute

∂Ωn−1 = ∂
(
Aijζ

i ∧ ζj
)n−1

= (n− 1)! ∂
(

pf(A(i, j))ζ1 ∧ · · · ∧ ζ̂i ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζ2n
)

= −(n− 1)!
∑

1≤i<j≤2n−1

pf(A(i, j))ζ1 ∧ · · · ∧ ζ̂i ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζ2n−1 ∧ ∂ζ2n

= − (n− 1)!

2

(
n−1∑
k=1

pf(A(2k − 1, 2k))

)
ζ1 ∧ · · · ∧ ζ2n−1 ,

where the hat symbols means that the term is missing and A(i, j) denotes the matrix obtained from the
skew-symmetric matrix A = (Ars) removing the ith and jth rows and columns. Then ∂Ωn−1 is non-zero,
because by q-positivity of Ω we must have pf(A(2k− 1, 2k)) > 0, for all k = 1, . . . , n. Moreover, it is not
∂J -exact since

∂Jζ
i = 0 , i ̸= 2n− 1 , ∂Jζ

2n−1 = −1

2

n−1∑
k=1

ζ2k−1 ∧ ζ2k .

On the other hand, these are all nilpotent Lie algebras with rational structure constants, therefore
the corresponding nilmanifolds are SL(n,H) and the existence of a quaternionic Gauduchon metric is
guaranteed by Lemma 4.3.2.

Finally, we discuss an example of hypercomplex manifold which do not admit any quaternionic Gaudu-
chon metrics.

Example 4.7.9. The example we describe appeared in [17, Example 6.3] to provide a negative answer to
a question posed by Verbitsky. It is constructed as a compact quotient S = G/Γ of a solvable Lie group
by a lattice Γ equipped with an invariant hypercomplex structure H. Andrada and Tolcachier show that
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the canonical bundle of (S, I) is holomorphically trivial but that of (S, J) is not, indeed, they even show

that cBC
1 (S, J) ̸= 0. On the other hand, the holomorphic triviality of K(S,I) implies cqBC

1 (S,H) = 0 (cf.
Remark 4.2.6). We then conclude that a compatible quaternionic Gauduchon metric cannot exists from
Corollary 4.3.5.
For the sake of completeness we also show this in another way. Thanks to the symmetrization process, it
is enough to show that (S,H) does not admit invariant quaternionic Gauduchon metrics. We may easily
conclude by means of Theorem 4.3.9. Indeed, (S,H) cannot satisfy condition (4.12) in any conformal
class (although it does satisfy condition (4.14)). For any invariant Gauduchon hyperHermitian metric
ΩG, we must have sCh(ΩG) = 0 by the triviality of K(S,I) and so if (4.12) were to hold, it would imply
αΩG = 0 which contradicts the fact that (S,H) is not SL(n,H).

Remark 4.7.10. This example, together with Proposition 4.2.4 also shows that κ(S, I) = 0 while
κ(S, J) = −∞, so, in general, it may happen that different complex structures in the same hypercomplex
structure yield different Kodaira dimensions.
From this, it also follows that the complex deformation

It = cos(πt)I + sin(πt)J , t ∈ [0, 1/2] ,

does not preserve the Kodaira dimension, a fact that is in contrast with the projective case as shown by
Siu [286]. We are grateful to G. Grantcharov for this observation.

We conclude this section showing that the quaternionic strongly Gauduchon condition depends on
the choice of the pair of anti-commuting complex structures in the same hypercomplex structure

Example 4.7.11. We consider Example 4.7.4. Let us show that with respect to the pair (J, I) there
are no quaternionic strongly Gauduchon metrics. Consider the (1, 0)-coframe with respect to J given by
w2k−1 = e4k−3 +

√
−1e4k−1 and w2k = e4k−2 −

√
−1e4k for k = 1, 2, 3, and let d = ∂ + ∂̄ be the splitting

of the exterior differential with respect to J . Then

∂wi = 0 , i = 1, . . . , 5 , ∂w6 =
1

2
(
√
−1w1 ∧ w2 + w3 ∧ w4) ,

I−1∂̄Iwi = 0 , i ̸= 5 , I−1∂̄Iw5 =
1

2
(
√
−1w1 ∧ w2 − w3 ∧ w4) .

It is now easy to check that the generic invariant hyperHermitian metric Ω cannot be quaternionic strongly
Gauduchon, since ∂Ω2 is proportional to w1 ∧ w2 ∧ w3 ∧ w4 ∧ w5 which is never I−1∂̄I-exact.

4.7.1 Arroyo-Nicolini’s construction

In [33, Section 5], Arroyo and Nicolini give a procedure to construct nilpotent SKT Lie algebras starting
from previous ones. Here we adapt their argument to build new hyperHermitian nilpotent Lie algebras.

Let (g1, [·, ·]1,H1) and (g2, [·, ·]2,H2) be two nilpotent Lie algebras equipped with a hypercomplex
structure generated by (I1, J1) and (I2, J2) respectively. Provided we have dim[gi, gi] < dimZ(gi), we
can choose ei ∈ Z(gi) \ [gi, gi], where Z(gi) is the center of gi. Then, we can define the new Lie algebra
g = g1 ⊕ g2 ⊕ ⟨X,Y, Z,W ⟩ with Lie bracket

[·, ·]|gi×gi
:= [·, ·]i , [X,Y ] = −[Z,W ] := e1 + e2

and hypercomplex structure H determined by:

I|gi = Ii , IX = Y , IZ = W ,

J |gi = Ji , JX = Z , JY = −W .

Observe that the nilpotency step of g is the maximum of the nilpotency steps of g1 and g2.
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Theorem 4.7.12. The hypercomplex Lie algebra (g,H) admits HKT (resp. quaternionic balanced, quater-
nionic strongly Gauduchon) metrics if and only if (g1,H1) and (g2,H2) do.

Proof. Clearly, H is abelian if and only if both H1 and H2 are, therefore, thanks to [43, Theorem 4.6], the
theorem is true for HKT metrics. We can be more precise: Ωi is a HKT metric on gi for i = 1, 2 if and
only if

Ω := Ω1 + Ω2 + ζ1 ∧ ζ2 (4.25)

is HKT, where (ζ1, ζ2) is the (1, 0) coframe with respect to I dual to (X −
√
−1Y, Z −

√
−1W ). This is

because ∂(ζ1 ∧ ζ2) = 0 and the only modification that occurs in the structure constants of gi is that now
dei = 2

√
−1(−ζ1 ∧ ζ̄1 + ζ2 ∧ ζ̄2), which before was zero. In particular, ∂ei = 0 is unaltered.

The same phenomenon occurs for the other kinds of special metrics. Let Ωi be a hyperHermitian metric
on gi and define Ω on g as in (4.25). Let ni be the quaternionic dimension of gi and let n = n1 + n2 + 1
be that of g. Since

Ωn−1 =

(
n

n1

)
Ωn1

1 ∧ Ωn2
2 + n2

(
n

n1

)
Ωn1

1 ∧ Ωn2−1
2 ∧ ζ1 ∧ ζ2 + n1

(
n

n2

)
Ωn1−1

1 ∧ Ωn2
2 ∧ ζ1 ∧ ζ2 ,

we see that

∂Ωn−1 = n2

(
n

n1

)
Ωn1

1 ∧ ∂Ωn2−1
2 ∧ ζ1 ∧ ζ2 + n1

(
n

n2

)
∂Ωn1−1

1 ∧ Ωn2
2 ∧ ζ1 ∧ ζ2 .

Therefore, Ω is quaternionic balanced or quaternionic strongly Gauduchon if and only if Ω1 and Ω2

are.

Assume that (gi,Hi) are equipped with metrics gi that makes them indecomposable, that amounts to
say that they cannot be written as a gi-orthogonal sum of Hi-invariant ideals for i = 1, 2. If we choose
ei ∈ Z(gi) ∩ [gi, gi]

⊥gi , the resulting hypercomplex Lie algebra (g,H) is then also indecomposable, a fact
that can be seen with the same argument of Arroyo and Nicolini [33, Subsection 5.1]. Furthermore, it is
not hard to check that dim[g, g] < dimZ(g) so this Lie algebra can be used again in the process to obtain
higher-dimensional indecomposable examples.

Note that, if g1 and g2 have rational structure constants the same is true for g, therefore we can find
lattices. This discussion, together with the observation that the examples produced in Examples 4.7.1,
4.7.2, 4.7.3, 4.7.4, 4.7.5, 4.7.6, 4.7.8 are indecomposable nilpotent Lie algebras with rational structure
constants, shows that we can use them as building blocks to construct compact nilmanifolds carrying
a certain type of special metric but no metrics of the class immediately stronger among those we have
studied. This can be achieved in any quaternionic dimension except for those low dimensions for which
we explained that this cannot happen.

4.7.2 Barberis-Fino’s construction

In this subsection, we study the behaviour of the metric conditions under a construction due to Barberis
and Fino [44]. The idea is to take a hypercomplex Lie algebra and build a new one via a quaternionic
representation.

Let g be a 4n-dimensional Lie algebra and ρ : g → gl(k,H) a Lie algebra homomorphism. Define on
Tρ g := g⋉ρ Hk the Lie bracket

[(X,U), (Y, V )] := ([X,Y ], ρX(V ) − ρY (U))

for every X,Y ∈ g and U, V ∈ Hk. If g is endowed with a hypercomplex structure H

L̃(X,U) := (LX, lU) ,

defines a hypercomplex structure H̃ on Tρ g, where if L = aI + bJ + cK ∈ H then l = ai + bj + ck,
being i, j, k the quaternion units in H. Finally, if g is a hyperHermitian metric on (g,H), the metric g̃
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induced by g and the natural metric on Hk in such a way that g is orthogonal to Hk is hyperHermitian on
(Tρ g, H̃). We will denote objects on (Tρ g, H̃) with a tilde, so, for instance, Ω and Ω̃ will be the respective

(2, 0)-forms with respect to I and Ĩ.

Theorem 4.7.13 ([44]). Let (g,H, g) and (Tρ g, H̃, g̃) be as above and denote p : Tρ g → g the orthogonal
projection. Then,

1. ∇̃Obg̃ = 0 if and only if ∇Obg = 0 and ρ : g → sp(k).

2. Ω̃ is HKT if and only if Ω is HKT and ρ : g → sp(k);

3. if ρ : g → sp(k) then T L̃ = TL ◦ p and dT L̃ = dTL ◦ p, where T L̃ and TL are the torsions of the
Bismut connections of (g̃, L̃) and (g, L) respectively, for L ∈ H;

4. if ρ : g → sp(k) then θΩ̃ = θΩ ◦ p.

In particular, when ρ : g → sp(k), (Tρ g, H̃, Ω̃) is strong HKT (resp. weak HKT, hyperKähler, balanced)
if and only if (g,H,Ω) is.

We can refine this result by proving the following result.

Theorem 4.7.14. Let (g,H,Ω) and (Tρ g, H̃, Ω̃) be as above, denote p : Tρ g → g the orthogonal projection

and assume ρ : g → sp(k). Then, αΩ̃ = αΩ ◦ p, βΩ̃ = βΩ ◦ p, RicCh(ωL̃) = RicCh(ωL) ◦ p and RicB(ωL̃) =

RicB(ωL) ◦ p. In particular, (Tρ g, H̃, Ω̃) is quaternionic balanced (resp. quaternionic Gauduchon) if and
only if (g,H,Ω) is.

Proof. Let Ω′ be the standard metric on Hk. Then

Ω̃((X,U), (Y, V )) = Ω(X,Y ) + Ω′(U, V ) .

It follows that

dΩ̃((X,U), (Y, V ), (Z,W )) = dΩ(X,Y, Z) − Ω′((ρX + ρ∗X)V,W ) − Ω′((ρY + ρ∗Y )W,U)

− Ω′((ρZ + ρ∗Z)U, V ) .

Therefore, since we assumed ρ : g → sp(k) we get dΩ̃ = dΩ◦p. Therefore, taking (3, 0)-parts and applying
Λ yields

βΩ̃(X,U) = (ΛΩ̃∂Ω̃)(X,U) = (ΛΩ∂Ω)(X) = βΩ(X) . (4.26)

Now, using Proposition 4.1.5 (a), Theorem 4.7.13 (4) and (4.26), we deduce the claim for αΩ̃. This, in

turn, implies RicCh(ωL̃) = RicCh(ωL) ◦ p. Similarly, we also have RicB(ωL̃) = RicB(ωL) ◦ p.

As a consequence of the above, we notice that

∂J̃αΩ̃ = ∂JαΩ ◦ p .

Hence, if Ω̃ is Einstein

∂JαΩ(X,Y ) = ∂J̃αΩ̃((X,U), (Y, V )) = λΩ̃((X,U), (Y, V )) = λΩ(X,Y ) + λΩ′(U, V ) ,

for all X,Y ∈ g and U, V ∈ Hk, which is possible if and only if λ = 0.
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4.7.3 Joyce’s examples

In this subsection, we shall prove the following theorem.

Theorem 4.7.15. Let G be a compact semisimple Lie group and k ≥ 0 an integer such that the product
T k × G admits an invariant hypercomplex structure H as defined in [201]. Then, (T k × G,H) admits an
invariant strong HKT-Einstein metric with positive Einstein constant.

To do so, it will be useful to briefly overview the construction of Joyce [201]. Let G be a compact
semisimple Lie group of rank r and fix a maximal torus H in G. Within this framework, structure theory
can be performed, which allows to obtain a decomposition of g = Lie(G) of the following form:

g = b⊕
m⊕
j=1

dj ⊕
m⊕
j=1

fj ,

where b is abelian of dimension r − m, dj ⊆ g are subalgebras isomorphic to su(2), and fj ⊆ g are
subspaces satisfying the following properties:

(J1) [dj , b] = 0, for any j = 1, . . . ,m, and h := Lie(H) ⊆ b⊕
⊕m

j=1 dj ;

(J2) [dj , di] = 0, for j ̸= i;

(J3) [dj , fi] = 0, for j < i;

(J4) [dj , fj ] ⊆ fj , for any j = 1, . . . ,m, and this Lie bracket action is isomorphic to the direct sum of a
finite amount of copies of the su(2)-action on C2 by left matrix multiplication.

Such a decomposition will be called a Joyce decomposition of the Lie algebra g.
Now, denote T 2m−r ∼= U(1)2m−r the (2m − r)-dimensional torus, so that the Lie algebra of T 2m−r × G
decomposes as

(2m− r)u(1) ⊕ g ∼= Rm ⊕
m⊕
j=1

dj ⊕
m⊕
j=1

fj .

We define a hypercomplex structure I, J,K ∈ End((2m− r)u(1) ⊕ g) in the following manner. For every
j = 1, . . . ,m, denote (ej1, e

j
2, e

j
3, e

j
4) a basis of R⊕ dj such that (e11, e

2
1, . . . , e

m
1 ) is the standard basis of Rm

and ej2, e
j
3, e

j
4 satisfy the commutation relations:

[ej2, e
j
3] = 2ej4 , [ej4, e

j
2] = 2ej3 , [ej3, e

j
4] = 2ej2 . (4.27)

We can regard R⊕ dj as a copy of the space of quaternions.

(a) For any j = 1, . . . ,m, let I, J,K act on R⊕ dj as:

Iej1 = ej2 , Iej3 = ej4 , Jej1 = ej3 , Jej2 = −ej4 , Kej1 = ej4 , Kej2 = ej3 .

We obviously further require I2 = J2 = −Id.

(b) For any j = 1, . . . ,m, let I, J,K act on fj as:

If = [ej2, f ] , Jf = [ej3, f ] , Kf = [ej4, f ] ,

for each f ∈ fj .

It is clear that I, J,K induce a hypercomplex structure H on Rm ⊕
⊕m

j=1 dj , the fact that it is also

a hypercomplex structure on
⊕m

j=1 fj follows from (J3). At this point Joyce uses an argument due to
Samelson [280] to prove that I and J must be integrable.
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Since the group G is semisimple, the opposite of the Cartan-Killing form −B is a positive-definite
inner product on the Lie algebra g. We now follow the argumentation of Grantcharov and Poon [174]
in order to show that −B can be extended to a HKT metric on G. This observation is originally due
to Opfermann and Papadopoulos [251], who also generalized the construction to certain homogeneous
spaces.
It can be seen that the Joyce decomposition is orthogonal with respect to B, see [174, Lemma 2]. Let
then Hj , Xj , Yj be an orthogonal basis for dj such that Hj ∈ h and

B(Hj , Hj) = B(Xj , Xj) = B(Yj , Yj) = −λ2j ,

for some λj ∈ R. Since (2m − r)u(1) ⊕ b ∼= Rm, we can extend B to Rm simply by setting B(ei, ej) =
−δijλ2j , where (e1, . . . , em) is the canonical basis of Rm. An easy inspection shows that this extension

is a hyperHermitian metric on (2m − r)u(1) ⊕ g. Let g′ be the metric induced on T 2m−r × G by such
hyperHermitian inner product. Consider the left-invariant connection ∇ on T 2m−r ×G such that all left-
invariant vector fields are parallel. Since the metric g′ and the hypercomplex structure H on T 2m−r × G
are left-invariant, they are preserved by ∇. The torsion tensor is T∇(X,Y ) = −[X,Y ], therefore

T∇(X,Y, Z) := g′(T∇(X,Y ), Z) = B([X,Y ], Z) ∈ Λ3(T 2m−r × G) . (4.28)

It follows that the Bismut connections of I and J coincide with ∇. Therefore, the metric g′ is HKT and
it is easy to see that it is also strong.

We shall now show that such a metric can be appropriately rescaled at each level of the Joyce
decomposition in order to obtain an HKT-Einstein metric.

Theorem 4.7.16. Let G be a compact semisimple Lie group of rank r and H an invariant hypercomplex
structure defined on T 2m−r×G as above. Then, (T 2m−r×G,H) admits an invariant strong HKT-Einstein
metric.

Proof. Here we can work at the algebra level. Let

g = b⊕
m⊕
j=1

dj ⊕
m⊕
j=1

fj

be a Joyce decomposition of the Lie algebra g and let B be the Cartan-Killing form on g. Denote
dj = dimH(fj) and set µj = 1√

2(1+dj)
, for any j = 1, . . . ,m. Then, we claim that

g = −
m∑
j=1

µ2
jB|R⊕dj⊕fj

is an HKT-Einstein metric on (2m− r)u(1) ⊕ g satisfying

∂Jα = Ω , (4.29)

where Ω denotes the corresponding (2, 0) form with respect to I.
First of all, it is clear that g is a hyperHermitian metric with respect to H. Second, the same discussion

as above shows that the metric induced by g on T 2m−r ×G is strong HKT. Since on both sides of (4.29)
we have q-real (2, 0)-forms, it is enough to show the identity along the diagonal, i.e.

∂Jα(X, JX) = λΩ(X, JX) , X ∈ (2m− r)u(1) ⊕ g . (4.30)

Let θ = θΩ be the Lee form of Ω. Then, we have

∂Jα = ∂Jθ
1,0 =

1

4
J−1(d−

√
−1dcI)(Jθ −

√
−1Kθ) ,



4.7. EXAMPLES AND CONSTRUCTIONS 161

whence

4∂Jα(X,JX) = Jθ([JX,X]) − Jθ([KX, IX]) −
√
−1Kθ([JX,X]) +

√
−1Kθ([KX, IX]) .

On a HKT manifold the Lee form satisfies

θ(X) = −1

2

4n∑
i=1

T∇(IX, ei, Iei) = −1

2

4n∑
i=1

T∇(JX, ei, Jei) = −1

2

4n∑
i=1

T∇(KX, ei,Kei) ,

where (e1, . . . , e4n) is an orthonormal basis of the tangent bundle (see [196]). In this setting, the torsion
3-form is defined as in (4.28) with respect to g, therefore, we obtain

8∂Jα(X,JX) =

4n∑
i=1

(
T∇([JX,X], ei, Jei) − T∇([KX, IX], ei, Jei)

−
√
−1T∇([JX,X], ei,Kei) +

√
−1T∇([KX, IX], ei,Kei)

)
.

But, since

T∇([X,Y ], Z,W ) = T∇([Z,W ], X, Y ) ,

we get

8∂Jα(X, JX) =
4n∑
i=1

(
− g([[ei, Jei], JX], X) + g([[ei, Jei],KX], IX)

+
√
−1g([[ei,Kei], JX], X) −

√
−1g([[ei,Kei],KX], IX)

)
.

(4.31)

At this point, we choose the orthonormal basis (e1, . . . , e4n) to be the following: for any j = 1, . . . ,m, let
(ej1, . . . , e

j
4) be an orthonormal basis of R⊕ dj with only non-zero commutators:

[ej2, e
j
3] = 2µje

j
4 , [ej4, e

j
2] = 2µje

j
3 , [ej3, e

j
4] = 2µje

j
2 .

On fj , we fix any orthonormal basis {f j1 , . . . , f
j
4dj

} such that f j4k−2 = If j4k−3, f j4k−1 = Jf j4k−3, f j4k =

Kf j4k−3 for k = 1, . . . , dj . Notice that (ej1, . . . , e
j
4) is, in general, different from the basis chosen in (4.27)

and, with this new orthonormal basis, the definition of H on fj is:

If =
1

µj
[ej2, f ] , Jf =

1

µj
[ej3, f ] , Kf =

1

µj
[ej4, f ] .

Thus, we have

[ej1, Je
j
1] + [ej2, Je

j
2] + [ej3, Je

j
3] + [ej4, Je

j
4] = 4µje

j
3 ,

[ej1,Ke
j
1] + [ej2,Ke

j
2] + [ej3,Ke

j
3] + [ej4,Ke

j
4] = 4µje

j
4 .

On the other hand, we claim that, for any j = 1, . . . ,m,

4dj∑
i=1

[f ji , Jf
j
i ] = 4djµje

j
3 . (4.32)

Indeed, we observe that

3∑
r=0

[f j4k−r, Jf
j
4k−r] = 2

(
[f j4k−3, f

j
4k−1] − [f j4k−2, f

j
4k]
)
.
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By definition of (I, J,K) on fj and using Jacobi’s identity, we have

[f j4k−2, f
j
4k] = [f j4k−2,Kf

j
4k−3] =

1

µj
[[f j4k−2, e

j
4], f j4k−3] +

1

µj
[ej4, [f

j
4k−2, f

j
4k−3]]

= −[Kf j4k−2, f
j
4k−3] +

1

µj
[ej4, [f

j
4k−2, f

j
4k−3]]

= [f j4k−3, f
j
4k−1] +

1

µj
[ej4, [f

j
4k−2, f

j
4k−3]] ,

hence
4dj∑
i=1

[f ji , Jf
j
i ] = − 2

µj

dj∑
k=1

[ej4, [f
j
4k−2, f

j
4k−3]] .

To prove the claim, we fix k ∈ {1, . . . , dj} and consider the components of [f j4k−2, f
j
4k−3] with respect to

the Joyce decomposition:

[f j4k−2, f
j
4k−3] =

m∑
p=1

Dp
1e
p
1 +Dp

2e
p
2 +Dp

3e
p
3 +Dp

4e
p
4 +

4dp∑
q=1

F pq f
p
q

 .

Then, we have that [ej4, D
p
1e
p
1] = 0, for p = 1, . . . ,m and [ej4, D

p
qe
p
q ] = 0, for p ̸= j and q ∈ {2, 3, 4}, by

properties (J1) and (J2). Moreover, since the chosen basis is orthonormal, we have

Dj
2 = g([f j4k−2, f

j
4k−3], ej2) = g(f j4k−2, [f

j
4k−3, e

j
2]) = −µjg(f j4k−2, If

j
4k−3) = −µj ,

while, proceeding similarly,

Dj
3 = −µjg(f j4k−2, f

j
4k−1) = 0 and Dj

4 = −µjg(f j4k−2, f
j
4k) = 0 .

Furthermore, for p < j and q ∈ {1, . . . , 4dp}, we have

F pq = −g([f j4k−2, f
j
4k−3], I2fpq ) = − 1

µj
g([f j4k−2, f

j
4k−3], [ep2, If

p
q ])

= − 1

µj
g([[f j4k−2, f

j
4k−3], ep2], Ifpq )

= − 1

µj
g([[f j4k−2, e

p
2], f j4k−3] + [f j4k−2, [f

j
4k−3, e

p
2]], Ifpq ) = 0 ,

where in the last equality we used (J3). For p = j, as above, we have that

F jq = − 1

µj
g([[f j4k−2, e

j
2], f j4k−3] + [f j4k−2, [f

j
4k−3, e

j
2]], If jq )

= g([If j4k−2, f
j
4k−3] + [f j4k−2, If

j
4k−3], If jq )

= g(−[f j4k−3, f
j
4k−3] + [f j4k−2, f

j
4k−2], If jq ) = 0 .

Finally, [ej4, F
p
q f

p
q ] = 0, for p > j and q ∈ {1, . . . , 4dp}, by (J3). Then, putting everything together we

infer
[ej4, [f

j
4k−2, f

j
4k−3]] = −µj [ej4, e

j
2] = −2µ2

je
j
3

and summing up over k we obtain (4.32), as claimed. In the same way, one can verify that

4dj∑
i=1

[f ji ,Kf
j
i ] = 4djµje

j
4 .
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Therefore
4n∑
i=1

[ei, Jei] = 4

m∑
j=1

(1 + dj)µje
j
3 ,

4n∑
i=1

[ei,Kei] = 4

m∑
j=1

(1 + dj)µje
j
4

and (4.31) becomes

∂Jα(X, JX) =
1

2

m∑
j=1

(1 + dj)µj
(
− g([ej3, JX], X) + g([ej3,KX], IX)

+
√
−1g([ej4, JX], X) −

√
−1g([ej4,KX], IX)

)
.

We have that, for any X in the chosen basis, Ω(X, JX) = 1
2 . So, we aim to show that ∂Jα(X, JX) = 1

2
which will conclude the proof. We will prove it case by case. Suppose, firstly, that X = ek1 , for some
k = 1, . . . ,m. Then

∂Jα(X, JX) =
1

2
(1 + dk)µkg([ek3 , e

k
4 ], ek2) = (1 + dk)µ2

k =
1

2
.

Moreover, if X = ek2 , for some k = 1, . . . ,m, then

∂Jα(X, JX) =
1

2
(1 + dk)µkg([ek3 , e

k
4 ], ek2) =

1

2
.

Furthermore, if X = ek3 , for some k = 1, . . . ,m, then

∂Jα(X, JX) = −1

2
(1 + dk)µkg([ej3, e

k
2 ], ek4) =

1

2
.

If X = ek4 , for some k = 1, . . . ,m, then

∂Jα(X, JX) = −1

2
(1 + dk)µkg([ej3, e

k
2 ], ek4) =

1

2
.

Finally, if X ∈ fk, for some k = 1, . . . ,m, the terms in the sum for j ̸= k vanish because

g([ej3, JX], X) = − 1

µj
g([ej3, [e

k
2 ,KX]], X)

= − 1

µj
g([[ej3, e

k
2 ],KX], X) − 1

µj
g([ek2 , [e

j
3,KX]], X)

=
1

µj
g([ej3,KX], [ek2 , X]) = g([ej3,KX], IX) ,

where in the second to last equality we used (J2). In the same way one can obtain that g([ej4, JX], X) =

g([ej4,KX], IX). Therefore we only need to consider the terms for k = j, which yields

∂Jα(X, JX) =
1

2
(1 + dk)µ2

k

(
− g(J2X,X) + g(JKX, IX)

+
√
−1g(KJX,X) −

√
−1g(K2X, IX)

)
=

1

2

and the proof is concluded.

4.7.4 Some non-compact HKT-Einstein manifolds

We conclude this section providing other examples of invariant HKT-Einstein manifolds. This time the
examples are non-compact and they are simply-connected solvable Lie groups. We shall consider all
4-dimensional solvable Lie algebras, which are classified in [40]. By dimensional reasons they all are HKT
and we show here that they actually are HKT-Einstein. Except for the abelian Lie algebra we have three
cases to consider. Again, we adopt the convention explained at the beginning of the section regarding
the coframe and the hypercomplex structure.
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Example 4.7.17. Here we take into account the Lie algebra aff(C) of the affine motion group of C. The
structure equations are

de1 = −e1 ∧ e4 + e2 ∧ e3 , de2 = 0 , de3 = e1 ∧ e2 − e3 ∧ e4 , de4 = 0 ,

which translate to the complex coframe to

dζ1 =

√
−1

2
(ζ̄1 ∧ ζ2 − ζ1 ∧ ζ̄2) , dζ2 =

√
−1

2
(ζ1 ∧ ζ̄1 − ζ2 ∧ ζ̄2) .

The diagonal metric Ω = ζ1 ∧ ζ2 satisfies α = −
√
−1ζ2 and thus ∂Jα = 0, so that the metric Ω is

HKT-Einstein with vanishing Einstein constant.

Example 4.7.18. Consider the 4-dimensional solvable Lie algebra with structure equations

de1 = 0 , de2 = −e1 ∧ e2 , de3 = −e1 ∧ e3 , de4 = −e1 ∧ e4 .

In terms of the complex (1, 0)-coframe we have

dζ1 =
1

2
ζ1 ∧ ζ̄1 , dζ2 = −1

2
(ζ1 ∧ ζ2 + ζ̄1 ∧ ζ2) .

The diagonal metric Ω = ζ1 ∧ ζ2 satisfies α = −ζ1 and so ∂Jα = − 1
2Ω, showing that Ω induces on

the corresponding simply-connected solvable Lie group an invariant HKT-Einstein metric with negative
Einstein constant.

Example 4.7.19. We conclude with the solvable Lie algebra with structure equations

de1 = 0 , de2 = −e1 ∧ e2 + 2e3 ∧ e4 , de3 = −1

2
e1 ∧ e3 , de4 = −1

2
e1 ∧ e4 ,

equivalently,

dζ1 =
1

2
ζ1 ∧ ζ̄1 − ζ2 ∧ ζ̄2 , dζ2 = −1

4
(ζ1 ∧ ζ2 + ζ̄1 ∧ ζ2) .

The diagonal metric Ω = ζ1 ∧ ζ2 satisfies α = − 3
4ζ

1 and so ∂Jα = − 3
16Ω, which shows that Ω is

HKT-Einstein with negative Einstein constant.
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Proceedings of the Abel symposium 2019, Ålesund, Norway June 24–28, 2019, Cham: Springer,
2022, pp. 147–170.
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[267] F. Podestà and A. Raffero, Bismut Ricci flat manifolds with symmetries, Proc. Roy. Soc. Edinburgh
Sect. A 153 (2023), no. 4, 1371–1390.

[268] , Infinite families of homogeneous Bismut Ricci flat manifolds, Comm. Contemp. Math. 26
(2024), no. 2, no. 2250075, 17.

[269] , Three-dimensional positively curved generalized Ricci solitons with SO(3)-symmetries,
arXiv preprint arXiv:2401.05028 (2024), 1–21.

[270] Y. S. Poon and A. Swann, Potential functions of HKT spaces, Classical Quantum Gravity 18
(2001), no. 21, 4711–4714.

[271] D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly gauduchon
metrics, Invent. Math. 194 (2013), no. 3, 515–534.

[272] M. Pujia and L. Vezzoni, A remark on the Bismut-Ricci form on 2-step nilmanifolds, C. R. Math.
Acad. Sci. Paris 356 (2018), no. 2, 222–226.

[273] A. Raffero and L. Vezzoni, On the dynamical behaviour of the generalized Ricci flow, J. Geom. Anal.
31 (2021), no. 10, 10498–10509.

[274] R. W. Richardson and P. J. Slodowy, Minimum vectors for real reductive algebraic groups, J. London
Math. Soc. (2) 42 (1990), no. 3, 409–429.

[275] S.-s. Roan, Minimal resolutions of Gorenstein orbifolds in dimension three, Topology 35 (1996),
no. 2, 489–508.

[276] S. Rollenske, Dolbeault cohomology of nilmanifolds with left-invariant complex structure, Complex
and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 369–392.

[277] X. Rong, Convergence and collapsing theorems in Riemannian geometry, Handbook of geomet-
ric analysis. No. 2, Somerville, MA: International Press; Beijing: Higher Education Press, 2010,
pp. 193–299.



BIBLIOGRAPHY 179

[278] R. Rubio and C. Tipler, The Lie group of automorphisms of a Courant algebroid and the moduli
space of generalized metrics, Rev. Mat. Iberoam. 36 (2020), no. 2, 485–536.

[279] S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3,
311–333.

[280] H. Samelson, A class of complex-analytic manifolds, Portugal. Math. 12 (1953), 129–132.
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