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Abstract—High altitude platform stations (HAPS) have been
proposed to support terrestrial mobile networks, offering a
sustainable alternative to network densification. With their wide
coverage areas and green energy consumption model, HAPS
super macro base stations (SMBSs) are well suited to handle the
massive and dynamic mobile data traffic demand. This research
introduces an adaptive traffic offloading strategy that leverages
the capabilities of HAPS to support radio access network (RAN),
particularly during periods of high network demand. To enable
HAPS to effectively assist the RAN, it is crucial to accurately
predict which base stations (BSs) will experience high loads.
Precise forecasting of these demands is hence essential to ensure
timely and targeted offloading of traffic to the HAPS when and
where it is most needed. The proposed approach predicts and
manages loads by considering temporal and geographical factors.
At the core of this approach is the Q-learning update rule,
which is continuously used to refine offloading decisions and
flexibly adapt to changing conditions. Our simulation results
demonstrate that the proposed HAPS offloading approach is
effective in maintaining balanced loads in the terrestrial RAN
during peak periods, by dynamically adapting to the typical
traffic characteristics of different areas and to their evolution
over time.
Index Terms—5G and beyond networks, High Altitude Platform
Stations (HAPS), Mobile traffic offloading, Q-learning, Load
prediction.

I. INTRODUCTION

The advent of fifth-generation (5G) technologies has led
to a substantial increase in data demand, driven by applica-
tions such as gaming and streaming which require high data
rates. Furthermore, the proliferation of mobile devices on the
Internet of Things (IoT), such as unmanned aerial vehicles
(UAV) and autonomous vehicles, contributes to the increase of
network demands. To address this, mobile network operators
(MNOs) have densified networks by installing more base
stations (BSs), particularly in urban areas. However, network
densification significantly increases capital and operational
expenditures (CapEx and OpEx) and can lead to inefficient
use of BSs, raising relevant sustainability concerns. Although
various techniques have been introduced to improve network
energy savings [1], the over-provisioning of BSs remains a
challenge, especially in light of spatial and temporal changes
in user demand.
The emergence of High Altitude Platform Stations (HAPSs) to
host aerial BSs represents a promising solution as a comple-
ment to existing RANs [2, 3]. Furthermore, the operation of
HAPS mounted BSs fully rely on renewable energy, hence the

integration of HAPS has the potential to promote a more sus-
tainable RAN operation in 5G and beyond scenarios. Finally,
these aerial network nodes can effectively function as super
macro base stations (SMBSs), offering additional services
besides communication capabilities, like content caching and
computation functionalities [4]. Various studies have evalu-
ated the benefits of HAPS-SMBS for beyond 5G networks,
particularly in offloading mobile traffic from underloaded
terrestrial BSs to optimize the network energy efficiency by
putting unneeded on-ground nodes into sleep mode [5, 6].
Furthermore, HAPSs yield significant benefits by providing
extra capacity to terrestrial RANs, enabling them to flexibly
handle sudden surges in mobile traffic demand. These surges,
if not managed effectively, can lead to a decrease in the Quality
of Experience (QoE) of end users. To this extent, the authors
in [7] demonstrate the superior performance of HAPS-SMBS
with respect to conventional RAN densification methods in
handling peak demand without violating QoE requirements.
Their analysis not only highlights the technical advantages
of HAPS in handling traffic loads but also underscores the
benefits in terms of sustainability derived from using HAPS
over traditional methods.
Despite the promising potential of HAPS, effective traffic
offloading strategies require accurate estimation of network
and BS load dynamics. Relying on perfect knowledge of
cell loads is unrealistic and poses a significant challenge for
practical implementation. Indeed, without a precise estimation
of the cell load, the benefits provided by HAPS integration
cannot be fully realized, limiting the practical application of
traffic offloading strategies. Various studies from the literature
estimate the impact of errors introduced in the prediction of
cell loads, confirming that inaccurate traffic forecasts may sig-
nificantly impair the decisions made by the traffic management
optimization algorithm [8].
Our paper aims at investigating the potential of HAPS to
support the terrestrial RAN during peak demand periods, by
offloading traffic to an HAPS mounted BS to relieve the
terrestrial network. The primary objective is to decrease the
load within the RAN, ensuring a more balanced and efficient
network operation. To achieve this, we propose an adaptive
traffic offloading strategy, that relies on an off-policy temporal
difference control approach as in Q-learning. Unlike previous
studies that assume perfect knowledge of network loads, this
Reinforcement Learning (RL) approach estimates loads based



on both temporal and geographical factors, leveraging the
dynamics of traffic demand within specific time windows
and days. These load estimates constitute the basis to take
the proper offloading decisions to shift traffic to the HAPS.
Furthermore, our approach flexibly adapts to temporal and
spatial system variations, allowing to dynamically identify and
relieve those overloaded areas that are more likely to benefit
from HAPS offloading.

II. A CASE STUDY

We consider a portion of a RAN in a urban scenario, where
an HAPS mounted BS provides additional capacity to offload
a fraction of the terrestrial mobile traffic during peak demand,
as depicted in Fig. 1. We devise an adaptive traffic offloading
strategy, that is detailed in Section III, aiming at dynamically
handling the RAN peaks and unburden the most overloaded
areas of the terrestrial network during high load periods.

Fig. 1: HAPS-SMBS used to compliment RAN

Our simulation is based on real-world 4G mobile traffic
data collected by an Italian mobile network operator (MNO)
in Milan during 2015. The dataset includes traffic traces from
N=112 BSs, and we select Nareas=16 areas of the city, each of
which contains a cluster of seven BSs. These areas are chosen
as representative samples of the heterogeneous zones that are
typically found in an urban environment.

We selected three busy tourist areas: Duomo, Theatre,
and Touristic. Additionally, we chose a business district, two
residential areas with typical daily traffic patterns, and an
industrial area. We included the FS train station and Linate
airport, both busy at the start and end of the workday. Areas
with variable traffic due to periodical events include San Siro
(soccer stadium), Rho Fiere (exhibitions), and Mediolanum Fo-
rum (indoor sports arena). Finally, we selected the Politecnico
di Milano area (Polimi), where a university campus is located,
and three rural areas: Agricultural Park, Highway, and Monza
Park.

These BS traffic traces report the values of traffic volume
collected on an hourly basis, covering a two-month period. To
account for the increasing mobile traffic demand observed in

recent years, the N available traffic traces from the Italian
MNO are scaled up based on various aggregated metrics
derived from more recent traffic traces, that are collected
from M=1460 BSs in an urban area in China in 2020. The
adopted processing methodology, that results similar to the one
presented in [6], is detailed hereafter.

First, each traffic profile from the Italian MNO is randomly
paired with one of the M recent traffic profiles collected from
just as many BSs owned by the Chinese MNO. Second, a set
of N new traces are derived, scaling up the original N Italian
traces so that each newly derived trace features the same peak
and 5th percentile traffic values as the considered paired BS.
The shape of these newly derived traces remains similar to the
original traffic traces from the Italian MNOs, whereas their
peak and 5th percentile are scaled to match the corresponding
metrics derived from the most recent traffic profiles, making
the traffic profiles considered for our investigation up to date,
and thus more realistic.

Fig. 2: Traffic distribution across BSs

The distribution of the total traffic volume over two months
across all BSs is illustrated in Fig. II. The observed traffic
distribution is consistent with typical urban environments,
where a relatively small number of BSs handle the majority of
traffic [9]. Specifically, 25% of BSs handle approximately 50%
of the total traffic, while the remaining 75% of BSs manage the
other 50%. Additionally, this graph proposes a classification
of BSs into highly loaded (traffic below the 25th percentile -
blue color), medium loaded (traffic between the 25th and the
75th percentile - green color), and low loaded (traffic above
the 75th percentile - lilac color). The capacity of each BS is
determined based on the observed maximum hourly traffic.
For high load level BSs, the capacity is set equal to the
maximum observed hourly traffic. For medium load level BSs,
the capacity is defined assuming that the maximum observed
hourly traffic represents 75% of the BS capacity. For low load
level BSs, the capacity is assumed to be twice the maximum
observed hourly traffic. Although the definition of BS capacity
based on the levels of handled traffic volume per BS does not
exactly match real data from the literature, our assumption
results consistent with the trend observed in the traffic dataset
from the Chinese MNO, in which the average BS load tends
to increase as the average traffic volume handled by each
BS becomes larger. Furthermore, this reasonable assumption
allows to better evaluate how the proposed traffic off-loading



strategy performs in scenarios characterized by varying traffic
intensities.

III. ADAPTIVE HAPS OFFLOADING

A key element of the proposed HAPS offloading strategy
involves recognizing and utilizing the inherent temporal be-
haviors associated with different types of areas within the
network. Our offloading approach, that is based on the Q-
learning update rule, aims to dynamically predict the over-
loaded areas whose BSs require traffic offloading. Through the
proposed methodology, we estimate which areas are expected
to experience the highest load. In particular, at each time
step, a predefined number of areas, that we denote Nca with
Nca ≤ Nareas

2 , are selected to offload to HAPS their aggregated
extra traffic that exceeds a given threshold. This selective
offloading strategy ensures that HAPS resources are deployed
only when significant traffic demands are observed in certain
areas.
A crucial component of the proposed strategy involves quanti-
fying the portion of traffic that exceeds a predefined threshold
at each BS in a cluster, in order to dynamically identify the
areas that are most suitable to offload their traffic to the
HAPS. Let us denote Cth the operational threshold adopted to
determine the overload condition for a BS. Cth is defined as a
fraction of the BS capacity, that we denote CBS. The offloading
decision is performed at every time step t, with each time step
being one hour. The volume of traffic to be offloaded from a
given BS, denoted TO, at a given time t is hence computed
based on how much the actual traffic volume handled by the
BS, denoted RBS,t, exceeds the capacity threshold Cth, as
follows:

TOBS,t = max (RBS,t − Cth · CBS , 0) (1)
Finally, to perform the proposed HAPS offloading strategy, the
traffic dataset is split into two periods. Initially, the traffic from
the first month is analyzed to identify patterns of peak traffic,
which initialize the state-action values, i.e., the Q values in
our RL approach, and form the basis to make offloading
decisions. These initial values help us to understand the
recurring peak traffic patterns and their intensity in different
areas. Conversely, traffic time series corresponding to the
second month are used to test the offloading strategy, with
the initialized values from the first month guiding the deci-
sions. The system continuously updates the state-action values
through Q-learning updates after each time step, based on real-
time traffic observations during the second month, allowing for
adaptive and responsive decision-making. Further details about
the HAPS offloading strategy operation are provided hereafter.

A. Incorporating Area-Specific Temporal Behaviors in Traffic
Offloading

Focusing on the temporal and spatial distribution of traffic
peaks enhances the understanding of peak severity and fre-
quency across different times and areas, allowing to tackle
the dynamic nature of network traffic when HAPS offloading
is performed. Precise definitions of states and actions are
essential to capture the system dynamics and effectively guide

the system’s response to varying traffic conditions under HAPS
offloading. To capture the varying patterns of network usage,
the state of the system is defined by the current time window,
described by two state variables that represent the period of
the day and the daytype.
Let P denote the set of periods of the day:

P = {Morning,Night} (2)
where Morning is the day period spanning from 8 am to 3
pm, that covers the bulk of daytime activities including the
start of the business day and early afternoon, whereas Night
is the day period running from 4 pm to 11 pm, that includes
the evening rush hour and extends until late evening.
Let D denote the set of days of the week:

D = {Monday, . . . ,Saturday,Sunday}. (3)
The state s(t) encodes the day d and period p for each area

i. Therefore, the state vector can be written as:

s(t) = (Wd,p(t) | d ∈ D, p ∈ P ) (4)

where Wd,p(t) represents the period p of day d at the given
time t. These time windows are applied consistently on each
day of the week, allowing the recognition of daily traffic
cycles. Importantly, the system operates with an hourly granu-
larity, meaning that offloading decisions are made on an hourly
basis based on the estimated severity of traffic peaks in specific
states/time windows.
Specifically, an action involves selecting an area for offloading,
which is crucial as it directs excess traffic away from high
loaded areas to HAPS. In this context, A denote the set of
possible actions on areas {a1, . . . , a16}, that can be selected
for traffic offloading.

B. Initialization of State-Action Values for Traffic Offloading

To build our understanding of high load conditions, which
will inform our future offloading decisions, we consider traffic
time series for each area during the first month. This initial
dataset is critical as it provides the fundamental understanding
of the traffic patterns needed to configure the system. The
traffic data is normalized using the Min-Max normalization
technique. This normalization adjusts the traffic data to a
scale between 0 and 1, facilitating a uniform analysis across
different scales of traffic data. Crucially, the capacity of each
BS is included in this normalization process to ensure that the
analysis accounts for the maximum potential traffic that each
area can handle. This inclusion is essential to determine how
peak traffic relates to capacity limits, which is a key factor in
assessing peak severity.

From these normalized data, a temporally dynamic set of
state-action values, corresponding to the values Q(s, t), is cre-
ated to initially estimate the probability of peak severity within
each area. These values represent the expected cumulative
reward and serve as the baseline from which the system makes
offloading decisions. In our case, the rewards are the expected
loads exceeding the predefined capacity threshold Cth. Let us
introduce the concept of Peak Severity, that we denote PS.



For a period of the day p and BS i belonging to area j, the
Peak Severity is defined as follows:

PSi,p =
1

n

∫ tb

ta

f(t)− g(t) dt (5)

where ta and tb represent the time limits of a period of a day
p (for example, in the morning, from 8 am to 3 pm). Fur-
thermore, f(t) is the linear spline interpolation of the original
traffic time series RBS, whereas g(t) is the interpolation of the
time series which represents the minimum between RBS,t and
the traffic volume corresponding to the capacity threshold Cth

(i.e., Cth · CBS) in period p. Finally, n is the number of time
instant within a period p (i.e., n = 8).
The values Q(s(t), a) are calculated by summing the Peak
Severity (PS) across all relevant BSs of an area during the
morning or at night for a specific day d (e.g., Monday-
Morning) across all occurrences Dd,m of that day throughout
the first month m.

Q(s(t), a) =
∑
i∈Aj

∑
d∈Dd,m

PSi,p (6)

where Aj represents the set of BSs in area j. After computing
all values for every area/action and state/time window, the
State-Action Value table (Q-table) is initialized. This Q-table
contains the initial knowledge based on prior observations, as
described above, and is now ready for the second phase of
fine-tuning and decision-making.

C. Dynamic adaptation through continual learning

A continual learning approach is essential due to inherent
variability in network traffic, particularly during peak periods.
By iteratively learning from real-time data after taking an ac-
tion, the system dynamically adjusts to the observed variations.
This process is performed through the following steps:

1) Action Execution: The system selects and executes an
action, such as offloading traffic from Nca areas to
HAPS, based on the current state of the network, i.e.,
time window and traffic conditions.

2) RAN Observation: The system observes the changes in
traffic load and the immediate impact on the network of
the performed action.

3) State-Action Value Update: Using the observed data,
the system updates the value estimates for the state-
action pairs. This update is done using Q-learning,
which adjusts the values based on the difference between
expected and actual outcomes.

4) Go back to step 1: The process repeats continuously,
using new data and insights to better adapt to future
traffic trends.

Upon getting the state-action values for every action, Nca

actions with the highest values are chosen:
{â1, â2, . . . , âNca

} (7)
where {â1, â2, . . . , â16} is a permutation of {a1, a2, . . . , a16}
such that Q(s(t), âi) is sorted in descending order. State-
Action Value updates occur on an hourly basis after executing
an action and observing the resulting traffic in the RAN. This
process follows a Q-learning update rule [10]. Following the

execution of an action, the values corresponding to the current
state and all actions are updated based on the observed traffic
in each area. This update ensures that the value estimates
remain responsive to recent traffic patterns. The hourly update
formula is:
Q(s(t), a) = Q(s(t), a) + α (HPS + γ (HPS +Q(s(t), a))−Q(s(t), a)) (8)

where α is the learning rate and γ is the discount rate that
adjusts the influence of future updates on the current value.
The Hourly Peak Severity, denoted HPS, is calculated using
the integral from the earlier Eq. 5, with ta representing the
time sample before the current time and tb representing the
current time.

IV. PERFORMANCE ANALYSIS

We now present our performance analysis, which is based
on the results of our simulation throughout the second month.
The initial investigation focuses on investigating how of-
floading traffic to HAPS affects the load distribution of the
terrestrial network. This analysis is crucial to understand
how effective is the offloading mechanism. Subsequently, the
investigation focuses on evaluating the utilization of HAPS
capacity.
In our study, we assume that the coverage over the con-
sidered areas is provided by a beam cell generated by a
5G enabled BS installed on the HAPS, offering a capacity
of 120 Mbps [6]. Notice that the parameter configuration is
crucial for an effective performance of the traffic offloading
algorithm. The key parameters include the offloading threshold
Cth, the number of selected areas for traffic offloading Nca,
the discount rate γ, and the learning rate α. In our study, Cth

is set equal to 0.6. The choice of Nca aims to demonstrate
how the algorithm prioritizes areas for offloading to HAPS
when multiple areas are highly loaded. Selecting this number
is critical because if Nca is too small, the offloading would
not be effective. Conversely, if it is too large, resources might
be unnecessarily used for areas that do not have high loads,
leading to inefficiency. After extensive experimentation, the
following settings are adopted for the various parameters:
Nca=6, γ = 0.95, α=0.7.

A. Impact On Load Distribution Across RAN

The distribution of the load density in different areas,
illustrated in Fig. 4, provides valuable insights into the ef-
fectiveness of offloading traffic to HAPS. The blue curves
represent the load distribution without HAPS offloading, while
the red curves show the distribution when HAPS offloading
is active. Since various areas share similar load profiles, only
representative areas are shown. Notably, areas such as Theatre,
FS, and Agricultural Park show a significant shift in load den-
sity towards 0.6 after offloading, frequently experiencing high
loads up to 0.9. This explains their prioritization for offloading.
In contrast, Residential 1 and Highway show minimal changes,
with traffic consistently below 0.6, indicating stable traffic
levels. San Siro and Rho, typically stable with loads under 0.6,
experience sudden increases during large events, with loads
reaching up to 0.9 for some BSs. The increased density around



Fig. 3: Load density distribution across different areas before
and after offloading to HAPS.

0.6 after offloading indicates successful management of these
spikes. Linate shows two load ranges: 0.1 to 0.3 and 0.6 to
0.8. Six BSs have very low loads, while one BS consistently
has traffic in the 0.6 to 0.8 range, resulting in many hours
where traffic exceeds the threshold but rarely goes above 0.8.
Polimi and Residential 2 have a uniform load distribution from
0.2 to 0.6, with some instances exceeding the 0.6 threshold.
They are selected for offloading when high loads are estimated
but are not prioritized as highly as areas like Theatre. As a
result, they show a small increase around the 0.6 load but not
a significant change like other high-loaded areas.
Investigating the hourly and daily impact of HAPS offloading
is crucial to understanding traffic distribution and methodolog-
ical adaptation. To this aim, the heat maps reported in Fig. 4
depict the values of the portion of load exceeding the capacity
threshold, Cth, aggregated over the second month for each
hour (y-axis) and day of the week (x-axis), and across different
areas of the RAN (one per each pair of plots in a row), before
(left column plots) and after (right column plots) offloading
traffic to HAPS. Normalizing the excess load density using
Min-Max scaling across all heat maps and areas enables a

Fig. 4: Values of the portion of load exceeding the capacity
threshold, Cth, aggregated over the second month for each
hour (y-axis) and day of the week (x-axis) and across different
areas (one per each pair of plots in a row), before (left column
plots) and after (right column plots) offloading traffic to HAPS.

comparative analysis of load dynamics. Areas with the highest
loads, such as Theatre, exhibit the most significant reduction
in load density after offloading. These areas are characterized
by high loads almost every day, resulting in these areas being
prioritized for offloading on nearly all days of the week. In
contrast, areas like Agricultural Park, Residential 2, and FS,
feature less frequent high-load hours with respect to Theatre.
However, the system successfully identifies these times when
traffic is extremely high and effectively offloads the exceeding
traffic to the HAPS. For Agricultural Park, while not all
traffic over the threshold is successfully offloaded, the most
significant load surges are correctly identified and effectively
offloaded to HAPS. In Rho, typically featuring stable traffic, a
significant spike is observed on Saturday and Sunday mornings
during the second week. However, heat maps show that traffic
is not offloaded on Sunday at 9 am and on Saturday at midday,



Fig. 5: Daily profile of hourly HAPS capacity utilization.

since the system is not capable to anticipate the spike, as
this behavior has not been previously observed. Nevertheless,
hourly updates allow the system to quickly adjust, updating
the State-Action Value table to improve offloading decisions
in the following hours. This reveals a possible limitation of
the proposed approach, since the method might miss sudden
traffic spikes in case they occur unexpectedly and involve BSs
that are usually characterized by stable loads. Nonetheless,
considering that only a subset of areas are selected to be
offloaded to the HAPS, this phenomenon can be compensated.
In fact, even when the detection of areas featuring unexpected
traffic surges is missed, still other highly loaded areas can
be prioritized to perform traffic offloading, hence allowing to
relieve the terrestrial RAN on the whole.

B. HAPS Capacity Utilization

We now evaluate the utilization of the available HAPS ca-
pacity under traffic offloading strategy operation. Fig.5 reports
the hourly profile of the HAPS-SMBS load during the day,
showing its average and maximum values, and the standard
deviation, hence providing insight into the hours in which
HAPS experiences the highest levels of capacity utilization.
On average, the HAPS capacity is significantly underutilized.
However, observing the maximum load registered during the
day, the highest utilization occurs between 10 am and 2 pm
and from 7 pm to 8 pm, when the capacity utilization exceeds
25%, reaching a peak of about 35%. These findings highlight
the effectiveness of the proposed approach in providing proper
support to relieve the terrestrial RAN in the covered areas right
when it is most needed due to peak demand. At the same time,
we observe wide margin to further expand the HAPS coverage,
exploiting its potential to effectively serve additional traffic
areas.

V. CONCLUSION

This paper presents an adaptive traffic offloading strategy
exploiting a self-sustainable HAPS-SMBS to support the ter-
restrial RAN during high mobile traffic demand. Employing
a Q-learning approach, the system predicts and manages
BS loads, dynamically offloading peak traffic from the most
loaded areas to HAPS. The methodology exploits temporal
and geographical features of traffic to estimate future loads
and make informed offloading decisions for the next time slot.
Our simulation results prove the effectiveness of the proposed
approach in maintaining balanced loads in the terrestrial RAN

across different areas during peak periods, by dynamically
adjusting offloading decisions to varying traffic conditions and
prioritizing areas that can most benefit from HAPS offloading
based on the peak traffic timing.
In this study a fixed capacity threshold (Cth = 0.6) is uni-
formly adopted across all BSs to identify peaks. Future work
will explore the implementation of offloading strategies based
on dynamic thresholds, tailored to each BS cluster based on the
varying traffic demand. Furthermore, we aim to investigate the
potential of dynamically changing the HAPS position across
the covered area to enhance Line of Sight (LoS) conditions,
leading to better channel quality and, consequently, improved
overall performance.
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