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Abstract: Defect detection methods have greatly assisted human operators in various
fields, from textiles to surfaces and mechanical components, by facilitating decision-making
processes and reducing visual fatigue. This area of research is widely recognized as a cross-
industry concern, particularly in the manufacturing sector. Nevertheless, each specific
application brings unique challenges that require tailored solutions. This paper presents
a novel framework for leveraging latent space representations in defect detection tasks,
focusing on improving explainability while maintaining accuracy. This work delves into
how latent spaces can be utilized by integrating unsupervised and supervised analy-
ses. We propose a hybrid methodology that not only identifies known defects but also
provides a mechanism for detecting anomalies and dynamically adapting to new defect
types. This dual approach supports human operators, reducing manual workload and
enhancing interpretability.

Keywords: latent space; defect detection; vehicle paint

1. Introduction
Maintaining high-quality standards is paramount in vehicle manufacturing, spanning

all stages of production, from structural integrity and engine performance to overall
functionality and appearance. Among these, the paint finish holds particular importance,
as it is the first attribute noticed by customers and plays a critical role in a vehicle’s
market appeal (c.f. [1–4]). Achieving a flawless paint finish requires rigorous control
over numerous parameters, including machinery, materials, and operator actions. As a
result, quality assurance often serves as the final stage in the production cycle, tasked
with identifying and addressing defects introduced throughout the process. While defect
detection can follow a standardized approach, classifying defects and identifying their root
causes typically depend on expert knowledge [5]. In this context, Artificial Intelligence
(AI) offers significant potential to assist operators in various aspects, such as improving
the accuracy of defect detection, reducing the overhead and fatigue on the operators, and
expediting and streamlining production workflows.

Despite advances in AI-powered quality assurance, detecting vehicle paint defects
remains a challenging problem due to several factors (c.f. [6,7]), including but not limited to
the following:

• Lighting conditions: The strong lighting required for manual inspections introduces
reflections that complicate automated detection systems.
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• Defect characteristics: Defects are often tiny, visually similar, and diverse in type,
making their automated differentiation complex.

• Temporal variability: The frequency and distribution of defects over time are
generally unpredictable.

• Surface and color impact: The wide surface area of vehicles and variations in paint
color affect detection processes and require nuanced feature extraction.

These challenges necessitate advanced approaches that can adapt to diverse scenarios
while maintaining high detection accuracy.

Convolutional Neural Networks (CNNs) have emerged as a powerful tool for address-
ing such challenges (c.f. [8]) due to their ability to learn hierarchical feature representations.
More specifically, using the latent spaces generated by CNNs, which provide a com-
pressed yet highly discriminative representation of complex data, is a particularly effective
method for vehicle paint defect detection [4]. They offer significant advantages in terms
of re-usability and efficiency by leveraging pre-trained models, which save time and com-
putational resources (aligned with Green AI principles) by transferring knowledge from
similar cases and minimizing redundant training. Furthermore, latent spaces enhance ex-
plainability by revealing how defects are clustered and separated based on learned features,
aiding operators in making informed decisions. While general latent spaces can provide
valuable insights, fine-tuning them for specific use cases ensures improved performance
and customization to address unique challenges. However, to overcome the limitations
inherent in pre-trained models, additional supervised learning is often necessary to refine
latent spaces for domain-specific applications.

This paper presents a comprehensive framework designed to support operators in
detecting vehicle paint defects by leveraging and refining latent space representations
generated by a pre-trained CNN-based model (selected based on quantitative comparison
between MobileNet-V2, VGG16, ResNet-34 and ResNet-50). The proposed methodology
begins with an unsupervised analysis of the latent space to evaluate the performance
of the pre-trained model. Subsequently, a supervised fine-tuning phase is introduced to
adapt the latent space to the specific characteristics of vehicle paint defects. A comparative
analysis between the pre-trained and fine-tuned latent spaces highlights the impact of
domain-specific customization.

We achieved high accuracy in classifying three types of defects, with the added
capability to isolate samples that the model could not confidently classify for review by
the operator. This feature enables an automated detection phase that reduces the manual
effort by approximately ∼90%. The approach is adaptable for the few-shot learning of new
defect types by repeating the supervised fine-tuning phase with a small number of samples
or for enhancing the model’s ability to distinguish out-of-domain samples. This paper is
structured as follows: Section 2 discusses the related work and contributions, Section 3
presents the proposed solution and methodology, Section 4 outlines the empirical settings,
Section 5 provides the results and discussion, and Section 6 concludes the paper.

2. Related Work and Contributions
While the specific topic of vehicle paint defect detection has been addressed by only a

few authors, it remains an active area of research due to the stringent quality requirements
and competitive nature of the manufacturing industry. Contributions to this field can be
grouped into the following three main categories: defect detection in manufacturing and
quality assurance, the application of machine learning (ML) in defect detection, and the
use of latent spaces for addressing detection problems.

Defect Detection in Manufacturing and Quality Assurance. Early work in defect detection
systems focused on traditional imaging techniques and system designs. For instance, [5]
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describes a defect detection system implemented at Ford Spain that uses a flash-based
static imaging system to analyze the shadows around defects. Reference [3] describes a
surface inspection system developed at Volkswagen’s Wolfsburg plant that improves paint
defect detection using image processing techniques. Reference [1] proposes a system for
detecting defects on semi-specular and painted surfaces using a robotic arm equipped with
camera equipment, tested in controlled laboratory settings with vehicle parts provided by
an automotive OEM.

Despite advances in image processing techniques, these systems often struggle with
challenges such as complex backgrounds, noise, and varying lighting conditions, as high-
lighted by [9]. These limitations have driven the adoption of deep learning-based methods,
which take advantage of advances in computing power and digitization to overcome
traditional shortcomings.

Machine Learning in Defect Detection. The application of ML to defect detection in auto-
motive manufacturing has gained traction in recent years. Reference [10] explores defect
prediction by combining contextual information with time series analysis, highlighting the
adaptability of ML techniques to various manufacturing processes. Reference [4] developed
a system that uses ant colony optimization to detect edges, eliminate reflections, and iden-
tify five types of defects, including scratches, drops, and raindrops. Reference [8] extends
the previous work by creating a dataset of 2468 images containing the following seven
types of defects: bubbles, dust, fouling, pinholes, sagging, scratches, and shrinkage. This
method then applied convolutional models such as MobileNet-V2, VGG16, and ResNet-34
to carry out the detection tasks. Reference [7] proposes a mobile-transformer algorithm
for car body defect detection and compares its accuracy with Vision Transformer (ViT),
MobileNet-V2, VGG16. These works demonstrate the value of ML models in addressing
the challenges of defect variability and lighting conditions. Finally, reference [2] recognizes
defects using a one-against-all SVM classifier.

Latent Spaces in Detection Problems. Latent spaces generated by pre-trained CNNs
have recently emerged as a key focus in defect detection, addressing challenges like class
imbalance and feature extraction. For instance, [11] uses latent space representations
to generate new samples for unbalanced ship coating defect classification, effectively
mitigating the challenges posed by the limited data. Reference [12] modifies the latent space
of a pre-trained CNN to facilitate automatic image generation and labeling, demonstrating
its utility in object detection tasks.

Our Approach. Despite the advancements in defect detection systems, most existing
studies lack publicly available datasets or detailed descriptions of data collection methods.
This limitation complicates reproducibility and benchmarking in industrial applications.
Another aspect is that the existing research focuses on the pure benchmarking of different
solutions used for classification and/or detection, which produces a static system that
needs an amount of new labeled data to be reconstructed each time a new defect occurs
with no handling of mislabeled defects.

While some studies have explored defect detection using CNNs (c.f. [7,8]), the explicit
investigation of latent spaces remains unexplored, particularly for painted surfaces. Previ-
ous studies have focused on either benchmarking architectures or developing supervised
classifiers for specific defect types. Few works, if any, have investigated the potential of
latent space representations to enhance both accuracy and explainability in defect detection
tasks in general (c.f. [2,10–12]). Furthermore, the application of latent space analysis to
paint defect detection—a domain where explainability is essential for operator trust and
process improvement—has not been comprehensively addressed.

Therefore, this paper aims to fill this gap by introducing a novel framework that lever-
ages latent space representations to improve explainability in defect detection. The main
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contribution of this work is the investigation of the potential of latent space in providing
flexibility, scalability, and interpretability in defect detection tasks while maintaining the
accuracy of commonly used architectures (such as CNNs). A preliminary idea of this
approach was introduced by [6]. In this paper, instead, we expand on the methodology,
experiments, results, and discussions to provide a comprehensive study while a novel
framework is introduced.

Therefore, our contributions can be summarized as follows:

1. Investigating latent spaces potential: We investigate how latent space representations
can be analyzed and utilized to provide insights into defect clustering, anomaly
detection, and the separability of defect types.

2. Combining supervised and unsupervised approaches: By integrating supervised fine-
tuning with unsupervised latent space analysis, we propose a hybrid methodology
that adapts dynamically to new defect types while maintaining high accuracy for
known defects.

3. Focusing on CNN-based architectures: We demonstrate that CNNs, with their ability
to capture hierarchical feature representations, are particularly well suited for latent
space exploration and defect detection.

4. Application to paint defect detection: To our knowledge, this is the first work to
explicitly analyze and utilize latent spaces for explainability and adaptability in the
context of painted surface defect detection.

3. Materials and Methods
As mentioned before, detecting defects is very challenging and stressful for operators,

especially for their vision, as they need to look for tiny defects on a very big surface in an
extremely bright environment for long hours. In this work, we aim to support the operators,
but not replace them, using AI to reducing the surface/defects they need to check. To do
so, we chose a very powerful pre-trained model (namely ResNet50) as our backbone to
extract features from defect images and then analyze, visualize, and cluster these features
using the latent spaces methods and techniques. In this section, we propose an overview
of our proposed solution in Section 3.1, the motivation in Section 3.2, the details of our
methodology in Section 3.3, and the unsupervised techniques used and the evaluation
metrics in Sections 3.4 and 3.5, respectively.

3.1. The Proposed Solution

Data-driven methodologies are widely used to extract useful and hidden knowledge
to support decision-making processes [13]. The proposed solution (shown in Figure 1)
consists of the following two main components:

• Data-driven system: AI model that takes images as input and outputs the label of the
detected defect

• Expert-based system: Interacts with the human operator by displaying the detection
of the previously mentioned component and providing the correct label taken from
the operator

In this paper, we focus on the data-driven system, and we simulate the expert-based
part by the final analysis of the outliers.



J. Imaging 2025, 11, 33 5 of 18

Version January 20, 2025 submitted to J. Imaging 4 of 18

2. Combining Supervised and Unsupervised Approaches: By integrating supervised 141

fine-tuning with unsupervised latent space analysis, we propose a hybrid methodol- 142

ogy that adapts dynamically to new defect types while maintaining high accuracy for 143

known defects. 144

3. Focusing on CNN-Based Architectures: We demonstrate that CNNs, with their ability 145

to capture hierarchical feature representations, are particularly well-suited for latent 146

space exploration and defect detection. 147

4. Application to Paint Defect Detection: To our knowledge, this is the first work to 148

explicitly analyze and utilize latent spaces for explainability and adaptability in the 149

context of painted surface defect detection. 150

3. Materials and Methods 151

As mentioned before, detecting defects is very challenging and stressful for the opera- 152

tors, especially for their vision, as they need to look for tiny defects on a very big surface 153

in an extremely bright environment for long hours. In this work, we aim to support the 154

operators, but not replace them, using AI by reducing the needed surface/defects to check. 155

To do so, we chose a very powerful pre-trained model (namely ResNet50) as our backbone 156

to extract features from defect images and then analyze, visualize, and cluster these features 157

using the latent spaces methods and techniques. In this section, we propose an overview 158

of our proposed solution in Subsection 3.1, the motivation in Subsection 3.2, the details of 159

our methodology in Subsection 3.3, the Unsupervised Techniques used, and the Evaluation 160

Metrics in Subsections 3.4 and 3.5 respectively. 161

3.1. The Proposed Solution 162

As data-driven methodologies are widely used to extract useful and hidden knowledge 163

to support the decision-making process [13]. The proposed solution (shown in Figure 1) 164

consists of two main components: 165

• Data-Driven System: AI model that takes images as input and outputs the label of the 166

detected defect 167

• Expert-based System: interacts with the human operator by displaying the detection 168

of the previously mentioned component and providing it with the correct label taken 169

from the operator 170

In this paper, we focus on the data-driven system, and we simulate the expert-based part 171

by the final analysis of the outliers. 172

Figure 1. Proposed Solution Architecture.

Figure 1. Proposed solution architecture.

3.2. Motivation

The study of latent spaces in machine learning has gained significant attention for
its potential to uncover meaningful patterns and structures within data. These high-
dimensional representations encode the relationships between data points, offering insights
that are crucial for tasks such as clustering, classification, and anomaly detection. In this
work, we aim to explore the potential of latent spaces in enhancing defect detection systems,
particularly in scenarios where subtle and complex defects arise. By investigating these
spaces, we seek to understand how they can be leveraged to improve system performance
and adaptability.

To achieve this, we focus on CNN-based models, which are well suited for capturing
hierarchical and discriminative features in image data. CNNs provide powerful latent
representations that enable the identification of intricate patterns, making them ideal
for applications where precision and interpretability are critical. Their ability to learn
meaningful features from raw data positions them as a key tool for our investigation into
latent spaces.

The overarching purpose of this article is to support human operators in defect detec-
tion processes, not to replace them. Human expertise is invaluable in industrial settings,
but operators often face an overwhelming volume of data they need to analyze. To alleviate
this burden, our work aims to reduce overhead in the following two key ways:

• Minimizing human involvement: By filtering out the majority of samples that do not
require human attention, the system can focus operator effort on the most ambiguous
or critical cases.

• Adapting dynamically to new defects: Our approach incorporates a dynamic system
that can quickly adapt to new types of defects or anomalies with minimal effort,
ensuring it remains effective even in evolving environments.

One of the key challenges we address is the limitation of relying solely on either
supervised or unsupervised techniques. Supervised methods excel in accurately identifying
known defect types, but they struggle with dynamic environments where new defect types
emerge. On the other hand, unsupervised techniques are effective in detecting anomalies
and uncovering new patterns but lack the precision required for known defect classification.
Therefore, we propose a hybrid approach that combines the strengths of both techniques as
follows: leveraging supervised learning for accurate classification of known defects and
unsupervised methods for dynamic adaptability to new defect types or anomalies. This
dual strategy ensures a robust, scalable, and operator-friendly solution that bridges the gap
between accuracy and adaptability in defect detection.
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Figure 2 illustrates the key concepts of our proposed methodology, progressing from
the image space to the latent space using a pre-trained model as an encoder. Initially, an
unsupervised analysis reveals that the latent representations in the unrefined latent space
are not well separated. This is expected, as the pre-trained model was trained on a generic
and diverse dataset, which may not align closely with the specific characteristics of the
studied data.
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To address this, a supervised training phase is conducted to fine-tune the model using
a clean, labeled training dataset. This refinement process adapts the model and its latent
space to the specific task, resulting in the better separability of the labeled classes and a
more tailored latent space representation.

Once fine-tuned, the model is used to encode unseen data (the testing dataset) into
the refined latent space. An unsupervised analysis of this new latent space reveals the
following two distinct sets of samples: one set where the samples exhibit a high confidence
of belonging to specific classes, due to their strong alignment with the class features in
the latent space, and another set where the samples are less clear, exhibiting ambiguity
or inconsistency. The final goal is to trigger an automated labeling approach for the high-
confidence set while redirecting the ambiguous samples back to the image space for manual
verification, ensuring both efficiency and accuracy in the defect detection process.

3.3. Methodology

The most common systems used for defect detection rely on image processing, where
a model is trained on a sufficiently labeled dataset to detect defects in new data. However,
to train an effective AI system with a relatively small amount of data, our approach seeks
to minimize the required dataset size by shifting from raw image pixels to the latent space
of a pre-trained model. These latent spaces are constructed and refined during the training
phase, and the modified space is then used for the inference of new samples.

Figure 3 illustrates the detailed steps of our methodology, which can be categorized
into the following four main phases:

• Preparation phase: This phase involves collecting defect image data, followed by pre-
processing steps such as resizing, cropping, and normalizing the images. The dataset
is then split into training/validation and testing sets (more details on the dataset are
provided in Section 4.1). For the model, we begin by loading the pre-trained ResNet
model and removing the final layer, preparing it to function as a feature extractor
(more details on the model are provided in Section 4.2).

• Unsupervised analysis phase: In this phase, we extract the latent representation from
the penultimate layer of the model and perform an unsupervised analysis using
techniques such as visualization, clustering, and anomaly detection (further details
on the methods used are provided in Section 3.4). The outcome is an information



J. Imaging 2025, 11, 33 7 of 18

dashboard for data scientists, offering deeper insights into the data distribution and
relationships within the latent space.

• Supervised training phase: This phase requires a labeled dataset for supervised
training. It begins with data labeling, followed by modifying the model architecture to
fine-tune it. A linear layer with one neuron per class is added, and the model is trained
on the training dataset (details on the fine-tuning process can be found in Section 4.3).

• Evaluation phase: In this phase, we validate the model performance using traditional
evaluation metrics (details on the metrics used are provided in Section 3.5). Addi-
tionally, we conduct some of the unsupervised analysis (visualization and clustering),
again using the new latent space to compare the results, ultimately identifying any
outliers or mislabeled samples.

Version January 20, 2025 submitted to J. Imaging 7 of 18

Figure 3. Our methodology consists of four main phases, where the icon at the top left of each block
represents the input, and the icon at the bottom right indicates the output type.

Figure 3 illustrates the detailed steps of our methodology, which can be categorized 232

into four main phases: 233

• Preparation Phase: This phase involves collecting defect image data, followed by 234

pre-processing steps such as resizing, cropping, and normalizing the images. The 235

dataset is then split into training/validation and testing sets (more details on the 236

dataset are provided in Subsection 4.1). For the model, we begin by loading the 237

pre-trained ResNet model and removing the final layer, preparing it to function as a 238

feature extractor (more details on the model are provided in Subsection 4.2). 239

• Unsupervised Analysis Phase: In this phase, we extract the latent representation 240

from the penultimate layer of the model and perform an unsupervised analysis using 241

techniques such as visualization, clustering, and anomaly detection (further details 242

on the methods used are provided in Subsection 3.4). The outcome is an information 243

dashboard for data scientists, offering deeper insights into the data distribution and 244

relationships within the latent space. 245

Figure 3. Our methodology consists of four main phases, where the icon at the top left of each block
represents the input and the icon at the bottom right indicates the output type.

To apply the methodology described earlier, we used a standard dataset of vehicle
painting defects available online, along with the ResNet-50 model as the base encoder for
the latent space (more details can be found in Section 4). The following section outlines the
unsupervised techniques used and the evaluation metrics applied.
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3.4. Unsupervised Techniques

Although unsupervised techniques were traditionally used when labels were unavail-
able or difficult to assign, they are now commonly employed to gain a deeper understanding
of the data and uncover hidden relationships. As shown in Figure 3, we apply several of
these techniques for different purposes, including visualization, clustering, and anomaly
detection. In this subsection, we provide a more detailed description of these techniques.

3.4.1. Visualization

Visualization of high dimensional data is primarily achieved using Dimensionality
Reduction Algorithms (DRAs). These techniques serve various purposes, such as feature
extraction [14], data visualization [15], pattern recognition [16], or even acting as a pre-
processing step [17].

One of the most well-known and widely used DRAs is isometric mapping (ISOMAP),
discussed in [18]. This classic nonlinear projection-based algorithm focuses on preserving
the global structure of the data. More recent algorithms, such as t-distributed stochastic
neighbor embedding (t-SNE) [19] and Uniform Manifold Approximation and Projection
(UMAP) (cf. [20,21]) are designed to retain more information in reduced dimensions when
the local geometry approximates Euclidean space. On the other hand, PaCMAP Pairwise
Controlled Manifold Approximation Projection, introduced in [22], is a newer algorithm
that optimizes both global and local structures.

To validate our work, we compare the results using ISOMAP, UMAP, and PaCMAP to
analyze the nature of the relationship within the latent space and to check whether there is
a more global or local structure in the distribution of the samples (the results can be found
in Section 5).

3.4.2. Clustering

We apply clustering algorithms like K-means or DBSCAN on the latent vectors to
detect natural groupings within the latent space which can reveal clusters corresponding to
distinct defect types or similarities between types. In the latent space, images of defects
are represented by feature vectors, where similar types of defects should naturally cluster
together based on their shared characteristics. By clustering these latent representations
using algorithms like K-means and DBSCAN, we can identify groups of similar defects
even if they are unlabeled.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise), first pre-
sented in [23] and then revisited in [24], is a clustering algorithm that groups data based
on density, making it particularly useful when the latent space has clusters of various
sizes or shapes. Unlike K-means, DBSCAN does not require specifying the number of
clusters upfront, and it can effectively label low-density points as noise, which can help in
identifying new, distinct defect types as outliers.

3.4.3. Anomaly Detection

This analytical step performs anomaly detection to identify patterns in the data that
deviate from the expected behavior in the latent space. Specifically, anomalies in the latent
space may indicate new types of defects, which can be flagged for further review and
potential classification. To identify potential outliers in the latent space, in addition to
DBSCAN, we use Isolation Forests [25].

Isolation Forests is an anomaly detection algorithm that uses binary trees to isolate
anomalies. The core idea of the algorithm is to randomly select a feature and then choose a
value to split the data between its maximum and minimum values. This process effectively
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isolates anomalous data points more quickly than other methods, making it particularly
efficient for large datasets.

3.5. Evaluation Metrics

In addition to using visualization techniques to compare results, we apply both
unsupervised and supervised evaluation metrics.

For the unsupervised analysis, we use the Adjusted Rand Index (ARI) to assess
clustering performance. This metric compares the clusters to known defect labels to
determine whether the clusters correspond to actual defect types [26]. Another metric is
the Silhouette Score, which measures clustering quality by evaluating how similar a point
is to its own cluster compared to other clusters [27]. We use this score to identify the best
distance metric that the latent space might have encoded.

For the supervised phase, we rely on accuracy to interpret the results of the validation
and analyze the model’s performance. Accuracy is calculated as the ratio between the
number of correctly predicted labels and the total number of samples in the validation
set. Additionally, we use the confusion matrix when needed to identify which classes the
model may be confusing.

4. Empirical Settings
One of the main challenges in this case was finding a suitable dataset for our analysis.

However, we found a small image dataset that supports multi-defect detection. With some
pre-processing and modifications, we adapted it for our study. In this section, we detail
the experimental setup, starting with the dataset and pre-processing steps in Section 4.1,
followed by the pre-trained model used in Section 4.2, the supervised training process in
Section 4.3, and implementation details in Section 4.4.

4.1. Dataset and Pre-Processing

The dataset consists of images of vehicle paint defects, with a total of 344 images, each
sized at 640 × 640. These images are divided into 240 for training, 70 for validation, and
34 for testing. The dataset includes four types of defects as follows: dirt, drops (named
initially “runs”), scratches, and watermarks. Figure 4 shows an example of each class. We
pre-processed the data as follows: :

• We resized the images to 224 × 224 to be compatible with the model input.
• For the training samples, we applied a random horizontal flip to slightly increase the

challenge for the model during training.
• We normalized the pixel values, which is a standard step in image processing to

mitigate the impact of high or low pixel values.

(a) Dirt (b) Drop (c) Scratch (d) Watermarks
Figure 4. Data samples representing dirt, drop, scratch, and watermarks.

We began the unsupervised analysis using the entire training dataset. For the super-
vised phase, however, we manually curated and labeled the dataset to focus on specific
defect types. The original dataset was designed for multi-defect detection, so we narrowed
our focus to the following three defect classes: dirt, drop, and scratch. This decision was
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made because the available samples for watermarks were too few and often contained
overlapping defects within the same image. As a first attempt, we excluded images with
multiple evident defects.

After this refinement, the training dataset was reduced from 240 images to 201. The
final labels were assigned as follows: dirt = 0 (36 samples), drop = 1 (83 samples), and
scratch = 2 (82 samples). The original dataset is available at [28]. For model validation
and testing, we retained the original validation and test datasets, which contained 70 and
34 images, respectively. This approach ensured that the model was tested for robustness
against outlier samples.

4.2. ResNet-50

We selected ResNet-50 [29] for its ability to create deeper and richer latent spaces, en-
abling superior defect detection and classification in vehicle paint applications. Compared
to ResNet-34 [8], ResNet-50, with approximately ∼25.6 million parameters, offers better
hierarchical feature extraction, higher accuracy, and improved latent space separability.
Despite its slightly higher computational cost, ResNet-50’s advantages make it the preferred
choice for robust and scalable solutions in detecting subtle and diverse defects in industrial
quality assurance processes.

The ResNet-50 model has a 50-layer deep Residual Neural Network (ResNet) archi-
tecture originally developed in 2015 for image recognition applications [29,30]. It remains
widely used in the field of image processing. The ResNet architecture is built on repeated
residual blocks, where each block functions as a small neural network. A unique feature
of ResNet is the use of residual (or skip) connections, where the input of a block is added
to its output before being passed to the next block. This approach mitigates the vanishing
gradient problem and facilitates the training of very deep networks. Similar residual con-
nections are employed in other architectures, such as the original LSTM network [31] and
transformer models [32].

The architecture of ResNet-50 is illustrated in Figure 5. The model comprises 48 con-
volutional layers organized into 16 residual blocks, each consisting of three layers and a
residual connection. These convolutional layers are flanked by a max pooling layer at the
input and an average pooling layer at the output.
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Figure 5. Original ResNet-50 architecture. The last layer (in the red box) was removed in the feature
extraction settings and the latent representations were extracted using the penultimate layer.

Pre-trained ResNet models are widely utilized, often with customized modifications
to suit the specific requirements of a given case study. For instance, ResNet-50 has a
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pre-trained version available in the torchvision library [33], trained on the ImageNet
dataset. The ImageNet dataset includes 1,281,167 training images, 50,000 validation images,
and 100,000 test images spanning 1000 distinct classes. In its original configuration, the
ResNet-50 model has an output layer with 1000 nodes, each corresponding to a class. This
pre-trained model is frequently employed as a backbone or feature extractor.

Since ImageNet is a highly generic dataset, the model’s output layer typically needs to
be adapted to match the number of classes relevant to the case study. This adaptation can
be achieved using the following two approaches to transfer learning:

• Fine-tuning: This involves updating all model parameters using the training dataset,
effectively retraining the entire model.

• Feature extraction: In this approach, only the final layer’s weights are updated to
predict the labels, while the pre-trained model is a fixed feature extractor.

In this work, we utilize ResNet-50 in both modes. Initially, the model is employed as a
feature extractor by removing its final layer to generate latent representations of the data
points using the penultimate layer output which consists of 2048 nodes. These represen-
tations are then used for unsupervised analysis and to evaluate the supervised training
phases. Additionally, we fine-tune the model during supervised training. For this purpose,
we modify the architecture by replacing the output layer with a new one containing three
nodes, corresponding to the three classes in our dataset, dirt, drop, and scratch.

4.3. Supervised Training

During the fine-tuning phase, the original output layer of the ResNet-50 model, which
consisted of 1000 nodes (configured for ImageNet classification), was replaced with a linear
layer of three nodes. This new layer was tailored to the number of classes in the training
dataset (dirt, drop, and scratch), ensuring compatibility with the task-specific classification
requirements. The modified architecture is illustrated in Figure 5, where the replaced layer
is highlighted by a red box.

The fine-tuned model was trained over 100 epochs with a batch size of 8 images on
the training dataset (201 images in total). Training optimization was performed using the
Stochastic Gradient Descent (SGD) optimizer, configured with a learning rate of 0.001 and
a momentum of 0.9. The optimizer is applied using the cross-entropy loss function to
evaluate and adjust the model’s parameters during training (the implementation was via
PyTorch, see [34] for details).

4.4. Implementation Details

Experimental validation was carried out with Google Colab with T4 GPU settings
and a Python kernel. The PyTorch library [34] was utilized for the essential training
components, including the loss function, optimizer, and output layer modification. The
torchvision library [33] was used to download the pre-trained ResNet-50 model and to
apply image transformation and pre-processing operations.

For clustering, anomaly detection techniques, and evaluation measures, the Scikit-
learn library [35] was employed. Visualization tasks were performed using dimensionality
reduction techniques, including ISOMAP and UMAP from Scikit-learn [35] and UMAP-
learn [36], respectively, as well as PaCMAP from the PACMAP library [22].

5. Results and Discussion
In this section, we demonstrate the obtained results of the Sensitivity, Unsupervised,

and Supervised Analysis in Sections 5.1, 5.2, and 5.3, respectively, and then, we discuss
these results in Section 5.4.
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5.1. Sensitivity Analysis

A sensitivity analysis was conducted to choose the most convenient unsupervised and
supervised techniques to be used.

Table 1 shows a comprehensive analysis of the Silhouette Score for the latent space
of ResNet-50, based on K-means clustering, to compare different distance metrics on the
training dataset before fine-tuning.

Table 1. Silhouette Score of the latent representations and labels of the training dataset before
fine-tuning. The underlined numbers represent higher values.

euclidean/l2 cosine cityblock/l1/
manhattan braycurtis canberra chebyshev

0.12 0.18 0.11 0.11 0.066 0.095

correlation dice hamming jaccard minkowski rogerstanimoto/
sokalmichener

0.18 −0.057 0.0064 −0.056 0.12 −0.052

russellrao seuclidean sokalsneath sqeuclidean yule nan euclidean

−0.084 0.074 −0.052 0.205 0.053 0.12

The highest scores were observed when using cosine and correlation distances
(0.18 each) and squared Euclidean distance (0.2). These results suggest that the latent
space may not adhere to a strictly Euclidean geometry. Some limitations of K-means
include the fact that it is restricted to the use of Euclidean distance and the number of
clusters must be specified in advance. To further investigate how the choice of spatial
metric affects clustering quality, we used DBSCAN, which does not require a prior number
of clusters, can use a metric parameter as distance, and detects anomalies in the distribution
of data points.

Although the use of DBSCAN was not helpful in labeling the points, we combined
the anomalies detected by DBSCAN using cosine distance with Isolation Forests to remove
these anomalies from the training dataset. This resulted in the exclusion of a total of
twelve samples, as only two samples overlapped with the two methods.

In addition, a comparative analysis was conducted to compare ResNet-50 with other
CNN-based architectures, namely, MobileNet-V2, VGG16, and ResNet-34 (presented in [8]).
The same steps described in Section 4.3 were applied on the other three pre-trained models.
As shown in Table 2, MobileNet-V2 exhibited faster performance, while ResNet-50 achieved
the highest classification accuracy on the validation set. These results validate our choice of
ResNet-50 for post-production quality assurance, where accuracy is essential and latent
space separability is better represented.

Table 2. Comparative analysis with other CNN-based architectures to compare accuracy after
100 epoch and the time of each epoch in seconds. The underlined numbers represent best values.

ResNet-50 MobileNet-V2 VGG16 ResNet-34

Accuracy 100.0% 97.8% 96.7% 97.8%

Epoch time (s) 6.04 3.65 7.88 4.84

5.2. Unsupervised Analysis

The unsupervised analysis is a very important step as it provides more information on
the data distribution and relationships at a lower cost (in terms of resources and time) than
supervised fine-tuning. In this analysis, we exclusively focused on the training data. After
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extracting features using ResNet-50, we obtained a dataset of 240 × 2048 latent vectors
(240 images, each represented by 2048 features as the output of the penultimate layer).
These latent vectors were visualized in a 2-dimensional space using the following three
different Dimensionality Reduction Algorithms (DRAs): ISOMAP, UMAP, and PaCMAP.
The resulting visualizations are presented in the first row of Table 3. The second row shows
the same visualizations, but the points are colored based on the K-means clustering results
with k = 4.

Table 3. Visualization of the latent representations of the training data in 2D using Dimensionality
Reduction Algorithms (DRAs): ISOMAP, UMAP, and PaCMAP. The first row displays the general
data distribution, while the second row shows the same data, colored according to K-means clustering
results with k = 4.

ISOMAP UMAP PaCMAP

While applying K-means clustering directly to the full latent representations (240× 2048)
did not reveal a clear separation of the classes, the PaCMAP visualization in two dimensions
highlighted three distinct clusters. To investigate further, we applied K-means clustering with
k = 3 to the dimensionally reduced representations obtained from PaCMAP. This yielded
three clusters. Upon manually examining the corresponding images within each cluster, we
found that all defect types occurred in all three clusters, rendering this approach unhelpful
in the labeling phase. However, there may still be valuable information, particularly from
the UMAP and PACMAP results, that needs to be further analyses to confirm whether these
separate regions have different probability distributions, each belonging to a cluster, and
whether this separation may be meaningful.

5.3. Supervised Analysis

The fine-tuned model was used as a feature extractor to generate new latent features
for the validation dataset, resulting in 70 × 2048 latent vectors (70 images, each represented
by 2048 features as the output of the penultimate layer). Table 4 presents the visualization
of these latent vectors in 2D using Dimensionality Reduction Algorithms (DRAs). The first
row shows the latent vectors with their actual labels, while the second row shows the same
vectors colored by K-means clustering results.
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Table 4. Visualization of fine-tuned latent representation of the validation data in 2D using the DRAs
(ISOMAP, UMAP, and PaCMAP), with the first row representing the data in general and the second
row colored by the K-means of 4 clusters.

ISOMAP UMAP PaCMAP

The visualization reveals that three clusters (0, 2, and 3) are separated, while cluster 1
is centrally located, as highlighted by ISOMAP. Cluster 1 likely contains anomalies or
outliers. To verify this, we manually reviewed the images within each cluster. It was
confirmed that: (a) Cluster 0 corresponds to scratch samples; (b) Cluster 2 corresponds
to dirt samples; (c) Cluster 3 corresponds to drop samples; and (d) Cluster 1 contains
ambiguous samples, such as those with watermarks or multiple defects (these samples are
detailed in Appendix A).

The Adjusted Rand Index (ARI) for the K-means labels was calculated to be 0.89,
reflecting a strong alignment exists between the clustering results and the actual labels.

This analysis on the validation set has demonstrated a mechanism for automated
labeling, where the anomaly cluster (cluster 1) identifies samples requiring manual review
by an operator. Notably, this cluster comprises only 11% of the entire dataset, significantly
a reduction in the manual effort needed. Applying this K-means model to the testing set
(34 images) resulted in the identification of three samples as anomalies, which also require
manual inspection.

5.4. Discussion

The results of the unsupervised and supervised analyses reveal important insights into
the role of latent space representations in defect detection and the challenges associated
with clustering and anomaly detection. In the unsupervised analysis, the initial latent space
extracted from ResNet-50 (240 × 2048 latent vectors) provided attached clusters with no
definitive classes in each when directly clustered using K-means, as indicated by the low
Silhouette Scores (∼0.2 for squared Euclidean distance and ∼0.18 for cosine distance). This
suggests that the latent space is not entirely Euclidean and requires careful metric selection.
Dimensionality reduction algorithms (PaCMAP, UMAP, and ISOMAP) on the other hand,
highlighted the structure, with PaCMAP showing three distinguishable clusters. However,
further investigation revealed that these clusters did not correspond to distinct defect types,
highlighting the difficulty of achieving meaningful class separation without fine-tuning.

Clustering approaches like DBSCAN and Isolation Forests were also applied to detect
anomalies. DBSCAN with cosine distance identified six anomalies, while combining it with
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Isolation Forests reduced false positives to twelve removed samples. The removal of these
anomalies improved the overall data quality, laying the foundations for the supervised phase.

Although the unsupervised analysis alone was not sufficient, it helped us to under-
stand the degree of interdependence within the different classes and to eliminate some
anomalies that may confuse the subsequent fine-tuning process, as repeating the fine-tuning
process on such pre-trained models is very expensive, both in terms of resources and time.

In the supervised phase, fine-tuning the model on a curated dataset significantly
enhanced performance, achieving a validation accuracy of 92.31%. Visualizing the new
latent features of the validation dataset in two dimensions revealed well-separated clusters
that correspond to the defect types (dirt, drop, and scratch). Notably, Cluster 1, which
appeared mixed in the unsupervised analysis, predominantly contained samples with mul-
tiple defects or anomalies like watermarks, aligning with the manually confirmed findings.
This validation step achieved a high Adjusted Rand Index (ARI) of 0.89, underscoring the
reliability of the fine-tuned model in separating defect types.

Additionally, the clustering results demonstrated the practicality of the proposed
approach for automatic labeling. The mixed cluster (11% of the data) was identified
as requiring a manual review, streamlining the operator’s task while maintaining high
accuracy. Applying the same model to the testing dataset yielded three potential anomalies
requiring manual verification, demonstrating the method’s scalability and robustness.

In summary, the combination of fine-tuning and latent space analysis proved ef-
fective in improving clustering quality, anomaly detection, and overall defect classifica-
tion accuracy. These results highlight the importance of customizing the latent space to
domain-specific challenges and suggest a practical workflow for integrating automated
and human-led quality control in industrial applications.

6. Conclusions
In this study, we present an approach for detecting paint defects on vehicles using

image datasets and a ResNet-based model. Our methodology involved analyzing the latent
representations generated by a pre-trained model to classify the following three distinct
defect types: dirt, drop, and scratch, achieving promising accuracy. By examining the latent
space, we gained deeper insights into the relationships and distribution of the dataset
samples, which facilitated the identification of mislabeled data and paved the way for the
seamless integration of additional defect categories. Analyzing the latent space of this case
allowed us the flexibility, scalability, and precision required to ensure a robust solution for
AI-driven quality control in manufacturing environments is established.

In addition, the solution can adapt to new defect types as the latent space method-
ology allows the system to recognize and classify emerging or previously unseen paint
defects with minimal manual intervention. This adaptability is particularly useful in pro-
duction environments where new types of defects may arise due to changes in materials,
environmental conditions, or manufacturing processes.

Therefore, for future work, we aim to conduct further comparative analysis to in-
corporate newer method,s such as vision transformers or a faster R-CNN as backbone
models, and more sophisticated clustering techniques. Future research will also focus
on incorporating few-shot learning techniques for the addition of new defect types and
exploring the handling of out-of-domain samples automatically. In addition, we plan
to develop this methodology into a comprehensive framework suitable for integration
into manufacturing systems using more data samples, either by collecting real datasets or
generating synthetic samples.
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Figure A1. Validation data anomaly samples.
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