
04 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Quadratic Forms in Random Matrices with Applications in Spectrum Sensing / Riviello, D. G.; Alfano, G.; Garello, R.. - In:
ENTROPY. - ISSN 1099-4300. - 27:1(2025), pp. 1-15. [10.3390/e27010063]

Original

Quadratic Forms in Random Matrices with Applications in Spectrum Sensing

Publisher:

Published
DOI:10.3390/e27010063

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2997141 since: 2025-02-01T07:16:34Z

Multidisciplinary Digital Publishing Institute (MDPI)



Academic Editors: Roberto Da Silva

and Prado Sandra Denise

Received: 30 November 2024

Accepted: 10 January 2025

Published: 12 January 2025

Citation: Riviello, D. G.; Alfano, G.;

Garello, R. Quadratic Forms in

Random Matrices with Applications

in Spectrum Sensing. Entropy 2025, 27,

63. https://doi.org/10.3390/

e27010063

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Quadratic Forms in Random Matrices with Applications in
Spectrum Sensing
Daniel Gaetano Riviello 1 , Giusi Alfano 2 and Roberto Garello 2,*

1 CNR-IEIIT, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni,
Consiglio Nazionale delle Ricerche, 10129 Turin, Italy; daniel.riviello@cnr.it

2 Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy;
d020860@polito.it

* Correspondence: roberto.garello@polito.it

Abstract: Quadratic forms with random kernel matrices are ubiquitous in applications
of multivariate statistics, ranging from signal processing to time series analysis, biomed-
ical systems design, wireless communications performance analysis, and other fields.
Their statistical characterization is crucial to both design guideline formulation and ef-
ficient computation of performance indices. To this end, random matrix theory can be
successfully exploited. In particular, recent advancements in spectral characterization of
finite-dimensional random matrices from the so-called polynomial ensembles allow for the
analysis of several scenarios of interest in wireless communications and signal processing.
In this work, we focus on the characterization of quadratic forms in unit-norm vectors, with
unitarily invariant random kernel matrices, and we also provide some approximate but nu-
merically accurate results concerning a non-unitarily invariant kernel matrix. Simulations
are run with reference to a peculiar application scenario, the so-called spectrum sensing for
wireless communications. Closed-form expressions for the moment generating function
of the quadratic forms of interest are provided; this will pave the way to an analytical
performance analysis of some spectrum sensing schemes, and will potentially assist in the
rate analysis of some multi-antenna systems.

Keywords: spectrum sensing; quadratic forms; multi-antenna; random matrix theory;
cognitive radios; 6G

1. Introduction
The statistical characterization of Quadratic Forms (QFs) with random kernel matrices

is an ubiquitous task in applied multivariate statistics (see, e.g., [1]). In the realm of wireless
communications, such QFs appear in a wide range of topics, such as the sum-rate analysis
and spectral efficiency computation of multi-user systems (see ([2] and references therein)). An
ergodic capacity analysis of single-user multi-antenna wireless links relies on the knowledge
of the probability density function (pdf) of QFs in Gaussian random matrices [3]; outage
probability in multiuser beamforming can be computed, exploiting indefinite QFs [4]. On
top of that, recasting a Rayleigh quotient in terms of an indefinite QF can lead to the
quantification of the spectral efficiency of linear receivers ([5,6] and references therein).

Often, test statistics for sensing applications reduce to or involve QFs in random
matrices (see, for example, the case of energy detection techniques [7]). Due to the vastness
of the field, our literature review is far from being exhaustive. We only remark that, for our
purposes, we have mostly focused on results assuming the involved matrices to be of finite
size. Otherwise, in the traditional approach of random matrix theory, where the number
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of rows and columns of the matrices at hand are assumed to diverge at the same rate, the
study of QFs with random kernel matrices can be seen as a particular case of the study of
linear spectral statistics; the interested reader is referred to ([8] and references therein) and
successive developments.

Our work focuses on the characterization of scalar QFs in unit-norm vectors, with
Hermitian random kernel matrices being unitarily invariant in the sense of ([2] Def. 2.6).
This, in turn, implies that the joint density of the non-zero eigenvalues of such matrices is
independent from the density of the corresponding eigenvectors. While such an assump-
tion might seem overly restrictive, it still encompasses random Hermitian matrix models
widely adopted in radio channel modeling, statistical testing, Spectrum Sensing (SS), such
as, e.g., complex central uncorrelated Wishart matrices (see ([2] and references therein), [9]),
complex, uncorrelated non-central Wishart matrices [10] whose non-centrality parameter
is a multiple of the identity matrix, and the full-rank Gram matrix of the product of a
finite number of complex zero-mean Gaussian random matrices with independent and
identically distributed entries [11]. While uncorrelated central Wishart matrices provide a
canonical model for single-user multi-antenna links affected by Rayleigh fading [12], the
unitarily invariant non-central Wishart is commonly exploited in likelihood ratio tests [13].
In turn, products of independent Gaussian matrices model both multiple scattering phe-
nomena (see, again, [11], and also [14,15]), and, when the random matrix factors are
interleaved with suitably chosen diagonal matrices, multi-hop relay communications ([16]
and references therein).

The paper is structured as follows: Section 2 contains the main result, i.e., the statistical
characterization of a scalar QF in a unitarily invariant random kernel matrix, with a unit-
norm vector. Statistics thereof are given in terms of the Moment Generating Function
(MGF). Particularization for two cases of practical interest, namely the uncorrelated central
Wishart and the product of independent Gaussian matrices, is then reported in Section 2.2,
along with the analytical expression of the pdf of the related QF, whenever the MGF is
amenable to analytically handy inversion. A numerically accurate expression for the MGF
of a QF in a non-unitarily invariant random matrix, obtained with a suitable approximation,
is also presented. Within the same section, numerical results are presented, displaying
the statistical behavior of our expressions with reference to the set of kernel matrices at
hand, for varying matrix sizes and/or numbers of involved matrix factors. Section 3 is
devoted to Cognitive Radio Network (CRN) applications, where the performance of a
secondary-data-aided SS scheme is discussed, and its test statistics is approximated by a QF
in unitarily invariant matrices, exploiting our newly derived expression. Then, conclusions
are drawn in Section 4, along with discussions on future developments and ongoing work.

2. Quadratic Form Statistics
This section contains our main result; after a detailed description of the mathematical

framework, a proposition, along with its proof, and therefore some corollaries, referring to
analytical models of relevance in multivariate statistics and signal processing, are presented.

2.1. Mathematical Framework

Given a unit-norm vector v of length K, with complex entries, and a Hermitian ran-
dom matrix A of size K, we focus on the random variable W = vAvH . The statistical
characterization of W depends on the spectral statistics of A = UΛUH , where Λ denotes
the diagonal matrix of the eigenvalues of A, for which, without loss of generality, the order
λ1 > . . . > λK ≥ 0 is assumed, and U is the matrix of the corresponding eigenvectors.
Notice that both U and Λ are themselves random matrices, with probability laws depend-
ing on the statistics of the entries of A. Hereafter, we focus on unitarily invariant random
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matrices (see ([2] Def. 2.6)); this assumption implies that U and Λ are statistically indepen-
dent random matrices, and that U follows the Haar distribution ([2] Lemma 2.6), i.e., it is
uniformly distributed on U (K), the unitary group of size K. As to the eigenvalue statistics,
we focus on so-called polynomial ensembles (PE), namely sets of matrices whose eigenvalues
are jointly distributed according to a determinantal law, where

f (Λ) = c|φi(λj)| ∏
1≤i<j≤K

(λi − λj), (1)

where c is a suitable normalizing constant, φi(·), i = 1, . . . , K are a set of (not necessarily
different) scalar functions, each evaluated at a single eigenvalue, and ∏1≤i<j≤K(λi − λj) is
the Vandermonde determinant [[17], (0.9.11.2)] of Λ.

With these assumptions in mind, we are able to state our main result in the following
proposition:

Proposition 1. Given a Hermitian, unitarily invariant matrix A, of size K, from a polynomial
ensemble, and a unit-norm vector of length K, say v, the MGF of the QF W = vHAv can be
written as

ΦW(s) = C
|Υ(s)|
sK−1 , (2)

with C as a normalizing constant, and the K × K matrix Υ(s) having entries

[Υ(s)]i,j =
∫ +∞

0
λK−j φi(λ)dλ.

Proof. In terms of the spectral decomposition of A, the random variable of interest can be
rewritten as

W = vHUΛUHv.

Therefore, the MGF thereof can be expressed as

ΦW(s) = E[e−sW ] = E
[
exp

(
−tr

(
svvHUΛUH

))]
, (3)

where the expectation is to be taken jointly with regard to both U and Λ.
Due to the postulated statistical independence between U and Λ, and to the uniform

distribution of the eigenvector matrix on its group, we can compute first the average
of (3) with regard to U, obtaining, by virtue of the Harish–Chandra–Itzykon–Zuber (HCIZ)
integral ([10] Equation (92)), the conditional MGF, given Λ, namely

ΦW|Λ(s) = 0F0

(
−svvH , Λ

)
=

(K − 1)!|Θ(s)|
(−s)K−1 ∏i<j(λi − λj)

, (4)

where the K × K matrix Θ(s) has the entries

[Θ(s)]i,j =

exp (−sλi), i = 1, . . . , K, j = 1,

λ
K−j
i i = 1, . . . , K, j = 2, . . . , K,

and the hypergeometric function 0F0(·, ·) of two Hermitian matrix arguments with different
ranks (see, e.g., ([18] Appendix B) for a detailed definition) has been expressed as a ratio of
determinants, exploiting ([19] Corollary I).
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Subsequently, to remove the dependence on Λ, distributed according to (1), the joint
unordered eigenvalue distribution is first expressed, i.e., the law given by

f (Λ) =
c

K!
|φi(λj)| ∏

1≤i<j≤K
(λi − λj), (5)

on [0,+∞)K is considered. Then, the following integral is computed, with the help of ([9]
Corollary I)

ΦW(s) =
c(K − 1)!
(−s)K−1K!

∫
[0,+∞)K

|Θ(s)||φi(λj)|dΛ, (6)

and the statement of the proposition, in terms of (2), follows.

2.2. Statistics for Given Kernel Matrices

Proposition 1 can be particularized, upon the selection of a specific matrix whose
statistics satisfy the assumptions. In the remainder of this section, we provide analytical
expressions of the QF statistics for two random matrix models widely adopted in wireless
communications and signal processing settings: the complex central uncorrelated Wishart,
and the Hermitian product of independent complex zero-mean Gaussian matrices, in the
following two corollaries.

Corollary 1. Assuming the kernel matrix to be complex central uncorrelated Wishart-distributed,
with N ≥ K degrees of freedom, i.e.,

p(A) =
|A|N−Ke−tr(A)

∏K
ℓ=1(

√
π)K−1(N − ℓ)!

, (7)

the MGF of the QF is obtained from (2), with

[Υ(s)]i,j =


(N − j)!

(1 + s)N−j+1 , i = 1, j = 1, . . . , K

(N + K − i − j)! i = 2, . . . , K, j = 1, . . . , K

while

C =
(K − 1)!

∏K
ℓ=1(K − ℓ)!(N − ℓ)!

. (8)

Proof. To compute the expectation in (3), (7) is transformed, exploiting the Jacobian
of eigenvalue–eigenvector decomposition for A = UΛUH (see ([20] Equation (6)) and
([9] Equation (6))). This leads to

p(A)dA =
∏K

ℓ=1 λN−K
ℓ e−λℓ ∏i<j(λi − λj)

2

∏K
ℓ=1(K − ℓ)!(N − ℓ)!

dΛdU, (9)

apparently uniform with regard to U. As to the ordered eigenvalues, their joint law on the
subset of RK defined by {λ1 ≥ . . . ≥ λK ≥ 0} can be rewritten as

p(Λ)dΛ =
|φi(λj)|∏i<j(λi − λj)

∏K
ℓ=1(K − ℓ)!(N − ℓ)!

dΛ, (10)
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with φi(λj) = λN−i
j e−λj . Therefore, proposition 1 can be applied, with

[Υ(s)]i,j =


∫ +∞

0 λN−i exp (−(s + 1)λ)dλ, i = 1, . . . , K, j = 1,∫ +∞
0 λ

N+K−i−j
i e−λdλ i = 1, . . . , K, j = 2, . . . , K.

Closed-form expressions of the entries of Υ(s), as per the statement of our Corollary, are
recovered resorting to ([21] 3.381.4).

Upon Laplace inversion of the MGF, the PDF of W is retrieved, namely

fW(t) = C
K

∑
j=1

κj(N − j)!tN+K−j−1

(N + K − j − 1)!
e−t

1F1(K − 1; N + K − j; t), t > 0, (11)

with 1F1(a; b; z) being the confluent hypergeometric function ([22] Ch.13), κj the co-factor
of the (1, j)-th entry of Υ(s), and C as per (8).

Analytical (11) versus simulated PDFs of W, for varying values of K and N, are
reported in Figure 1. As both K and N increase, with a fixed ratio (e.g., K/N = 0.25 in this
Figure), PDFs become more and more peaked, as expected.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

t

f W
(t
)

K = 2, N = 8
K = 4, N = 16
K = 6, N = 24
K = 8, N = 32

Figure 1. PDF of QF with uncorrelated Wishart kernel matrix for varying K and N.

It would be very useful in several applications to be able to extend the analytical results
holding for uncorrelated Wishart matrices to the correlated case. Unfortunately, even in the
simplest setting (full-rank Wishart matrix with single-sided Kronecker correlation [2]), a
correlated Wishart matrix is no longer unitarily invariant. However, although our propo-
sition cannot be rigorously applied to the general case of complex correlated Wishart
matrices, a very accurate approximation of the MGF of the QF when the kernel matrix is a
semi-correlated Wishart, in the sense of ([23] Thm I), can still be obtained. To compute such
an approximated expression, we capitalize on the fact that a semi-correlated Wishart matrix
still belongs to a PE. Therefore, we just plug its joint unordered eigenvalue expression
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into (6), and compute the corresponding average. The result, along with numerical results
confirming the tightness of our approximation, is reported in the following claim.

Claim 1. Assuming the kernel matrix to be complex central correlated Wishart, with N ≥ K
degrees of freedom, with correlation matrix Σ of size K, with distinct, ordered eigenvalues denoted
by σ1 > . . . > σK > 0’s, i.e., ([10] Equation (94)),

p(A) =
|A|N−Ke−tr(Σ−1A)

|Σ|N ∏K
ℓ=1(

√
π)K−1(N − ℓ)!

, (12)

a suitable approximation for the MGF of W can be provided by (2), with

[Υ(s)]i,j =


(N − K)!(

1
σi
+ s

)N−K+1 , i = 1, . . . , K, j = 1,

(N − j)!σN−j+1
i , i = 1, . . . , K, j = 2, . . . , K,

while

C =
(−1)K−1(K − 1)!

∏K
ℓ=1 σN−K+1

ℓ (N − ℓ)! ∏i<j
(
σi − σj

) . (13)

The corresponding approximated PDF can be expressed as

fW(t) = C
K

∑
i=1

κitN−1 exp
(
− t

σi

)
1F1

(
K − 1; N;

t
σi

)
, (14)

for t > 0 and with the normalizing constant in (13).
To enhance the tightness of our approximation, we plot in Figure 2 the simulated

PDF, corresponding to a QF with a correlated Wishart kernel matrix, with an exponential
correlation matrix, i.e., for r ∈ [0, 1], [Σ]i,j = r|i−j|. Such a model, of relevance in applications
within and beyond signal processing for wireless communications (see, e.g., [9] again),
features all distinct eigenvalues; therefore, it matches the framework of our claim. For the
fixed matrix size 4 × 16, PDF curves corresponding to various values of r are reported,
ranging from negligible to very strong correlations. The baseline, uncorrelated case is
reported as well. It is evident from the figure that, with an increasing value of the correlation
coefficient, the PDF becomes less peaked and more heavy-tailed, whereas for a negligible
to absent correlation, the curve peaks around higher values and shows an appreciably
fast decay. In a wireless communications scenario, this corresponds to a higher (in the
low-correlated case) versus lower (in the strongly correlated case) capability of exploiting
the diversity order provided by system parameters incarnating the size of the kernel matrix
K and, respectively, its degrees of freedom N.

Simulations are then reported, along with the analytical approximation for correspond-
ing system parameters, with reference to a different correlation model, where the entries
of Σ depend on the geometry of a radio link with multiple transmit and multiple receive
antenna elements [24]. We can therefore state that the correlation model is angle-dependent,
via two parameters, say θ and η, whose ranges of variation are detailed in [24]. For such
a scenario, the statistics of the QF, in terms of its PDF, are reported in Figure 3, where the
matching between analytical and simulated curves is, once again, extremely satisfactory.
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Figure 2. PDF of QF, analytical vs. simulated, for varying r, N = 16, and K = 4.
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Figure 3. PDF of QF with angle-dependent correlation; N = 16, K = 4.

A further case of a unitarily invariant matrix of relevance to wireless applications
is the product of independent complex Gaussian matrices with zero-mean iid entries,
corresponding to multiple scattering phenomena on radio channels [11]. The MGF for this
case is characterized below.

Corollary 2. Assuming the kernel matrix of the QF to correspond to the Gram matrix of the
product of L independent factors, each given by, say, Hℓ, a Nℓ × Nℓ−1 (N0 = K for notational
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uniformity) complex zero-mean Gaussian matrix, with iid entries, the MGF of the QF can be written
as per (2), with

[Υ(s)]i,j =

GL,1
1,L

(
1

νL + 1, . . . , ν1 + i

∣∣∣∣1
s

)
, i = 1, . . . , K, j = 1,

(ν1 + K + i − j − 1)! ∏L
t=2(νt + K − j)!, i = 1, . . . , K, j = 2, . . . , K,

and

C =
(−1)(K−1)(K/2−1)(K − 1)!

(M)K−1 ∏K
ℓ=1 ∏L

t=0(νt + ℓ− 1)!
.

Above, we have defined the set of excess degrees of freedom parameters, by the integers

νℓ = Nℓ − N0,

with ℓ = 1, . . . , L, while Gm,n
p.q

(
a1,...,ap
b1,...,bq

∣∣∣∣z) denotes the Meijer-G function ([21] 9.3).

Proof. The eigenvalue distribution of a product of independent matrices, distributed
according our assumptions, is jointly distributed as [11]

p(Λ) =

∣∣∣∣GL,0
0,L

(
−

νL, . . . , ν1 + i − 1

∣∣∣∣λj

)∣∣∣∣ ∏i<j(λi − λj)

∏K
ℓ=1 ∏L

t=0(νt + ℓ− 1)!
. (15)

Plugging (15) into (4) leads therefore to the sought expression for the MGF, with

[Υ(s)]i,j =


∫ +∞

0 e−sλGL,0
0,L

(
−

νL, . . . , ν1 + i − 1

∣∣∣∣λ)dλ, i = 1, . . . , K, j = 1,∫ +∞
0 λK−jGL,0

0,L

(
−

νL ,...,ν1+i−1

∣∣∣∣λ)dλ, i = 1, . . . , K, j = 2, . . . , K,

whose expression reverts to that reported in this corollary’s statement, by virtue of ([11]
(A4), (A6), (A10)).

Recovering the PDF from the MGF is, in this last case, a more complex task than for
previous cases. It is otherwise possible to resort to numerical Laplace inversion (via the
Talbot method [25]), leading to the data being displayed as in Figures 4–6.

In Figure 4, the PDF of the QF, obtained via Laplace inversion with Talbot method,
for three different values of L is reported, along with corresponding simulated data. In
particular, for L = 1, N0 = 4 and ν1 = 12 are exploited to generate the curves. In the
case of L = 2, instead, we use N0 = 4, ν1 = 4 and ν2 = 12. Finally, given L = 3, N0 = 4,
ν1 = 4, ν2 = 8 and ν3 = 12 are adopted. The higher the value of L, the higher the
generated dependence among the entries of the overall matrix product, and the lower, as a
consequence, the peak of the corresponding PDF.

A few remarks are in order: for L = 1, the model reverts to that of an uncorrelated
Wishart matrix, as per (7). Otherwise, for low values of L, a generalized hypergeometric
function can be exploited, rather than the Meijer one, according to

GL,1
1,L

(
1

νL + 1, . . . , ν1 + i

∣∣∣∣1
s

)
= (ν1 + i − 1)!

L

∏
ℓ=2

νℓ!LF0(νL + 1, . . . , ν1 + i| − s), (16)

whose convergence is discussed in detail, for example, in [26]. Equation (16) becomes, for
L = 1, (ν1+i−1)!

(1+s)ν1+i , while, for L = 2,

(ν1 + i − 1)!ν2!2F0(ν2 + 1, ν1 + i| − s),
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with 2F0(a, b|z) as a generalized hypergeometric function ([22] Ch.13.1).
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Analytical multiple scattering L = 2
Analytical multiple scattering L = 3
Simulated uncorrelated L=1
Simulated multiple scattering L=2
Simulated multiple scattering L=3

Figure 4. PDF of QF in the matrix product case, with varying values of L. N = 16, K = 4, S = 8,
Q = 12.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

f W
(t
)

N = K = S = 4
N = 16, K = S = 4
N = S = 16, K = 4
N = 32, K = 8, S = 4

Figure 5. PDF of QF for L = 2, for varying values of ν1 and ν2.

The newly obtained MGF is inverted with Talbot method for the case of three matrix
factors (L = 3) as well, and the corresponding results are contrasted with simulated data,
and reported, for varying values of the set of excess degrees of freedom, in Figure 6.
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Figure 6. PDF of QF for L = 3, for varying values of ν1, ν2, and ν3.

Among the results of these three discussed particular cases, the one in Corollary 1 can
be exploited in advanced wireless communication settings for 6G and beyond ([27–30] and
references therein). The illustration thereof is the subject of the next section.

3. Application to Spectrum Sensing
A possible application framework of our newly derived results, for the uncorrelated

Wishart case, is within CRN [31–33]. Specifically, the statistics of a QF can help in detecting
the presence of a primary source of signal, upon the absence of which the channel is
considered clear to for secondary user access. Let us focus on a setting, where a receiver
equipped with K antennas collects N time samples from each antenna. We denote by
y(n) = [y1(n), . . . , yK(n)]

T the K × 1 received vector at time n ∈ {1, . . . , N}, with generic
entry yk(n) denoting the discrete baseband complex sample at the k-th receive antenna. We
tackle the sensing problem as a binary hypothesis test. Under H0, namely in the absence of
a primary signal, yk(n) is a vector of complex Gaussian noise samples with zero mean and
variance σ2

v
y(n)|H0 = v(n) (17)

where v(n) ∼ NC(0K×1, σ2
v IK×K). Under H1, instead, both primary signal and noise are

present; therefore
y(n)|H1 = x(n) + v(n) = hs(n) + v(n) (18)

where s(n) is the transmitted signal sample, modeled without loss of generality as Gaussian
distributed with zero mean and variance σ2

s , while h is the K × 1 unknown complex channel
vector. The channel is assumed to be memoryless, and constant during the detection time.
Under H1, we define the Signal-to-Noise Ratio (SNR) at the receiver as

ρ ≜
E ∥x(n)∥2

E ∥v(n)∥2 =
σ2

s
σ2

v

∥h∥2

K
. (19)
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The detector collects the received samples in the K × N matrix

Y ≜ [y(1) . . . y(N)] = hs + V (20)

where s ≜ [s(1) . . . s(N)] is a 1 × N signal vector and V ≜ [v(1) . . . v(N)] is a K × N noise
matrix. The sample covariance matrix R of the received samples is therefore given by

R ≜
1
N

YYH . (21)

Hereafter, we shall reference the spectral decomposition of R = UΛUH , with U
denoting the random unitary matrix of the eigenvectors, and Λ the diagonal matrix of the
random eigenvalues, which are without loss of generality, denoted in non-increasing order
as λ1 ≥ . . . ≥ λK ≥ 0. It is apparent from our assumptions that the matrix R is, in the null
hypothesis, complex central uncorrelated Wishart-distributed, according to (7).

The test statistic, employed by the detector to discriminate between the null hypothesis
H0 and the presence of primary signal H1, is denoted by T; in order to take a decision, the
detector compares it against a pre-defined threshold t: if T > t, it selects H1; otherwise, it
selects H0. As a consequence, the probability of false alarm Pf a is defined as

Pf a = Pr(T > t|H0) (22)

and the probability of detection Pd as

Pd = Pr(T > t|H1). (23)

The sensing scheme we focus on was introduced in [33]; such a method makes use
of the sample eigenvector corresponding to the largest eigenvalue (i.e., λ1) of (21) under
H1, corresponding to the received sample matrix in (20), and it is therefore referred to as
EigenVEctor-aided test (EVE), with the statistic given by

TEVE ≜
λ1 + MuH

1 Ru1

σ2
v (M + 1)

, (24)

where M is the number of auxiliary slots exploited to estimate R under H1, namely to
obtain the sample eigenvector estimate u1, corresponding to λ1.

In absence of auxiliary data, TEVE reduces to the widely adopted Roy’s Largest Root
Test (RLRT) [34], with the statistic

TRLRT ≜
λ1

σ2
v

; (25)

for this reason, EVE can be seen as a heuristic improvement of the RLRT.
On the other hand, as M grows, the effect of the secondary data prevails upon the

presence of the largest root λ1 in the enumerator of (24). With this in mind, we postulate
the availability of a sufficient number of secondary data to approximate TEVE with a test
where only the QF at the enumerator is considered for SS purposes; the resulting test, based
on the statistics of

uH
1 Ru1,

will be hereafter referred to asthe Quadratic Form Test (QFT), with the statistic given by

TQFT ≜
uH

1 Ru1

σ2
v

. (26)
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It is immediately noticeable that the computation of the Pf a (22) for the test above can be
carried out by direct application of our Corollary 1. Indeed, (26) is nothing but a properly
scaled (by the noise variance) QF, and, upon integration of (11) against a pre-defined
threshold, the sought performance index is obtained.

Our interest in QF to approximate EVE arises from the possibility of getting a closed-
form statistical characterization of SS performance, in an easier way than for EVE itself.
On top of that, we recall that, when secondary data are made available, a performance
gap in favor of TEVE over many classically adopted SS tests has been numerically observed
(see [33,35]).

We enhance the performance gain of EVE (and, correspondingly, of QFT) in
Figures 7 and 8, where the corresponding Receiver Operating Characteristic (ROC) curve
and the performance curve, i.e., Pd vs. SNR, are shown, respectively, for the goodness of
such an approximation. The ROC and performance curve are shown also for the General-
ized Likelihood-Ratio Test (GLRT) and the Neyman–Pearson (NP) reference test. For the
sake of clarity, we recall that the GLRT test statistic is given by [36]

TGLRT =
λ1

1
K tr(R)

, (27)

while the Neyman–Pearson test, which requires the exact knowledge of both channel vector
h and noise variance σ2

v , under the assumption of independent Gaussian samples, is given
by [36]

TNP =

(
πσ2

v
)NK exp

(
−Ntr(RΓ−1)

)
(πK|Γ|)N exp

(
−Ntr(R)

σ2
v

) (28)

where
Γ = σ2

v IK×K + σ2
s hhH . (29)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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P d
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Figure 7. ROC curve; N = 64, K = 8, M = 4 for EVE and QFT; SNR = −5 dB.
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Figure 8. Performance curve; Pd vs. SNR; N = 64, K = 8, M = 4 for EVE and QFT; Pf a = 0.01.

4. Conclusions
We have provided new closed-form statistics for QF in random kernel matrices from

polynomial ensembles. Albeit rigorously valid for unitarily invariant matrices, our result
led also to a tight approximation for the MGF of a QF with a non-unitarily invariant matrix
kernel. An application of our result in CRN is also reported. Indeed, it is shown that
the performance of an effective SS scheme can be suitably approximated by a statistical
test formulated in terms of a QF with an uncorrelated Wishart kernel. Further investiga-
tions on matrices from polynomial ensembles, beyond unitarily invariance, are subject to
ongoing work.
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Abbreviations
The following abbreviations are used in this manuscript:

EVE EigenVEctor-aided test
GLRT Generalized Likelihood-Ratio Test
MDPI Multidisciplinary Digital Publishing Institute
MGF Moment Generating Function
NP Neyman–Pearson
PDF Probability Density Function
PE Polynomial Ensemble
QF Quadratic Form
QFT Quadratic Form Test
RLRT Roy’s Largest Root Test
ROC Receiver Operating Characteristic
SNR Signal-to-Noise Ratio
SS Spectrum Sensing
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