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A B S T R A C T

Digital pathology relies heavily on large, well-annotated datasets for training computational methods, but 
generating such datasets remains challenging due to the expertise required and inter-operator variability. We 
present SENSE (SEmantic Nuclear Synthesis Emulator), a novel framework for synthesizing realistic histological 
images with precise control over cellular distributions. Our approach introduces three key innovations: (1) A 
statistical modeling system that captures class-specific nuclear characteristics from expert annotations, enabling 
generation of diverse yet biologically plausible semantic content; (2) A hybrid ViT-Pix2Pix GAN architecture that 
effectively translates semantic maps into high-fidelity histological images; and (3) A modular design allowing 
independent control of cellular properties including type, count, and spatial distribution. Evaluation on the 
MoNuSAC dataset demonstrates that SENSE generates images matching the quality of real samples (MANIQA: 
0.52 ± 0.03 vs 0.52 ± 0.04) while maintaining expert-verified biological plausibility. In segmentation tasks, 
augmenting training data with SENSE-generated images improved overall performance (DSC from 79.71 to 
84.86) and dramatically enhanced detection of rare cell types, with neutrophil segmentation accuracy increasing 
from 40.18 to 78.71 DSC. This framework enables targeted dataset enhancement for computational pathology 
applications while offering new possibilities for educational and training scenarios requiring controlled tissue 
presentations.

1. Introduction

Digital pathology, which makes it possible to collect, organize, and 
evaluate pathology data in a digital setting, has become a game- 
changing technology in the healthcare industry in recent years. This 
change has created new opportunities to increase the efficiency of pa
thology workflows, decrease turnaround times, and improve diagnostic 
accuracy [1]. The subjective nature of manual evaluations, which can 
result in variability between and within observers [2], as well as the 
increased workload on pathologists [3], are some of the major obstacles 
this sector must overcome.

To address these challenges, artificial intelligence (AI) and deep 
learning (DL) algorithms have shown great promise in automating 
various image analysis tasks in digital pathology [4,5]. These algorithms 
may reduce the subjectivity by learning complex patterns from raw 
image data and generating predictions based on learned features [6]. 
However, the success of AI in digital pathology heavily relies on the 
availability of large, well-annotated datasets. Obtaining such datasets 

represents a major challenge due to the time-consuming and expensive 
nature of manual annotation by domain experts.

1.1. Related works

Several challenges in digital pathology have driven increased inter
est in generative models, particularly Generative Adversarial Networks 
(GANs) [7] and more recently diffusion models. These challenges 
include data scarcity, the need to improve diagnostic accuracy, the 
reduction of intra- and inter-operator variability, and the simulation of 
rare conditions.

GANs have been applied in a variety of contexts, including stain 
normalization [8], stain and domain adaptation [9,10], segmentation 
using supervised models, synthesis enabling weakly supervised and 
unsupervised learning [11], data generation [12] and augmentation 
[13] to enhance classification tasks [14]. Xue et al. [15] modified 
DCGAN architecture to create cervical cancer samples based on their 
class to improve the accuracy of their classification models. However, 
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they did not provide objective metrics assessing the quality of the 
generated data. Krause et al. [16] introduced an innovative DCGAN 
approach specifically designed to synthesize histopathological images of 
colorectal cancer. Karimi et al. [17] proposed an application of cGAN 
and DCGAN to generate prostate samples based on the Gleason score. 
Liu et al. [18] demonstrated that training a dedicated ProGAN model for 
each class of brain tumor histopathological images and incorporating 
synthetic data into the dataset resulted in a 5 % increase in accuracy. 
Cheng et al. [12] implemented Pix2Pix architecture for simulation and 
segmentation purposes. Semantic masks are generated from random 
points, which are then translated into synthetic tissue samples, leading 
to improvements in segmentation performance. Another approach, 
presented by Swiderska-Chadaj et al. [13], proposed the creation of 
histological image patches through cropping and combining different 
patches. This approach offers an alternative way to generate synthetic 
data in the context of histological images and has shown promising re
sults regarding the quality of the generated patches. Li et al. [19] pro
posed a multi-scale conditional GAN for high-resolution, large-scale 
histopathology image generation and segmentation, with each level 
dedicated to generating and segmenting images at a distinct scale. Golfe 
et al. [20] employed a conditional GAN to synthesize prostate histo
pathological tissue patches by specifying the desired Gleason score in 
input. The reality assessment of synthetic samples was performed by 
external validation of a group of expert pathologists. Quiros et al. [21] 
achieved significant results in terms of the FID metric by synthesizing 
colorectal and breast cancer samples using a novel conditional archi
tecture based on StyleGAN [22] and BigGAN [23]. Jehanzaib et al. [24] 
proposed a particular and novel pipeline for the segmentation and 
synthesis of histological images. While FastGAN generates semantic 
masks, PathopixGAN uses synthetic masks to generate realistic histo
logical images. Synthetic data is used to solve the data imbalance 
problem commonly found in histopathological datasets, improving the 
segmentation performance of the PathoSeg network.

Modern transformer architectures have also been used for histolog
ical image synthesis and augmentation without convolutions in GANs 
[25]. In addition, diffusion models have shown remarkable performance 
in generating high-quality, realistic data and can address specific chal
lenges in the pathology domain. Jeong et al. [26] developed a 
score-based diffusion model for stain normalization. Xu et al. [27] 
demonstrated the effectiveness, for high-quality histopathology image 
synthesis, of a hybrid model, ViT-DAE, combining transformers and 
diffusion models, on three public datasets. Linmans et al. [28] proposed 
the use of diffusion models in the field of unsupervised anomaly 
detection, particularly for out-of-distribution detection in digital pa
thology, but there is still a significant performance gap with fully su
pervised learning. Osorio et al. [29] demonstrated that incorporating 
image-derived features into the textual prompt, rather than relying 
solely on healthy and cancerous labels, results in a significant and 
quantitative improvement in the quality of images created with diffu
sion models.

1.2. Contribution of our work

While current approaches to histology image simulation have shown 
promise, they often lack fine-grained control over the characteristics of 
the generated images. Many existing methods either provide no control 
over the semantic content or rely on fixed, predefined semantic inputs 
that are often limited in complexity (e.g., single-class or few-class rep
resentations) [16,17]. This lack of control limits the utility of these 
simulations for targeted training of AI models or for generating diverse, 
clinically relevant scenarios. Moreover, current simulation approaches 
struggle to capture the complexity and variability of histological images, 
often failing to accurately represent the diverse cellular structures and 
tissue organizations critical for realistic digital pathology simulations 
[8].

To address these limitations, there is a need for more sophisticated 

methods of semantic content generation in histology image simulation. 
Ideally, such methods would allow for precise control over multiple 
aspects of the generated images, including cell types, object counts, and 
background characteristics. This level of control, combined with the 
ability to generate realistic and diverse semantic content, would 
significantly enhance the utility of simulated images for training robust 
AI models and for other applications in computational pathology [24].

In this paper, we present a new framework for controllable semantic 
content generation in histology image simulation. The main contribu
tions are listed as follows: 

- We introduce SENSE (SEmantic Nuclear Synthesis Emulator), a novel 
method for simulating histological images that produces config
urable semantic information. SENSE enables a high control over 
various image characteristics (cell type, numbers, etc.) while main
taining high levels of realism and diversity. This semantic input is 
then used by a generative model to create synthetic histological 
images.

- We develop and validate our method on a multi-class annotated 
dataset comprising diverse cell types with varying shapes and spatial 
densities. To recreate actual semantic content, SENSE learns the size, 
distribution, and properties of every semantic class in the dataset. 
This approach allows for the generation of complex, multi-cellular 
content that closely mimics real histological samples.

- We evaluate the performance of our approach using a three-fold 
validation process. First, we apply quantitative metrics to the syn
thethic images to measure their quality. Second, an expert patholo
gist conduct visual quality assessments of the generated images to 
ensure clinical relevance and realism. Finally, we assess the impact of 
these synthetic images during the training process of AI frameworks 
in computational pathology.

2. Materials and methods

Fig. 1 illustrates the overall framework of SENSE. The framework 
operates in two phases. During the training phase (Fig. 1a), the process 
follows a direct pipeline: starting from the original dataset with its se
mantic content, our method produces synthetic images using a GAN 
model. This phase enables the model to learn the transformation from 
semantic representations to realistic histological images. During the 
inference phase (Fig. 1b), new semantic content is first generated based 
on statistical features extracted from the dataset (such as number of 
objects per image and area distributions), which then serves as input for 
the trained generative model to produce new synthetic histological 
images.

2.1. Dataset

This study utilized retrospective data from the publicly available 
Multi-organ Nuclei Segmentation and Classification (MoNuSAC) chal
lenge dataset [30]. The dataset consists of tiles of variable height and 
width extracted from H&E-stained whole slide images (WSIs) acquired 
at 40x magnification from four organs (breast, kidney, lung, and pros
tate), with expert annotations for four cell types: epithelial cells, lym
phocytes, macrophages, and neutrophils. A total of 209 tiles from 46 
patients were used for the Development Set (split into Training and 
Validation sets), while 101 tiles from 25 patients formed the Test Set.

Semantic ground truths are represented as 8-bit RGB images with 
distinct colors for each cell type: Epithelial [255, 0, 0], Lymphocyte 
[255, 255, 0], Macrophage [0, 255, 0], and Neutrophil [0, 0, 255]. 
Nuclear edges were included as an additional class to account for 
cellular overlap. White zones, corresponding to unstained tissue areas, 
are identified using LAB color space thresholding and added to provide 
additional semantic context.

All tiles and their corresponding semantic masks are cropped into 
256 × 256 pixel patches with 50 % overlap. Table 1 summarizes the 
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distribution of patches and cell instances across training, validation, and 
test set.

2.2. Generative model

Given the paired nature of the dataset, we employ a hybrid ViT- 
Pix2Pix GAN as our generative model. Pix2Pix GAN [31] is designed 
for image-to-image translation tasks, consisting of a generator that 
converts semantic content into realistic histologic images and a 
discriminator that distinguishes between real and generated images. 
Through competitive training, where the generator tries to deceive the 
discriminator, the model learns to create high-quality image 
transformations.

Our custom architecture consists of a Pix2Pix architecture with a 
particular version of ViT as generator, called Restormer [32]. This 
network can generate high-resolution images by reducing the compu
tational complexity of traditional ViT. The Restormer consists of four 
Transformer layers for both encoding and decoding, connected with skip 
connections. Each layer is composed by multiple blocks MDTA (Mul
ti-Dconv Head Transposed Attention) and GDFN (Gated Dconv 
Feed-Forward Network) block. The discriminator implements a Patch 
Classifier, generating probability maps to assess the authenticity of the 
generated images.

2.3. Extraction of class-specific characteristics and semantic content 
generation

Our simulation algorithm generates synthetic semantic content 
containing multiple classes of cell nuclei with statistically controlled 
distributions of count and area. The process consists of three main 
stages: feature extraction, nuclei placement, and background 

generation.
First, we extract class-specific features from the MoNuSAC, which 

contains 310 tiles from 71 patients. For each nucleus in each class, we 
record: patient identifier, tile information (identifier and size), nucleus 
coordinates within the tile, and pixel area occupied. Each nucleus re
ceives a unique identification code for subsequent positioning. At the tile 
level, we calculate the total number of nuclei and area occupied by each 
cell class. To standardize these measurements across different tile sizes, 
we normalize all features to a 300 × 300 pixel patch. For tiles with 
similar cell combinations, we compute comprehensive statistics (mean, 
standard deviation, percentiles [5th, 25th, 50th, 75th, 95th], minimum, 
and maximum) of nuclei counts and areas.

For synthetic content generation, we iterate through all cell combi
nations present in the MoNuSAC dataset. For each class within a com
bination, the number of nuclei is randomly determined based on the 
extracted statistical distributions. Each nucleus is assigned an identifi
cation code and its original coordinates are selected from the source tile. 
These coordinates are resized to fit inside a patch of 300 by 300 pixels; 
any coordinates that are larger than the patch size are moved to the 
patch boundary. Realistic spatial connections are maintained while the 
nuclei are positioned at random over the patch. During placement, the 
algorithm checks for excessive overlap with previously placed nuclei. If 
a suitable position cannot be found within a defined time interval, a new 
nucleus is selected. The placement process continues until either all 
nuclei are successfully positioned or the total area of placed nuclei 
reaches the statistically derived maximum threshold. Finally, we 
generate background white areas by applying random noise to a black 
mask, followed by Gaussian blur and thresholding operations. These 
areas undergo morphological processing to achieve realistic shapes and 
distributions. The final semantic content is created by combining the 
placed nuclei and processed white areas, followed by central cropping to 

Fig. 1. Overview of the SENSE framework. (a) Training phase: simulation of synthetic images from real semantic content using a GAN model. (b) Inference: gen
eration of new semantic content based on dataset features, followed by synthetic image creation using the trained GAN model.

Table 1 
Dataset composition.

Subset # Patches Number of instances

Epithelial Lymphocyte Macrophage Neutrophil Total

Train 12,246 13,087 14,105 512 537 28,241
Val 1360 1452 1549 75 94 3170
Test 5601 7213 7806 307 172 15,498
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256 × 256 pixels to ensure realistic edge characteristics. Fig. 2 shows the 
entire simulation process of a semantic content.

2.4. Evaluation metrics

Our evaluation strategy encompasses three key aspects to assess the 
quality and utility of our generation method. Quantitatively, we employ 
both reference and no-reference metrics. As a reference metric, we use 
FID (Fréchet Inception Distance) [33] to measure the similarity between 
real and generated image distributions. We computed three no-reference 
metrics: NIQE (Naturalness Image Quality Evaluator), MANIQA (Mul
ti-dimension Attention Network for No-Reference) [34], and PAQ2PIQ 
(From Patches to Pictures) [35]. These metrics measure the similarity 
between real and generated image distributions and assess perceptual 
similarity based on learned features.

For clinical validation, an expert pathologist performs a visual 
assessment of image quality and realism using a two-score system on a 
scale of 1 to 3. Finally, to demonstrate practical utility in computational 
pathology, we evaluate our method’s impact on nuclear segmentation 
performance with and without our augmented data.

3. Results

3.1. Image generation and quantitative metrics

We tracked the FID score during the training phase to identify the 
best model for image generation. As seen in Fig. 3, while both validation 
and test FID curves showed similar trends, there was a notable difference 
in their absolute values. This gap is relatively common in generative 
models and could potentially be reduced with larger training datasets. 
The model selected at epoch 42 showed the lowest FID value for the 
validation set. Despite this difference between validation and test FID 
scores, the overall convergence pattern indicates that our generative 
model maintains good generalization capabilities, which is further 
supported by the pathologist evaluation results.

The quality of the images produced by our framework is shown in 
Fig. 4. This figure demonstrates the ability of the first part of the SENSE 
framework to capture the diversity and heterogeneity of tissue charac
teristics of real images. The generation model is capable of recreating, by 
taking real input, synthetic images with the same semantic content as 
real images. Using class-specific annotations, the model effectively 
captures the realism and heterogeneity of nuclear textures. The syn
thesis of realistic nuclear morphologies is possible by the class-aware 
generation used by SENSE. Notably, in cases where certain semantic 
features are not annotated, our method maintains consistency by not 
generating these undefined structures.

The quantitative evaluation using no-reference metrics (Table 2) 
supports the visual quality of our generated images. Images generated 
using SENSE achieve comparable or better scores across all metrics 
compared to both real images and those generated from real semantic 

content. Values are reported as mean ± standard deviation. Particularly 
noteworthy is the consistency in MANIQA scores (0.52 ± 0.03) match
ing real images (0.52 ± 0.04), and the improved PAQ2PIQ score (70.22 
± 1.76) compared to real images (69.39 ± 2.35). The lower standard 
deviations in our generated images suggest more consistent quality 
across the dataset.

A key feature of our simulation framework is its ability to generate 
images with precise control over semantic content while maintaining 
diversity. As demonstrated in Fig. 5a, even with identical statistical 
parameters, the framework generates distinct semantic contents, 
ensuring variety in the synthetic dataset. Fig. 5b illustrates the frame
work’s capability to control specific features, such as the percentage and 
distribution of lipid or empty (white) areas, while maintaining the same 
cell population. This controllable generation process enables explicit 
manipulation of various histological structures, including cell nuclei, 
lipids, and white spaces, in terms of their number, size, shape, and 
spatial distribution.

3.2. Pathologist evaluation

For clinical validation, an expert pathologist conducts a visual 
assessment comparing three types of images (50 images of each type): 
real images from the test set, images generated from real semantic 
content, and images generated using our synthetic semantic content. 
Each image is assessed with two separate scores, each on a scale of 1 to 3. 
The first score evaluates the overall image realism, while the second 
assesses the consistency and realism of cellular structures’ distribution. 
On this scale, scores of 1, 2 and 3 correspond to not very realistic, 
moderately realistic, and realistic image, respectively.

As shown in Fig. 6a, the realism assessment demonstrates that 

Fig. 2. Overview of the semantic content generation method. Once the class cell combination to be used has been determined, its extracted features are used to 
define the instances to be placed within the semantic content.

Fig. 3. FID scores for validation and test sets across training epochs.
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images generated using real semantic content (Synthetic Test Images) 
achieved scores comparable to real images (Real Test Images), with 
average scores of 2.26 and 1.92 respectively. Images generated using our 
synthetic semantic content (SENSE-generated Images) also maintained 
convincing realism with a average score of 2.06. The evaluation of se
mantic content consistency (Fig. 6b) revealed interesting patterns in 
how our framework reproduces cellular distributions. Images produced 
using our SENSE framework retained good biological plausibility with a 
shift toward moderate and high scores (21 images scored as 2 and 24 as 
3), whereas images generated with real semantic content exhibited a 
strong tendency toward the highest score (39 images scored as 3). 
Notably, only five images were rated as not realistic, suggesting that our 
framework reliably generates cellular configurations that are biologi
cally plausible.

3.3. Impact in computational pathology

To evaluate the practical utility of our framework, we assessed its 

impact on nuclear segmentation performance. We conducted experi
ments comparing three training scenarios: 

1. Baseline: using only real images from the original training set and 
validation set.

2. 50 % augmentation: original training set enhanced with synthetic 
images equal to 50 % of the original size

3. 100 % augmentation: original training set doubled in size with 
synthetic image.

For the synthetic data generation, we prioritized underrepresented 
classes (macrophages and neutrophils) to address dataset imbalance 
(Table 1). Performance was evaluated using both overall Dice Similarity 
Coefficient (DSC) and class-specific DSC metrics (Table 3). The results 
demonstrate that augmenting the training data with synthetic images 
improves overall segmentation performance. The 50 % augmentation 
scenario showed a notable improvement in overall DSC from 79.71 to 
81.43 compared to the baseline. More significantly, class-specific met
rics revealed substantial improvements for underrepresented classes, 
with macrophage DSC increasing from 81.63 to 84.43 and neutrophil 
DSC showing a dramatic improvement from 40.18 to 66.89. Further 
augmentation to 100 % yielded additional gains, raising the overall DSC 
to 84.86 and further improving performance on rare cell types, with 
neutrophil DSC reaching 78.71.

4. Discussion

Generative modeling for image synthesis has become a crucial tool in 
digital pathology, supporting applications from data augmentation to 
clinical decision support [14,36,37]. However, existing approaches 
often lack fine-grained control over semantic content, limiting their 
utility in generating diverse and targeted histological images. Current 
models struggle to precisely dictate the number, shape, and 

Fig. 4. Examples of synthetic images generated on the test set of MoNuSAC. Using the class labels of individual cells as input, the first part of the SENSE framework 
captures the diversity and heterogeneity of the nuclear textures.

Table 2 
Quantitative evaluation using no-reference image quality metrics. Comparison 
between (i) real images from the MoNuSAC test set, (ii) images generated from 
real semantic content (Fake images), and (iii) images generated using our SENSE 
framework with synthetic semantic content (equal number of patches for all 
sets). All values are reported as mean ± standard deviation.

Subset NIQE MANIQA PAQ2PIQ

Test Set MoNuSAC 
Real images (n = 5601)

8,39 ±
2,51

0,52 ±
0,04

69,39 ±
2,35

Test set MoNuSAC 
Fake images (n = 5601)

9,65 ±
2,52

0,50 ±
0,04

69,13 ±
2,16

Image generated using SENSE (n =
5601)

8,94 ±
1,62

0,52 ±
0,03

70,22 ±
1,76

A. Shahini et al.                                                                                                                                                                                                                                 



Computer Methods and Programs in Biomedicine 261 (2025) 108621

6

configuration of cellular structures, resulting in realistic-looking images 
but with uncontrolled tissue components [16]. While recent advances in 
generative techniques, such as diffusion models, have improved image 
quality and realism, the fundamental challenge of precise control over 
histological features and structures remains a key limitation [38].

Our work addresses these limitations through the SENSE framework, 
which enables explicit manipulation of histological structures and pre
cise control over cellular distributions (Fig. 4). Our two-stage framework 
divides the generation process into two separate steps: first, statistical 
techniques are used to create semantic content, and then GANs are used 
to turn this content into realistic images. The GAN’s work is greatly 
simplified by this division since it only needs to focus on translating the 
semantic layouts into realistic appearances rather than managing both 
structure and appearance at the same time. The quantitative evaluation 
demonstrates the effectiveness of our approach, with comparable 
MANIQA scores (0.52 ± 0.03) to real images and improved PAQ2PIQ 
scores (70.22 ± 1.76), indicating high perceptual quality. The visual 
assessment by expert pathologists further validates our method’s 

capability to generate realistic images, with most synthetic samples 
receiving moderate to high scores for both overall realism and cellular 
distribution plausibility (Fig. 6). As shown in Fig. 6a, images from the 
real test set are more frequently classified as unrealistic than the 
generated synthetic images. This counterintuitive finding can be 
explained by several factors. Histological patches, derived from larger 
slides at a given magnification, often contain artifacts arising from 
sample preparation and digitalization protocols. Our simulation tool, 
which uses a network designed for image restoration, tends to minimize 
these artefacts while preserving the semantic content of the created 
image. Consequently, it is possible for an artefact to be present in a real 
image, but not in the corresponding simulated image. It also important 
to note that the three different sets (real, synthetic, and SENSE- 
generated) shown to the pathologist contained different samples.

Notably, our framework is able to address dataset imbalances in 
computational pathology tasks. According to the segmentation experi
ments, performance across cell types is significantly enhanced when our 
synthetic images are added to training data, with high gains for 

Fig. 5. Control over the semantic content of the SENSE simulation framework. (a) Different semantic contents generated with the same simulation parameters. (b) 
Generation of images with the same cell population but a greater percentage of white areas.
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underrepresented classes. The most notable improvement was the in
crease in macrophage detection from 81.63 to 85.46 DSC and the 
improvement in neutrophil segmentation from 40.18 to 78.71 DSC with 
full augmentation.

Our framework’s modular design provides a number of significant 
benefits. In the first place, it allows for fine-grained control over se
mantic content, allowing for highly accurate manipulation of the num
ber, size, and location of cellular structures (Fig. 5). Importantly, as 
demonstrated in Fig. 4, SENSE exhibits versatility in handling different 
types of cellular annotations - from pure nuclear structures to complete 
cell boundaries including cytoplasm, as seen in the case of macrophages. 
This flexibility allows the framework to adapt to various cellular features 
of interest, as long as they are consistently annotated in the training 
data. Second, as demonstrated by the pathologist’s evaluation scores, 
the statistical modeling of class-specific features guarantees that pro
duced images retain biological plausibility while displaying natural 
variation. It is important to note that the quality of generated images is 
dependent on staining intensity variations, with our method performing 

optimally for standard H&E staining intensities typical of well-prepared 
slides. Extreme variations in staining in the training set, particularly 
very weak staining or oversaturated regions, can impact the quality of 
the synthesized images.

SENSE also exhibits promise in educational settings in addition to 
computational applications. Pathology training programs could be 
improved by the ability to create customized content with particular 
cellular distributions and arrangements, giving students access to a 
greater variety of cases than are usually offered in conventional 
educational settings.

However, several limitations should be acknowledged. Currently, 
our method focuses primarily on nuclear structures and operates at the 
patch level (256 × 256 pixels) rather than full-resolution microscopy 
tiles. This means that SENSE cannot yet model the full complexity of 
tissue architecture across broader spatial scales. Extending this 
approach to larger tiles (e.g., 3000 × 3000 pixels) and ultimately to WSIs 
would provide a more comprehensive view of tissue architecture and 
cellular interactions across different regions. Additionally, our current 

Fig. 6. Evaluation of the SENSE framework. (a) Distribution of image realism scores from expert pathologist evaluation across 50 images per category: real test set 
images, synthetic images from real semantic content, and synthetic images from SENSE-generated semantic content. (b) Distribution of semantic content scores 
evaluating the biological plausibility of cellular distributions and structural arrangements.

Table 3 
Nuclear segmentation performance comparison across different training scenarios. Overall DSC measures general segmentation accuracy, while class-specific DSC 
values indicate performance for each cell type.

Subset Overall segmentation Class-specific metrics

Epithelial Lymphocyte Macrophage Neutrophil

Original images 79.71 92.74 86.83 81.63 40.18
Original images + 50 % synthetic images 81.43 89.85 83.40 84.43 66.89
Original images + 100 % synthetic images 84.86 91.47 86.41 85.47 78.71
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method primarily controls object overlap, number, and shape, without 
explicitly modeling the spatial relationships between cells. The cellular 
microenvironment and spatial organization of different cell types are 
crucial aspects of histological evaluation that could provide additional 
biological insights. Further exploration is needed to incorporate more 
sophisticated spatial distribution characteristics of individual objects 
within the generated images. Furthermore, our current implementation 
is limited to the cell types present in the MoNuSAC dataset, and 
extending it to other tissue types would require additional expert an
notations. These improvements would enhance the realism and diversity 
of the synthesized histological samples.

An important extension of our work would involve validating our 
approach on additional histopathology datasets. While we focused on 
the MoNuSAC dataset due to its comprehensive multi-class cell anno
tations, future studies should explore the application of SENSE to other 
datasets such as CryoNuSeg [39] and CoNiC [40]. This would require 
collaboration with expert pathologists to enrich existing binary anno
tations (nuclei vs. background) with detailed cell type classifications. 
Such extension would not only validate the generalizability of our 
framework but also contribute to the creation of new annotated datasets 
for the computational pathology community.

Different future directions can be explored for our work. In the 
future, our goal is to expand our methodology to more intricate struc
tures like glands and tubules, as well as to tissue-level classification tasks 
(e.g., grading tumoral versus healthy tissue). Beyond pathology, our 
semantic-driven generation concept shows potential for broader medical 
imaging applications. Recent research has shown that immunohisto
chemistry and multiplexed imaging methods can improve ground truth 
annotations in histological images [41]. Such methods could be com
bined with our framework in a synergistic way, for example, by training 
more accurate semantic controls for cell type-specific features using 
annotations derived from IHC. Similar to how MAPS [41] and Nimbus 
[42] allow automated classification of cellular expression in multiplexed 
imaging data, our approach could be modified for fluorescence micro
scopy applications to simulate multicolor immunofluorescence images 
with controlled nuclear arrangements and marker expression patterns. 
Examples include simulating time-lapse fluorescence microscopy se
quences with specific cell behaviors or creating synthetic training data 
for FISH image analysis, where exact control over nuclear organization 
and signal patterns is essential. Additionally, our approach may help 
close the gap between various imaging modalities by allowing the cre
ation of corresponding views of the same tissue in H&E, IHC, and IF, as 
shown by Zurek et al. [43]. This would provide useful multi-modal 
training data for computational pathology. These extensions would 
further demonstrate the versatility of our semantic-driven approach in 
addressing various healthcare imaging challenges while contributing to 
the growing ecosystem of tools for automated histological analysis.

5. Conclusion

This work introduces SENSE, a novel framework that enables 
controlled synthesis of histological images through precise semantic 
content generation. Our method offers fine-grained control over cellular 
distributions, thereby addressing important limitations in existing his
tology image synthesis. While statistical modeling guarantees that the 
generated images maintain realistic tissue organization patterns, the 
modular design permits flexible manipulation of nuclear characteristics 
and spatial arrangements. While current implementation focuses on 
nuclear-level features, the SENSE framework provides a foundation for 
extension to more complex tissue structures and broader medical im
aging applications.
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CryoNuSeg: a dataset for nuclei instance segmentation of cryosectioned H&E- 
stained histological images, Comput. Biol. Med. 132 (2021) 104349, https://doi. 
org/10.1016/j.compbiomed.2021.104349.

[40] S. Graham, M. Jahanifar, Q.D. Vu, G. Hadjigeorghiou, T. Leech, D. Snead, S.E. 
A. Raza, F. Minhas, N. Rajpoot, CoNIC: colon nuclei identification and counting 
challenge 2022. https://doi.org/10.48550/arXiv.2111.14485.

[41] M. Shaban, Y. Bai, H. Qiu, S. Mao, J. Yeung, Y.Y. Yeo, V. Shanmugam, H. Chen, 
B. Zhu, J.L. Weirather, G.P. Nolan, M.A. Shipp, S.J. Rodig, S. Jiang, F. Mahmood, 
MAPS: pathologist-level cell type annotation from tissue images through machine 
learning, Nat. Commun. 15 (2024) 28, https://doi.org/10.1038/s41467-023- 
44188-w.

[42] J.L Rumberger, N.F. Greenwald, J.S Ranek, P. Boonrat, C. Walker, J Franzen, S. 
R. Varra, A Kong, C. Sowers, C.C. Liu, I Averbukh, H Piyadasa, R. Vanguri, 
I Nederlof, X.J Wang, D. Van Valen, M Kok, T.J Hollmann, D. Kainmueller, 
M Angelo, Automated classification of cellular expression in multiplexed imaging 
data with Nimbus, bioRxiv [Preprint] 3 (2024), https://doi.org/10.1101/ 
2024.06.02.597062.

[43] N. Zurek, Y. Zhang, D.P.B. McGovern, A.E. Walts, A. Gertych, 
Immunohistochemistry annotations enhance AI identification of lymphocytes and 
neutrophils in digitized H&E slides from inflammatory bowel disease, Comput. 
Methods Programs Biomed. 257 (2024) 108423, https://doi.org/10.1016/j. 
cmpb.2024.108423.

A. Shahini et al.                                                                                                                                                                                                                                 

https://doi.org/10.1109/CPEE50798.2020.9238710
https://doi.org/10.1109/CPEE50798.2020.9238710
https://doi.org/10.1016/j.patter.2020.100089
https://doi.org/10.48550/arXiv.1907.10655
https://doi.org/10.48550/arXiv.1907.10655
https://doi.org/10.1002/path.5638
https://doi.org/10.1002/path.5638
https://doi.org/10.1109/JBHI.2019.2944643
https://doi.org/10.1038/s41598-020-64588-y
https://doi.org/10.1038/s41598-020-64588-y
https://doi.org/10.1016/j.media.2021.102251
https://doi.org/10.1016/j.media.2021.102251
https://doi.org/10.1016/j.cmpb.2023.107695
https://doi.org/10.1016/j.cmpb.2023.107695
https://doi.org/10.48550/arXiv.1907.02644
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.48550/arXiv.1809.11096
https://doi.org/10.1016/j.media.2024.103344
https://doi.org/10.1109/ICPR56361.2022.9956431
https://doi.org/10.1016/j.compbiomed.2022.106335
https://doi.org/10.1016/j.compbiomed.2022.106335
https://doi.org/10.1007/978-3-031-53767-7_7
https://doi.org/10.1007/978-3-031-53767-7_7
https://doi.org/10.1016/j.media.2024.103088
https://doi.org/10.3390/diagnostics14131442
https://doi.org/10.1109/TMI.2021.3085712
https://doi.org/10.1109/TMI.2021.3085712
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR52688.2022.00564
https://doi.org/10.48550/arXiv.2104.11222
https://doi.org/10.48550/arXiv.2204.08958
https://doi.org/10.48550/arXiv.2204.08958
https://doi.org/10.48550/arXiv.1912.10088
https://doi.org/10.48550/arXiv.1912.10088
https://doi.org/10.4103/jpi.jpi_103_20
https://doi.org/10.1016/j.eswa.2023.123105
https://doi.org/10.1016/j.eswa.2023.123105
https://doi.org/10.1038/s41598-024-79602-w
https://doi.org/10.1038/s41598-024-79602-w
https://doi.org/10.1016/j.compbiomed.2021.104349
https://doi.org/10.1016/j.compbiomed.2021.104349
https://doi.org/10.48550/arXiv.2111.14485
https://doi.org/10.1038/s41467-023-44188-w
https://doi.org/10.1038/s41467-023-44188-w
https://doi.org/10.1101/2024.06.02.597062
https://doi.org/10.1101/2024.06.02.597062
https://doi.org/10.1016/j.cmpb.2024.108423
https://doi.org/10.1016/j.cmpb.2024.108423

	Semantic-driven synthesis of histological images with controllable cellular distributions
	1 Introduction
	1.1 Related works
	1.2 Contribution of our work

	2 Materials and methods
	2.1 Dataset
	2.2 Generative model
	2.3 Extraction of class-specific characteristics and semantic content generation
	2.4 Evaluation metrics

	3 Results
	3.1 Image generation and quantitative metrics
	3.2 Pathologist evaluation
	3.3 Impact in computational pathology

	4 Discussion
	5 Conclusion
	Data availability
	Ethics statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Supplementary materials
	References


