POLITECNICO DI TORINO
Repository ISTITUZIONALE

Scheduling autonomous robots for an intralogistic application: A comparison of lookahead-based ADP
strategies

Original

Scheduling autonomous robots for an intralogistic application: A comparison of lookahead-based ADP strategies /
Battistotti, Margherita; Brandimarte, Paolo; Mazzi, Nicolo; Giancola, Francesca. - In: EXPERT SYSTEMS WITH
APPLICATIONS. - ISSN 0957-4174. - ELETTRONICO. - 271:(2025), pp. 1-14. [10.1016/j.eswa.2025.126590]

Availability:
This version is available at: 11583/2997032 since: 2025-01-29T15:30:13Z

Publisher:
Elsevier

Published
DOI:10.1016/j.eswa.2025.126590

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

23 February 2025

Expert Systems With Applications 271 (2025) 126590

Expert
Systems
with
Applications §

Expert Systems With Applications

Eebtorin-Chiel
Binshon

Contents lists available at ScienceDirect

AL e

journal homepage: www.elsevier.com/locate/eswa

Scheduling autonomous robots for an intralogistic application: A comparison
of lookahead-based ADP strategies

Margherita Battistotti °‘*, Paolo Brandimarte "®>*, Francesca Giancola ‘?, Nicolo Mazzi ¢

2 AMBS - University of Manchester, Booth Street West, Manchester M15 6PB, United Kingdom
Y DISMA - Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

¢ Spindox S.p.a., via Bisceglie 76, 20152 Milano, Italy

d Spindox Labs S.r.L, via alla Cascata 56C, 38123 Trento, Italy

ARTICLE INFO ABSTRACT

Keywords: The increasing role of e-commerce has spurred a significant amount of research on optimization in warehousing
Intralogistics management, including routing and scheduling issues. When material handling is rigidly automated, a
Scheduling deterministic scheduling problem arises, for which solution strategies have been proposed in the literature.

Approximate dynamic programming
Rollout strategies
Monte Carlo tree search

A recent trend is the introduction of autonomous robots, which may interact with human operators and
offer additional flexibility in item manipulation. The resulting problem is affected by uncertainty, due to the
interaction between robots and human workers and the possible failure in items manipulation. In the paper, we
propose an adaptation of approximate dynamic programming strategies with limited lookahead, namely, rollout
strategies and Monte Carlo tree search. The idea can be interpreted as an intermediate approach between the
solution of a deterministic problem, disregarding uncertainty and using a long lookahead, or the application
of pure state-based dispatching rules with no lookahead. The proposed approaches are compared against exact
dynamic programming on small-size instances, and then evaluated on larger instances, proving their viability.

1. Problem description and motivation operate autonomously, moving in a workspace where collision with
human workers must be avoided, and not only pick items, but also
The increasing role of e-commerce, additionally boosted during the deposit them into trays, where shipments are assembled. The relevant
Covid period, has made efficient automatic warehouse management a consequence is that the scheduling problem becomes stochastic:
crucial problem. In such a problem, we have to tackle a combination of
scheduling and routing subproblems, along with some new and peculiar + On the one hand, potential collision with human workers is
issues (Boysen et al., 2019a). In some applications, the system is highly detected and anticipated by stopping the robot for a time period.
automated, and the problem requires picking items and delivering to a Hence, the traveling time between two points in the workspace

workstation, where a human worker manually picks items from a set
of trays and places them into boxes. The role of the worker is simply to
assemble the shipment corresponding to a customer order, which may
include multiple items (Boysen et al., 2023a). In such an automated
setting, the resulting scheduling problem is essentially deterministic,
although quite demanding in terms of synchronization issues. With
other system configurations, there is an interaction with AGVs (Loffler
et al., 2022) or robots (Boysen et al., 2023b). The relevance of human—
robot interactions in a practical setting is also shown in Allgor et al.

may be stochastic, as a delay may be introduced.

On the other hand, the robot may deposit each item in the tray
from a safe location, or from a more distant point. This kind
of action, referred to as throwing, increases throughput, but may
result in a failure. Thus, a second stochastic factor comes into
play, as in the case of a failure in a deposit action implies the
loss of the item, so that a new item of the same type must be
picked.

(2023). In this paper, we consider a simplified case featuring a single robot.

The research described in this paper fits within the EU-funded 1pe problem will be fully and formally specified in Section 3, but it
research project DARKO,! a setting in which anthropomorphic robots

* Corresponding author.
E-mail addresses: margherita.battistotti@postgrad.manchester.ac.uk (M. Battistotti), paolo.brandimarte@polito.it (P. Brandimarte),
francesca.giancola@spindox.it (F. Giancola), nicolo.mazzi@spindox.it (N. Mazzi).
1 DARKO is an acronym for Dynamic Agile production Robots that learn and optimize Knowledge and Operations. See https://darko-project.eu/about/ for more
information.

https://doi.org/10.1016/j.eswa.2025.126590

Received 11 September 2024; Received in revised form 15 January 2025; Accepted 16 January 2025

Available online 24 January 2025

0957-4174/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0009-0004-1126-3700
https://orcid.org/0000-0002-6533-3055
https://orcid.org/0009-0002-2264-466X
https://orcid.org/0000-0001-9328-2585
mailto:margherita.battistotti@postgrad.manchester.ac.uk
mailto:paolo.brandimarte@polito.it
mailto:francesca.giancola@spindox.it
mailto:nicolo.mazzi@spindox.it
https://darko-project.eu/about/
https://doi.org/10.1016/j.eswa.2025.126590
https://doi.org/10.1016/j.eswa.2025.126590
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Battistotti et al.

comprises both a scheduling and a routing component. The robot must
fulfill a set of jobs, where each job comprises a set of items that must
be collected from their store locations and deposited into a specific
tray. There is a set of trays, each one corresponding to a parcel to
be assembled, with a given priority. There is a scheduling component,
as we must determine a sequence of pick and place actions, possibly
interleaved among them. There is a routing component, as we must
consider travel times between points in the space, accounting for the
risk of delays due to collisions, and the risk of a failure if an item is
“thrown” from a convenient but distant point.

When dealing with a stochastic routing/scheduling problem, differ-
ent strategies may be applied:

1. One strategy is to ignore uncertainty and to plan actions opti-
mally, solving a combinatorial optimization problem. This is an
open-loop strategy. When the plan significantly deviates from
reality, due to random disruptions, the control loop is closed and
replanning occurs. In this way, on the one hand, we introduce
a lookahead into the strategy, but this must be often revised,
which may prove to be both inefficient and ineffective.

2. On the opposite side of the spectrum, we may give up any idea
of a lookahead, and just define dynamic priority rules, which
sequence actions on the basis of the current system status. This
is a common approach in machine scheduling, but such a myopic
approach may result in poor performance.

3. A predictive lookahead may be introduced by stochastic dy-
namic programming, which does not disregard the possible oc-
currence of stochastic disruptions. This yields a closed-loop pol-
icy based on system status but, unlike greedy priority rules,
better accounts for the possible state evolution.

While the third approach is highly desirable, it is not quite practi-
cal due to the well-known curse of dimensionality in dynamic pro-
gramming (Powell, 2011). Approximate Dynamic Programming (ADP)
strategies may be applied, but they are still demanding. Moreover,
since our problem is not recurring, as the portfolio of orders is con-
tinuously evolving, we have to learn a policy with some suitable
frequency. The rationale is to find a compromise between adaptability
and performance. The ADP learning algorithm is run at an intermediate
frequency, so that the learned policy may be applied in front of failures,
and it is updated when necessary (typically, when a tray is emptied and
a new customer order must be served).

We will only consider lookahead-based ADP strategies, rather than,
e.g., a pure Value Function Approximation (VFA) strategy. We should
note that this work builds upon a previous unpublished study con-
ducted by one of the authors as part of her master’s thesis (Battistotti,
2024), and some material has been adapted and revised from that
original work. In the thesis, a simpler version of the problem, disre-
garding priorities, was addressed, but an VFA technique (Approximate
Policy Iteration) was also considered. Since VFA was outperformed
by lookahead-based policies, we will not consider it here. For a dis-
cussion of the advantages of introducing a lookahead, including some
theoretical arguments, we refer to Bertsekas (2020).

The plan of the paper is the following. In Section 2 we outline the
relevant literature, in order to position our contribution. The problem
we use as a case study is specified and then formally stated as a Markov
Decision Process (MDP), amenable to solution by stochastic dynamic
programming (DP), in Section 3. Three solution strategies are described
in Section 4: exact DP, which is practical only for small-scale problems,
myopic rollout, and Monte Carlo tree search. Experimental results are
outlined in Section 5, and conclusions are drawn in Section 6.

2. Literature review
In order to provide useful and relevant references, and to position

this paper, we have split the review in two subsections. First, in
Section 2.1, we highlight the key role of proper warehouse management

Expert Systems With Applications 271 (2025) 126590

in e-commerce. Then, in Section 2.2 we summarize key concepts in
approximate dynamic programming, in order to frame the algorithmic
approaches that we have investigated. Finally, in Section 2.3, we
discuss the positioning of our paper and its potential contributions, as
well as its limitations.

2.1. Warehousing in e-commerce

Optimal warehousing management is a traditional topic in Opera-
tions Research, as illustrated by Boysen and de Koster (2024). Within
an industrial setting, material handling is regarded as an operation
that does not add value to the product. In an e-commerce setting,
where timely delivery is a key service quality factor, warehousing has
become a key factor to profitability. A recent survey with emphasis on
e-commerce is provided by Boysen et al. (2019b).

The exact problem formulation depends on the exact system layout,
and it often involves a combination of order batching and picking,
which may be formulated as an integer programming problem; see,
e.g., (Valle et al., 2017). Due to the difficulty of the resulting problem,
heuristic approaches are typically applied. Pan et al. (2015) apply
genetic algorithms, whereas (Cheng et al.,, 2015) propose a hybrid
approach based on the particle swarm optimization and ant colony
optimization. Optimal policies are discussed by Schiffer et al. (2022),
including dynamic programming.

Warehousing systems may involve different levels of automation
and interaction between human operators and devices. For instance,
Loffler et al. (2022) discuss the problem of routing pickers in pick-
ing systems assisted by automated guided vehicles (AGVs). A recent
tendency is to move from AGVs to AMRs, i.e., autonomous mobile
robots. In such systems, due attention must be paid to the human-robot
interaction (Allgor et al., 2023; Loffler et al., 2023). Zhang et al. (2022)
propose a mixed-integer nonlinear model formulation of such problems,
along with heuristic solution strategies.

Most model formulations are deterministic, and emphasis may be
on routing and/or scheduling issues, depending on the nature of the
system layout. On the contrary, Boysen et al. (2023b) consider uncer-
tainty in the arrival stream of orders and consider limited look-ahead
strategies. In our paper, we also consider uncertainty and limited
lookahead strategies but, as we discuss later, we consider different risk
factors.

2.2. Strategies for approximate dynamic programming

In principle, stochastic dynamic programming (SDP) is a suitable
tool to tackle complex sequential decisions under uncertainty, like
those involved in warehouse management under uncertainty. Unfor-
tunately, it is well-known that SDP suffers from multiple curses, in-
cluding, but not limited to the familiar curse of state dimensional-
ity (Brandimarte, 2021; Powell, 2011). Nevertheless, several approx-
imate dynamic programming (ADP) strategies are available, which
are often able to yield high-quality decision policies under uncer-
tainty. See, e.g., (Powell, 2009, 2010) for a general overview of ADP
strategies, and Powell and Simao (2012) for a review geared towards
transportation and logistics applications.

Such strategies are classified by Powell (2019) into four main
approaches, which van also be hybridized. The most traditional idea is
value function approximation (VFA), whereby the value function of the
standard Bellman optimality equation is approximated in parametric
or non-parametric form. A general survey is provided by Geist and
Pietquin (2013). See, e.g., (Ulmer et al., 2018) for a discussion aimed
at routing problems. Ulmer and Thomas (2020) propose an integration
of parametric and non-parametric approximations. Another strategy,
cost function approximation (CFA), relies on the approximation of a
dynamic decision problem by a static one, where the objective function
is modified in order to foster non-myopic decisions.

M. Battistotti et al.

An alternative approach aims at building approximate policies di-
rectly, by policy function approximation (PFA). A policy function di-
rectly maps states into decisions. In complex warehousing and logistics
applications, finding such a map may be far from easy, even though
simple heuristics may be devised and interpreted as approximate policy
functions. In order to improve performance, some form of lookahead
may be introduced, which is the fourth ingredient in ADP and re-
inforcement learning (Bertsekas, 2019). Widely used approaches to
improve a base decision policy by introducing a form of lookahead
include rollout (Bertsekas, 2020; Goodson, 2013) and Monte Carlo tree
search (Browne et al., 2012).

With more specific reference to the application of rollout strategies
to combinatorial optimization and scheduling under uncertainty, we
should also mention early papers such as (Bertsekas & Castanon, 1999;
Bertsekas et al., 1997). The adaptation of ADP strategies to complex
stochastic scheduling problems, such as those encountered in project
scheduling, is illustrated in more recent papers like (Li & Womer, 2015;
Solomon et al., 2019; Xie et al., 2021).

2.3. Paper positioning and contribution

Unlike most literature, we consider a stochastic problem, where
uncertainty is not only related to the incoming order stream, but to
the mission execution by autonomous mobile robots (AMRs). An AMR
must avoid collision with human operators, which implies that they
may have to stop along their way, and that routing should consider
the potential presence of human operators. Moreover, to speed up
operations, an AMR may throw an object into the tray from a certain
distance from the ideal position. Since this may result into a partial
mission failure, the tradeoff between a relatively risky action and a safe
one should be accounted for. Hence, we believe that our paper (which is
related to the UE-funded DARKO project), presents some distinguishing
features with respect to the literature. We should mention that a similar
approach to ours is adopted by Zhou et al. (2024), where stochastic
dynamic programming is applied to provide a control policy for the
immediate future, which is revised at a lower frequency. Dynamic
programming is also applied in a similar context by Justkowiak et al.
(2024), but a deterministic model is considered.

From a methodological viewpoint, we apply well-known lookahead-
based ADP strategies, like myopic rollout and Monte Carlo tree search,
which must be suitable adapted to the problem at hand. As we discuss
in the paper, this also involves some care in shaping the appropri-
ate rewards. Hence, we offer some contribution in terms of reward
engineering literature.

What we describe is a limited case study, which is not meant to be
a fully functional solution. Indeed, we solve a very specific subproblem
(as described in Section 3 below). Moreover, we consider a single
AMR. Hence, our contribution is methodological, as we investigate the
suitability of specific stochastic ADP strategies to a problem with some
new and interesting features.

3. Formal problem statement

We address the problem of scheduling tasks for an intralogistic ap-
plication, where a robot must collect objects and carry them to specific
destinations in a warehouse, while being constrained to a fixed maxi-
mum carrying capacity of ¢ objects, regardless of their type. The list of
object types to be moved to the destinations, henceforth also referred
to as assembly spots, and the respective quantities are defined by a set
of orders associated with a priority level, e.g., “5 units of objectA and
8 units of objectD are demanded, with priority 1”. The arrival of orders
into the system is stochastic, and every newly arrived order is placed in
a sorted queue based on its associated priority level. The most urgent
order exits the queue whenever an assembly spot is available; hence,
the pairs order-destination characterize a dynamic mission. The robot’s
objective is to schedule a time-efficient and minimum-risk sequence of

Expert Systems With Applications 271 (2025) 126590

Fig. 1. Toy example of the research use case.

tasks to fulfill all orders that arrive before a fixed time horizon, while
respecting their priorities.

The environment, as illustrated by the toy example in Fig. 1, is
indeed a three-dimensional space where a single agent, identified as
the robot, can perform three main action types: it can move from one
location to another, pick objects from boxes, and place into or throw
them towards assembly spots. Note that not all actions guarantee de-
terministic outcomes, because collisions with humans or with shelving
units may occur during navigation, while throws may fail. Indeed,
collisions and failures represent the exogenous risk factors affecting the
system, and the consequences of their occurrence are, respectively, a
time delay and the loss of the object whose throw was attempted.

3.1. The problem setting

The system layout may be represented by a completely connected
graph G = (W, &), where each vertex n € N represents either a picking
or a throwing location. The set £ of edges connecting the vertices
represents the optimal paths to follow in terms of time-efficiency and
risk-avoidance: in fact, the completely connected graph ¢ is the result of
a previously solved routing optimization problem. As depicted in Fig. 2,
each edge e = (ny, n;) € € is associated with two parameters: At,, which
is the time needed to move from vertex n, to the destination vertex
n;, and r,, which is the probability that the robot will face a potential
collision when traveling through e. Since the routing optimization
problem defining the edges of the graph is solved once and before
scheduling begins, both parameters r, and 4t, are assumed fixed during
the scheduling problem resolution. This choice leads to a static view
of the risk factors associated with moving actions, which are actually
dynamic in the real world. Nevertheless, as we will later see, the time
horizons for the orders’ fulfillment are generally set to be short in our
experiments, and a unique snapshot of the initial situation is a close
approximation of the risk throughout the entire scheduling. If deemed
necessary, an option would be to repeatedly solve the routing problem
and dynamically adjust the data associated with the edges of graph G.

3.2. Problem definition

Let O be the set of O object types and D the set of D destinations,
from now on also referred to as trays, where objects might need to be
carried to. Each object type is univocally associated with a box where it
is stored and from where it can be picked. In our setting, box locations
are defined by the picking vertices n € N, while tray locations
are associated with coordinates (x,,y,).d € D, that differ from the
throwing vertices n € Ny,,,,- Nevertheless, each vertex n € N is also
associated to a pair of coordinates (x,,, y,).

Let then consider time as continuous, such that r € 7 = [0, T] with
T being a fixed a time horizon. As we aim to work with a discrete event

M. Battistotti et al.

Expert Systems With Applications 271 (2025) 126590

Tray O Tray 1
Aty r Ats, 1
(A, gy . Shts.1s)
(Ats, r3)
® e
(Aty, r2) | (Atg, 1)

[] ([]
m m

Fig. 2. Partial representation of graph G = (N, &): each edge e € € is associated to the
with which collisions occur with probability r,.

system, we define a natural set of indexes T = {0, 1,2, ..., I} such that
time flow is modeled by discrete decision epochs defined by the time
instants ¢, € 7 at which decisions are made. We collect such ¢#; in an
ordered set of increasing time instants 7; € 7, with 7y =0 and r; <T.

3.2.1. Mission, queue, and service priorities

Let us suppose that at the beginning of the scheduling at least D
orders are already in the queue waiting to be served, so that the mission
dynamically assigned to the robot is always defined by D order-tray
pairs as M = {(k;,d),d € D}, where k; = {(0,q,),0 € O} is the order
associated to tray d demanding a quantity of ¢, items for object type
o. For the arrival in the queue of other orders we assume a Poisson
process with rate 4. The queue is indeed a dynamic list of orders sorted
by their associated priority level / € £ = {1,2}, 1 being the most
urgent. The levels of priority, together with arrival times, define a
rule of precedence for serving the orders in the queue. Indeed, every
time a tray becomes available again an order substitution takes place
according to the selection of the order in the queue with the longest
waiting time among the most urgent ones. Moreover, in order to avoid
longer-waiting, lower-priority orders to be surpassed by newly arrived,
higher-priority orders, after a predefined period of time priorities of all
less urgent orders in the queue rank up by one level.

3.2.2. State space

We are ready to define the state space S. Let s € S be defined as an
array of dimension 2 =2+ O x (D + 1), resulting from a concatenation
of the following:

+ s! € T;, which represents the time elapsed from the beginning of
the initial mission in terms of decisional epochs;

+ s> € N, which represents the position of the robot on the graph
at time s';

cs'€ N(()D+]), defined V o € 0, such that:

parameters pair (4t,,r,). Central red zones represent risky areas, i.e., possible obstacles

- s> € {0,...,0} is the number of objects of type o picked
before time s!, where O = Zil 4o, | 04 = o, represents the
total number of objects of type o to pick during the mission
defined at that time;

- 5%+l € {0,...,q,,} is the number of objects of type o placed
in tray d € D = {1,...,D} before time s', where 4o,
represents the total number of objects of type o to place in
tray d during the mission defined at that time.

For example, let O =2 and D =2,sothat 2 =2+2x(2+1)=8. A
generic state s € S would be denoted as s = (t; € T;,n € N, s!,s?)
and, given a suitable mission M, one could have s! = (4,2,1) and
52 = (1,1,0). Note that each state records information about which
objects have been picked and/or placed up to a specific time, and
enables a deduction of the remaining tasks required to complete the
respective current mission. In fact, whenever an order is fulfilled and
there is at least one other order waiting in the queue, a tray substitution
is performed, hence the record regarding the just emptied tray is reset
and the mission updated.

3.2.3. Action space

Let us now focus on the action space. As previously stated there are
three main action types: move, pick, throw, which can further branch
off into more specific actions by associating to each type additional
information. For example, to a moving action type we shall associate
a vertex where to move, and for a picking action type we shall specify
which object has been chosen to be picked. We work with a set A =
Amove U Apick U Athrow’ where Amove C N! Apick C O and Athrow =
{(o,d),0 € O,d € D}, and various subsets .A; C A only containing
the admissible actions given a state s € S. Furthermore, each action is
associated to the time duration of its execution, namely Ary, = 5 time
units for all throwing actions, 4t =7 for all picking actions, and 4t,,
as previously defined, for moving actions on edge e € £.

M. Battistotti et al.

3.2.4. Risk factors, immediate contributions and state transitions

Action types are also linked to rewards that depend on the state
of the system, on the time at which the action is performed and on
its outcome. We will refer to such rewards as immediate contributions
and denote them as C, (s, , a;,, Wy, 4 4,), Where w, 4, is the realization of
risk factors during the time interval subsequent to the time instant of
the decision. In fact, being time flow described by time instants 7, € 77
corresponding to decisional epochs, and by uneven intervals Ar € A =
(At Aty,, At e € €} corresponding to actions’ duration, given a state
of the system s, at time #; and a succeeding state s, , ., 4¢ € 4, one can
indicate the realization of risk factors in between the two as w; ;. 4t €
A2

As previously mentioned, our system is affected by two risk factors
directly associated to throwing and moving actions, while picking
actions are deterministic.

The probability of success of a throwing action from throwing vertex
n € Ny to tray d is given by:

’ 0, A G ve)s g Yl 2 M o
th .
o ﬁ(M— X ¥): (Xg ¥)ll2), otherwise,

where M and m are threshold distances based on the specific warehouse
dimensions and the robot’s throwing capabilities considered in the
application. A throw fails if the distance between the throwing vertex
n and the tray d exceeds M, while m < min, ;(|[(x,.¥,). Xz ¥2)ll2)

contributes to the normalization factor M — m, so that py,ow < 1 for
all throwing actions. In our experiments, the parameters were based
on our graph modeling and set to M = 80,m = 8. Hence, pyow 1S
inversely proportional to the distance between the throwing location
and the destination, and completely independent of the object thrown.
The possible outcomes arising from a throwing action are thus binary:
success, denoted by w; 4, = w;;; = 1, is expected with probability
Pthrow-> While failure, w5, = w;;; = 0, may occur with probability
1 = Pthrow-
For what concerns moving actions, parameter r,,e € £ indicates
a risk percentage, hence the probability of having a failure w; ., =
w;;; = 0, i.e., a collision, when traveling through the corresponding
edge is
-

Pmove = ﬁ . 2

Instead, a smooth crossing of the same edge happens with probability
1 = Prove> and is denoted by w4, = wiy = 1.

A clarification on the outcomes of risk factors prompts to the defi-
nition of immediate contributions and state transitions, which depend
on them.

For a throwing action a; = (0,d) € Ay, ;o 1-€., throw object o € O
in tray d € D, the immediate contribution is defined as:

0, ifw;,; =0
Ci(sja;, i) = Phrow (2T—5)) aTy P =T9) 1 ®)
R e B T_e » else,
T mdxd(Td)+l mmd(s‘. —Td)+1

where T7 is the entering time in the mission of the order assigned
to tray d, rygcow 1S @ multiplicative factor common to all throwing
actions and « and g are positive coefficients, set both equal to 1 in
our experiments. The negative term suggests a growing penalty for
orders that entered the system earlier, while the one weighted by g
gives an incentive to throw objects demanded by orders that have been
waiting for a longer time. However, both terms help defining a tray-
filling (or order-completing) priority. For the same throwing action the
state transition is ruled by equation

a;, w,‘+1)7 “4)

Sirl = &rary, (Sis

2 Hereafter, for the sake of notation’s simplicity, wherever necessary we will
substitute indexing by time 7, with just i, provided it does not create ambiguity.

As examples: s, =s;, 8,4 =S, = Sippp A0 Wy Ly =W, =Wy

Expert Systems With Applications 271 (2025) 126590

such that

s,.l+1 = s,.1 + 4ty,, for w; =0,1, %)
0,1
s>, forw,,, =1

5:111 = {_;,1 o ©®
s7 =1, for w; =0,

0,d+1
s+ 1, for w;, =1
So,d+l — {_, i+1 (7)

Zitl 0.d+1 _
747, for wiyy =0.

Eq. (5) simply updates the elapsed time from the beginning of the
scheduling, while Eqgs. (6) and (7) respectively reflect that when a
throw fails an object is lost and that, instead, a successful throw places
the object in the corresponding tray.® Note that the dependence on just
the previous state of the system rather than on the whole path is a
common assumption better known as Markovian property, on which
we hinge throughout our entire paper.

For a moving action a; = n € Ay, 4, i-€., move from s? to n along
e= (siz,n) € &, the immediate contribution is null in case of a smooth
crossing of the edge and equals —2 when collisions occur. Moreover,
the system transitions according to:

Siv1 = gt,-+Ate(Si’aivwi+1)v ®)

where

S,-I_H _ {s‘: + Ate,l for w;; =1 ©)
Sip =8 A, +5, for wy, =0,

st =n, forw,,; =0,1. 10)

Eq. (10) indicates the transition from the initial location s,? to the
intended destination n, while Eq. (9) suggests a penalty of 5 time units
in case of a collision. Finally, deterministic picking actions (such that
Witdryy = Wir1 = 1 Vi) of the type a; = 0 € Ay, i€, pick object
0 € O, define the deterministic immediate contribution
roick@T — s
T

with rp;c being a multiplicative factor common to all picking actions,
and bring the system to a succeeding state

Ci(sj,a;,1) = aan

Siv1 = gt,+Atpck(5is a;, 1), (12)

accounting for one more picked item of type o after 4t time units. In
fact:

s,.l+1 = s,.1 + Ay, (13)
; . Vj#1

wh= g8 a4

! 741, for j=1.

Note that the decrease with time of the immediate contributions as-
sociated to both picking (11) and throwing (3) actions is needed to
emphasize the importance of collecting and placing objects at the
earliest convenient opportunity.

3.2.5. Problem objective

Let us finally state the problem objective. After the definition of a
suitable terminal reward value function F(-) : S — R, that measures
the quality of terminal states of the system, the natural way of stating
the stochastic problem so far described should be:

max B D y'Cilsi, apwi) + 7' Fisy,) | (1s)
i€l
st. a, €A, Viel, (16)

3 We explicit state transition equations only for state entries that actually
vary when an action is performed. Other entries, whose transition is implicit,
remain unchanged.

M. Battistotti et al.

(4) if a; is a throw action,
(8) if a; is a move action,
(12) if a; is a pick action,

Vi+lel, 17)

Sit1 =

where y € (0,1] is a discount factor, and I" is the set of admissible
policies. A policy is a sequence of functions = = (r;),c7, such that each
7; S - A maps a state of the system s; € S at time ¢, to an admissible
action aq; € A;,. The objective becomes the search for an optimal policy.

4. Solution strategies

The paradigm of Dynamic Programming (DP) has been chosen to in-
novatively solve the problem of intralogistic robot scheduling described
in the previous section because of its notorious flexibility. Indeed, its
applications span across various fields, from operations research to
economics, from control theory to machine learning. DP is not a fixed
and defined algorithm, but rather an optimization principle, and as
such its implementation for a specific problem may require a consider-
able customization effort (Brandimarte, 2021) that counterbalances its
appealing flexibility. Furthermore, it is as flexible as computationally
expensive: curses of dimensionality are its Achilles’ heel, and it might
prove impractical for larger scale problems. For this reason, in our
research, exact DP is only applied to small problem instances, in order
to employ the output solutions as benchmarks to validate approximate
implementations for larger scale instances.

Such approximate implementations are chosen as two Approximate
Dynamic Programming (ADP) resolution techniques that fall under
the category of Look-Ahead Policies (LAPs): Myopic Rollout (MR)
and Monte Carlo Tree Search (MCTS). Another point in favor of the
implementation of two LAPs is that they do not require exhaustive
replanning when a new order starts being served. In fact, given our
problem setting, when exploiting the exact DP paradigm we must
repeat the complete enumeration of all the new possible states of the
system whenever an order associated to a tray is substituted. This will
become clearer in the next section, as it will the fact that with LAPs
this extensive enumeration is not necessary. LAPs assist in decision-
making in a certain state by simulating (a limited number of) plausible
scenarios, thus eliminate the need of exploring the entire state system.

4.1. Exact dynamic programming

The main idea of exact DP is to recursively solve a multi-stage
dynamic decision problem as the one presented by decomposing it into
smaller sub-problems. The key procedure is to evaluate states based
on their appeal through the use of value functions V; : S — R, that
measure the quality of being in a certain state at time instant #;. As
for actions, their quality is somehow evaluated through the immediate
contributions C;(-), as in the general formulation (15).

Let us describe how the recursive resolution of the sub-problems is
performed through a backward pass. In finite-horizon problems as ours,
a value is assigned to all possible terminal states based on their quality
through a specific terminal reward value function, chosen as

F(s)=(T 5= Y (g,—s") + Y 5™, (18)
d

o€ky 0

for our problem. The term T —s! linearly rewards the early completion
of the mission with respect to the fixed time horizon 7, the double
summation is a penalization of one unit for every object that was
supposed to be placed but has not (there is no penalty if the mission is
completed before time horizon is reached), while the last summation is
a prize of one unit for every picked object. Then, for each previous
state that would bring the system to a terminal one, the assigned
value is the result of an optimization problem over the admissible
actions. The objective of the sub-problem is the expectation of the sum
of the immediate contribution and the discounted future state value,
conditional to the current state and the chosen action. The process is
then repeated until the initial state is reached.

Expert Systems With Applications 271 (2025) 126590

In brief, what just described is the recursive application of the
Bellman’s Equation:
ViGsp) = F(sp)
Vi(s) = opt E[C(s;,

a4 €A,

ajs Wi) + YV Gig)lsia] i € T\ {1} a9

In conclusion, the final optimal solution given by the application of the
Dynamic Programming principle is defined by one last pass, forward in
time. Starting from a given initial state, for each time instant #; at which
a decision must be made, the final forward pass selects the optimal
action as the argument satisfying (19). Note that in our problem setting
the state space varies whenever a new order is assigned to a tray,
leading to the necessity of repeating a backward pass as the one
described above. The more orders to serve, the more tray’s substitutions
take place, thus more backward passes are needed. We will discuss
in Section 5 that this frequent and thorough replanning considerably
affects the execution time of the paradigm on our problem.

4.2. Lookahead-based ADP strategies

In this section, we describe how two look-ahead policies (LAPs)
have been adapted to the specific problem we deal with. For the sake of
completeness, we should mention the other common ADP techniques,
based on Value Function Approximation (VFA) or Policy Function
Approximation (PFA). A VFA approach is similar to LAPs in the sense
that both work going forward in time, avoiding the expensive backward
pass of exact DP. However, the former aims at building functions to ap-
proximate the values that would be associated with all the states within
an exact DP paradigm. It does so by first simulating several sample
paths from an initial state, forward in time, up to a long time horizon
or a terminal state, in order to find suitable parameters to approximate
the value functions to be used later during the decision-making process.
One could say that it includes a learning phase, comprising simulations,
separate from and prior to the actual decision-making. On the other
hand, each decision made with LAPs when in a state is directly based
on simulations starting from that state and ending after a limited
number of steps, i.e., the lookahead. A PFA approach (in principle) is
also feasible for our problem, as the action set is finite. Nevertheless,
in this paper, we do not describe VFA and PFA approaches because,
as mentioned in Section 1, we have investigated Approximate Policy
Iteration in a previous study (Battistotti, 2024), in order to learn a
suitable approximation of the optimal value function. Computational
experiments shown that a larger computational effort is required to
obtain a performance that is similar to LAPs. For further considerations
on the advantages provided by lookahead, we refer again to Bertsekas
(2020).

4.2.1. Myopic rollout

The adjective Myopic describes the activity of making a decision just
by looking roughly into the future, without a crystal ball. However,
MR represents an improved version of a more naive decision-making
technique: a Myopic Policy that only relies on the values of immediate
contributions to select the best action. The improvement is indeed
reflected in the noun Rollout, which stands for the recursive procedure
of rolling to the next state after making the myopic decision and then
repeating the process for a fixed number of steps. During this phase an
estimate of the value of being in the state from where the rollout has
started is produced, based on a probable future path. If, given a state
s, the MR procedure is performed for all the states reachable from s,
as shown in Fig. 3, a sub-optimal action can be chosen based on the
expectation of the myopic value produced for the state the action may
lead the system to, according to

argmax P(1)(C(s,a, 1) + V') + PO)C;(s,a,0) + V"), (20)

where V'4 and V"'¢ are the values associated through MR to the states
eventually succeeding s when action « is performed, in case of success

M. Battistotti et al.

Expert Systems With Applications 271 (2025) 126590

Forallj=1,

Initialize V'J = 0.

V|

Fig. 3. Example of decision-making process through MR for generic state s. Square nodes represent the states of the system before the random realizations. For every state (round
node) reachable from s a value is computed with a MR. The best action is then chosen as in Eq. (20).

and failure respectively, occurring with probability P(1) and P(0).

Given the simplicity of the algorithm its implementation only re-
quires the definition of a few parameters. For example, it is essential
to define how far in the future to “roll” and how to myopically choose
between a set of available actions. For the decision rule we simply opt
for the Myopic Policy that outputs an action solely based on a myopic
version of its deterministic immediate contribution, i.e.,
rT = s

T (21

* M
a’ =arg max C;” (s;,a) = arg max -
! gaeAh ! (!) gaeAh
where r, € {rpick: F'throws "move | d€pends on action a. This choice directly
affects the estimates of the values of the states produced during the roll-
out. In fact, after every myopic decision, the estimates are recursively
defined as:

17(51') = C,'(Si’ afs wi+l) + yV(g7,+At(si7 af, le)). (22)

As for the number of recursion steps to perform, denoted by R, its
choice may vary depending on the problem: in general R should
increase with the problem size. Specifically, we noticed that an increase
in the value of parameter R does not negatively affect the performances
of the algorithm on small scale problems, but, if significant, it may
worsen them for larger scale problems. Supposedly, the further in the
future we myopically look, the less accurate are the values produced
by the MR. Accounting for the attentive considerations, we set R = 10
for all problem’s instances.

Of course, once the rollout approaches the time horizon or reaches
a terminal state it cannot proceed, and a precise value must be assigned
to the terminal state reached. To this aim, we employ the same terminal
value function defined in (18) for DP.

Finally, we conclude the subsection by summarizing the overall
decision-making procedure through MR Pseudo-Algorithm 1.

4.2.2. Monte Carlo tree search
MCTS is a search method based on a randomized exploration of
the state space. Its algorithm uses the results of previous explorations

Al

gorithm 1 Decision making through MR

: procedure BestDECISION(s)
BestValue < 0
for ae A, do
s' =g u(s.al) > State associated to action’s success
V' =MyopicRoLLouts’, 0
s" =g 4 u(s,a,0) > State associated to action’s failure
V"' =MyopicRoLLouts”, 0
V =PAXC(s,a, 1)+ V') + P)Ci(s,a,0) + V")
if V' > BestValue then
BestValue « V
BestAction « a
end if
end for
return BestAction
: end procedure

: procedure MyoricRoLLouT(s,)
a* = (21)
if r < R then
Exogenous factor realization. Simulate outcome w
' =g uls,a*, w)
RealContribution = C;(s, a*, w)
rer+1
if 5 is not terminal then
V' =MyopICROLLOUTS, r
V = RealContribution +yV’
else V = F(s)
end if
else V =C/(s,a*)
end if
return V'
: end procedure

M. Battistotti et al.

\ 4

Expert Systems With Applications 271 (2025) 126590

Selection

So
.
.

O O

Expansion

\ 4

Simulation

Backward
propagation

So

Fig. 4. The main steps of a MCTS at arbitrary iteration 4. Round and square nodes represent pre-decision and post-decision states respectively. All white nodes represent states

visited during previous iterations.

to gradually build up a tree in memory, hence it progressively be-
comes better at accurately estimating the values of the most promising
actions (Winands, 2015).

As the name implies, the search is performed by means of a grad-
ually constructed decision tree, but before introducing the overall
procedure of building it, let us define its nodes. There are two types
of nodes in a decision tree: the decision nodes, at which decisions
are made, and the outcome nodes, at which new random information
becomes available. In a DP context like the one we are dealing with,
the decision nodes identify the standard states of the system, while
the outcome nodes represent the post-decision states. A post-decision
state is the state that the system intends to reach when a specific
action is performed, as if there were no exogenous risk factors. For
example, in our problem, the choice of moving action a € A,,,,, when
in state s;|s! = t;,s? = n, is made with the intention of reaching state
Sit |s}+1 =t;+A4t,, s[.z+1 =a,e = (n,a) € £, which is indeed a post-decision
state, more precisely denoted by s to emphasize the dependence on
chosen action a. After reaching a post-decision state, information on
the realization of external factors becomes available and determines
the actual transition to another standard state, that we refer to as pre-
decision state. In the previous example, the next pre-decision state may
be equal to the post-decision one, if no collision takes place during
navigation, or it can result in s, # s{ when a failure occurs.

From now on, in our MCTS, the transition from a pre-decision state
s; (decision node) to the next one s, is thus divided into two steps:
first, an action a; is chosen and the algorithm transitions to a post-
decision state s¢ (outcome node) following the transition equations
defined in (4)—(10), (13), (14), with w,,; = 1 and s¢ replacing s;.,);
then, after the random realizations of the risk factors, it proceeds
according to the same transitions, for which we use the novel general
notation:

Sit1 = gftM,(Si’ @ Wiyp)- (23)

The algorithm always follows four main steps iteratively. In fact, af-
ter having identified as the tree root the state at which the robot
needs to choose the best action to perform, the MCTS begins and
repeatedly undergoes the phases of selection, expansion, simulation and
backpropagation (see Fig. 4).

Below a precise and problem-driven description for arbitrary itera-
tion A.

1. (Selection) It aims at selecting the most suitable action to
perform at a pre-decision state sf’, in order to keep exploring
the tree. When the number of children for the decision node
identified by sf’ is null, the first action selected is the one with
the highest deterministic immediate contribution. This initial
choice, although quite myopic, guarantees that the effects of
the apparently most appealing action are explored at any cost.

Then, if the number of children is less than a fixed allowed

offspring limit, the action is chosen among the available ones.

This decision is based on a one-step simulation followed by a

MR, as in:
hx

;" = arg max C,-(sfl,a) + MYOPICROLLOUTg,iM,(sf’,
ac Ay,
i

a,wl). (24)

On the other hand, if the offspring limit has already been
reached in earlier iterations, the action is chosen among the
previously visited ones, collected in A", according to the Upper
Confidence bounding for Trees (UC’f) (Kocsis & Szepesvari,
2006):

" = arg max QA(sf‘,a) +e

i
J
”EAS,-

21n N(sf')
N(s®ty

1

(25)

The exploration coefficient ¢ and the number of visits N (s:’)
and N (si”"') of the decision node identified by sf’ and of the
outcome node identified by s,‘."h respectively, define an explo-
ration term voluntarily biased towards post-decision states that
have been visited less frequently. On the contrary, the term
O(s",a) = Cy(sh, a)+I7”(s;”h), where ?”(s?’h) indicates the approx-
imate value assigned to post-decision state sf‘ up until iteration
h, steers the choice towards actions so far considered more
promising.

. (Expansion) Right after the action selection, it comes the ex-

pansion phase, whose procedure differs depending on earlier
explorations. In fact:

« if the selected action has never been tried before, the
outcome node corresponding to the post-decision state is
created. Then, an outcome is uniformly sampled among the
available ones and the corresponding pre-decision state is
created. At this point, the search enters its next phase;

if the selected action has already been tried, there are two
further distinct situations:

- all outcomes have been visited. In this case, an out-
come simulation is performed, that will bring the
search to a next pre-decision state, from which a new
selection phase will begin;

- not all outcomes have been visited. Therefore, an out-
come is uniformly sampled among the ones not yet
explored, and the corresponding next pre-decision
state is created, leading the search to its next phase.

Note that, while a limit is set for the number of actions to try at
each state, i.e., for the offspring of the corresponding decision
node, all outcomes are potentially explored. The choice is due
to the fact that, in our specific problem, the admissible outcome

M. Battistotti et al.

space given a state is at most binary. For this same reason, there
is no negative effect in uniformly sampling the outcomes during
the expansion phase, actually we think it may fasten the initial
exploration.

Nevertheless, after having sampled all the possible realizations
given an action, external risk factors are simulated according to
their real probability distributions.

3. (Simulation) Whenever a new pre-decision state is created dur-
ing expansion, this last phase stops and a simulation begins: a
value estimated through a MR is associated to the state repre-
senting the new leaf node.

4. (Backpropagation) During this last phase of the MCTS, the
newly simulated value associated to the newly created leaf node
is back-propagated towards the parent-node, iteratively until the
root, following the path sampled during the previous phases of
the current iteration, 4. In the meanwhile, also the counters of
the number of visits for each node in the path are updated. The
overall procedure is illustrated in Pseudo-Algorithm 2, where
W! denotes the set of outcomes visited after the play of action
a up until iteration A, and is similar to the approach proposed
in Powell (2019), but specifically adapted for single temporal
step updates.

Algorithm 2 Backpropagation phase of MCTS

1: procedure BACKPROPAGATION(sf)
2 NG« NGhH+1

3: while s*" is not null do
4: NGy « Ny + 1
aga 1 5 oa
5: Vasth) = —— D PV (gl (s, w)
Y P(w) ey
wewh

6: reward = C:-l(sf',l’af',l’wf')
7: delta = Vet (sf;hl)

. 5 h S~ (deha—V(sf:)
8: V(s‘_l) - V(Si_]) + —N(S:L]H]‘
9:

BACKPROPAGATIONS!
10: end while
11: end procedure

1

Once the four phases of the search are repeated for a fixed time of
iterations, (H = 50 in our experiments), the policy, guiding the choice
of the best action to perform when in state s; , corresponding to the
root node of the just created Monte Carlo Tree, is:

* — 5 P A — rag.a
T (s,-o) = arg arenzf Q(s,-o,a) = a.rgarenff C,-(s,-o,a) +V (Sio)' (26)
sig Sip

Let us conclude by focusing in detail on a couple of essential hyperpa-
rameters that have been mentioned when explaining the MCTS phases:
the exploration parameter ¢ and the offspring limit, henceforth denoted
by p.

There are two situations that are preferably to be avoided during
a MCTS, and that can be partially dodged with a reasonable tuning of
such parameters. The first inconvenient situation consists in iteratively
lowering the approximate value of a state, up until its exclusion from
further exploration, although it may lead to a very promising future
state when the correct action is selected. In fact, during backpropaga-
tion, the value of a state can be repeatedly compromised by the values
of its other, less promising offspring, if numerous. On the contrary, the
algorithm might become interested in visiting states that only appear as
favorable, when it neglects less frequently visited, yet better, actions.

The first scenario is likely to happen when ¢ and p are set to
elevate values, whilst the second is mainly caused by the lowering
of the former. Thus, it is naturally inferred that the two parameters
shall be antithetically fixed: an excessive exploration factor should be
accompanied by a conservative offspring limit, and viceversa. We opted
for the first alternative and set ¢ = 3.5 and p = 5 in all our experiments,

Expert Systems With Applications 271 (2025) 126590

Table 1
List of the orders considered for the Small Instance'. Each order is characterized by
the quantity of items required for each object type.

Obj 1 Obj 2 Obj 3 Obj 4
Order 1 1 1 1 0
Order 2 3 0 0 1
Order 3 0 3 0 0
Order 4 2 0 1 1

conscious of the necessity of increasing both of them, and consequently
the number of iterations H, when dealing with significantly larger scale
problems.

5. Experimental results

In this section we illustrate the performances of the methods pre-
sented. First of all, we validate the approximate approaches by com-
paring their results on small instances to the ones output by the exact
DP paradigm described in Section 4.1. Then, since the latter cannot be
applied to larger-scale problems, the analysis on larger instances is only
performed for the approximate methods.

In order to understand what we mean by “large instance”, it is
important to recall the nature of our problem setting, which was
pointed out in Section 3.1. We deal with a limited lookahead to be
able to assume a static view of the risk factors related to collisions. If,
while solving a problem instance, these risk factors change to the point
that the graph ¢ must be updated, we must define and solve a new
problem instance. Hence, dealing with extremely large instances and
an extended lookahead would be pointless. For this reason, the larger
problem instances that we will consider may not be large in an absolute
way, but we will refer to them as such because they are relative to the
small ones (and to draw a line between what we may tackle by exact
DP and what we cannot).

For experimental purposes, for each instance we define K orders
and collect them in a set K. We then consider a mission complete
when either all orders have been served or the time horizon is reached,
whichever occurs first.

We mainly focus on variations of the following two instances of the
problem.

1. Small Instance:

* K =4 orders, listed in Table 1,

« total number of items to collect O = 14,
« time horizon T = 300 seconds,

* O = 4 object types,

* D =2 trays,

* |N'| = 6 graph vertices;

2. Large Instance:

* K = 8 orders, listed in Table 2,

« total number of items to collect Q = 42,
« time horizon T = 1000 seconds,

* O =5 object types,

* D =3 trays,

* |N| = 8 graph vertices.

All experiments account for a maximum robot capacity of ¢ = 4 and
are conducted with fixed deterministic rewards rpiic = 10, Fiyrow = 12,
used as multiplicative factors in immediate contributions.

M. Battistotti et al.

Table 2
List of the orders considered for the Large Instance’. Each order is characterized by
the quantity of items required for each object type.

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5
Order 1 1 2 1 0 0
Order 2 3 0 0 1 2
Order 3 0 3 0 0 2
Order 4 0 0 3 3 0
Order 5 2 0 0 2 1
Order 6 2 0 1 1 1
Order 7 0 1 2 1 2
Order 8 4 0 1 0 0

5.1. Evaluation metrics

We present a set of experiments that aim at evaluating different
characteristics of the results obtained by the different methods. There-
fore, we first compare the approaches for a fixed sequence of orders, in
terms of both times of arrival and associated priority levels. This choice
allows us to reduce variance in the estimates and to focus on the intrin-
sic value of the compared methods. Then, a more general comparison
of the methods regards the average results of a series of experiments
for which the orders’ arrival in the system and the assignment of a
priority level are stochastic, as described in Section 3.2.1. This second
experiment is carried out to assess the robustness of the methods.

Moreover, for all experiments we adopt two different ways for
evaluating the results: the first consists of measuring the average time
taken for the robot to fulfill an order. The time is either measured
starting from the instant the order arrives into the system or the instant
the order is assigned to an available tray, hence enters the mission.
Respectively, the average waiting time since arrival ¥, and the average
waiting time since entrance V, are defined as:

V,= % > T -T, 27)
kek
IQ:%ZT,S—T;, 28)

kek

where £ C K is the set of orders served before reaching the time
horizon, T is the time instant at which order k is completed and T}
and T} are respectively the arrival time and entrance time of order k.
Of course, the smaller the time taken the more efficient the scheduling.

The other kind of assessment somehow measures the with priority
levels, in the sense that the sequence S, of orders assigned to an
available tray, sorted by time, should coincide with the sequence .S, in
which the orders are fulfilled. In scheduling terms, this is related with
the minimization of work in progress. To this purpose, we introduced
two evaluation metrics. The first one is based on the maximum shift in
the two sequences, according to

V,

max

=max |iy — jil, (29)
kek

while the second one defines a value based on the overall late shifting,

as

Voveraln = K = Z 0.51),=ip+1 — Z(jk =i = Dljsip+1s

kel kel

(30)

where i, and j, are the positions of order k in sequences S,,S.,
respectively. We wish for the value defined by (29) to be close to zero
and for the one defined by (30) to be close to the total number of
orders K.

Finally, of course, also algorithms execution times are analyzed and
considered for deciding for the best algorithm overall.

5.2. Experimental setting

The setting considered is the one described in Section 3. Prior the
beginning of the scheduling the first D orders defined for a specific

10

Expert Systems With Applications 271 (2025) 126590

Table 3

Summary of the hyperparameter values used in our experiments.
Method b4 A R € P H
DP 1 % - - - -
MR 0.95 £ 10 - - -
MCTS 0.95 e 10 3.5 5 50

T

instance are immediately assigned to the respective D trays available,
hence their arrival time and entrance time in the system are set to 0.
Furthermore, the positions in the entrance sequence S, of such first
D orders are all set to 1. Coherently, also the first D elements of the
completion sequence .S, are associated to the position 1. For all others
the indexing follows natural enumeration. If not specified otherwise,
the K—D remaining orders arrive into the system according to a Poisson
process whose rate of arrival is 1 = £=2,

All parameters values used for our experiments have been clarified
so far, except for the discount factor y: its value for the exact DP
paradigm equals 1 while is set to 0.95 during application of the MR
(and consequently of the MCTS). You can refer to Table 3 for a concise
summary of the hyperparameter values set for all methods.

Please note that experiments are repeated a considerable number
of times,* hence the presented results always refer to the mean values
obtained over the multiple runs.

5.2.1. Experiments with a fixed sequence of order arrivals

One way we adopt to evaluate the implemented approaches is
to compare them to each other when the sequence of arrival of the
orders and their associated priority levels are fixed. To this purpose, an
homogeneous arrival gap between the last K — D orders is defined as
equal to %, while the first D orders arrive into the system at time 0, as
in the general stochastic-arrival case described so far. Furthermore, in
order to work with the same priority levels throughout all the repeated
runs regarding this experiment, we generated K — D random levels of
priority € L, to associate to the last K — D orders, after having fixed a
specific seed.

5.3. Results

Having clarified the instances on which experiments are conducted,
the experimental setting, and the values fixed for the parameters, we
are ready to present the results of our research.®

5.3.1. Small instance

As previously mentioned, conducting experiments on small in-
stances of the problem is essential to validate the approximate methods
with respect to the exact DP paradigm, which cannot be applied to
larger scale problems due to its computational expense. Therefore, the
first results we present refer to Instance 1 and are collected in Tables 4
and 5. The former exhibits the average values of the evaluation metrics
for experiments conducted with fixed sequence of arrival of the orders,
while the latter shows the same average evaluations for experiments
conducted with a stochastic sequence of arrival.

As expected, in both cases, the exact DP paradigm performs better
than the two approximate methods in terms of average time to fulfill an
order once it has arrived into the system and/or entered the mission.
Instead, it is quite surprising that, despite the longer average order’s
waiting time, serving priority is more respected by approximate meth-
ods. Moreover, by observing the results in Table 5, one can notice that

4 The number of runs repeated to conduct experiments differ for each
method and depend on its execution time. For the MR we repeated at least 30
runs for each experiment, for the DP and MCTS 15.

5 For code and implementation details, please refer to https://github.com/
margheritabattistotti/opt_robot_scheduling with-lookahead-basedADP.git.

https://github.com/margheritabattistotti/opt_robot_scheduling_with-lookahead-basedADP.git
https://github.com/margheritabattistotti/opt_robot_scheduling_with-lookahead-basedADP.git

M. Battistotti et al.

Table 4
Comparison of the performances of our approaches on Instance 1. All runs are executed
with the same fixed sequence of arrival and priority levels of the orders.

Expert Systems With Applications 271 (2025) 126590

Table 7
Comparison of the performances of our approaches on Instance 2. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders.

Resolution method v, Vv, Vax VY pseratl Execution time Resolution method v, v, Viax VY pseratl Execution time
DP 98 95 1.20 3.40 58.37s MR 308 268 1.20 7.16 0.81s
MR 153 123 0.80 3.63 0.13s MCTS 301 260 1.00 7.42 42.22s
MCTS 130 122 0.06 3.96 6.11s
Table 5

Comparison of the performances of our approaches on Instance 1. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders.

Resolution method v, v, Vpax VY peratl Execution time
DP 78 76 0.33 3.83 39.12s
MR 128 116 0.16 3.91 0.13s
MCTS 142 126 0.05 3.975 5.79s
Table 6

Comparison of the performances of our approaches on Instance 2. All runs are executed
with the same fixed sequence of arrival and priority levels of the orders.

Resolution method v, v, Viax VY pperail Execution time
MR 246 234 0.83 7.55 0.99s
MCTS 250 236 0.6 7.63 38.97s

an higher compliance between the two sequences S, and .S,, of orders
entering the mission and being completed respectively, may suggest a
small sacrifice in efficiency.

We can conclude that both approximate approaches present overall
valuable results and can be considered as valid techniques to apply to
our problem for its resolution. In fact, in the case of a fixed sequence
of arrival, for which we analyze a specific scenario and thus are
able to make direct comparisons, the approximate methods present,
with respect to the exact DP, a delay of less than 30 seconds in the
average serving time of an order once it has entered the mission (V,).
The contained nature of the delay is confirmed by the more robust
analysis on experiments with varying sequences of arrival, although
direct comparisons may be harder to make due to the dependence of
the results on the associated the generated sequences.

As for the resolution speeds, we must present some considerations
prior diving into conclusions. Note that the exact DP’s resolution time
technically coincides with the time needed to perform the backward
passes. This means that once a computationally expensive backward
pass is performed, having listed all the values associated to all possible
states of the system, decisions are then taken instantly, even when
failures occur. In our case, such pass must be repeated whenever an
order in the queue is assigned to a newly available tray; with longer
time horizons and many more orders to expect, it becomes indeed
intractable to follow this approach. Nonetheless, for small instances
with short time horizons like the one presented it proves to be the best
alternative although its highest overall resolution time. On the other
hand, both MR and MCTS execution times refer to the total time taken
for the actual scheduling of a simulated scenario. In fact, the methods
respectively require the application of a rollout and the construction of
a tree whenever a decision must be made; this means that the average
time to make a decision is negligible in the case of MR and extremely
contained for the MCTS. Therefore, both approaches represent valuable
faster alternatives to the DP paradigm, especially when it comes to
larger scale problems, as further proved in the next section.

5.3.2. Large instance

Once validated the approximate approaches through comparisons
with the exact DP paradigm, it is now time to analyze their perfor-
mances on a larger scale. The section does not present experimental
results for the DP paradigm since its application to problem Instance

11

2 would cause memory overload,® as predictable. In fact, Tables 6 and
7 show the results regarding the two sets of experiments performed
with fixed and stochastic sequence of arrival, referred only to the two
approximate methods.

The algorithms cause similar average waiting times per order, al-
though the MCTS presents lower values of V,,,. and higher values of
V,verair> SUggesting a better compliance in terms of meeting priority
levels, as in the previously analyzed smaller case. Recall that the
MCTS performs a search on an iteratively constructed tree, exploring
various future scenarios, hence leading to a more accurate and varied
lookahead with respect to the MR, whose application guarantees the
exploration of one only among the possible future paths. Moreover,
such forward MR exploration is based on deterministic immediate con-
tributions while real contributions are only employed for the definition
of the final myopic value to associate to a state. On the other hand,
not only during backpropagation the MCTS employs the real prioritized
rewards, but also in the selection phase. Therefore, we may justify the
results with such motivations.

For what concerns execution times, the same considerations made
in the previous section hold for this one as well. In fact, the MR is
definitely faster than the other method and its decision making process
is almost instant. However, although less evident, the MCTS is also
extremely time-efficient: for example, if we compute the time taken for
making a single decision during the simulation of the fixed sequence of
arrival scenario we get approximately 0.22 s, given it takes an average
of 173 actions to complete the mission.

In conclusion, despite the MR presents lower waiting times for the
orders in the fixed-sequence scenario, the more robust analysis per-
formed on the scenarios with stochastic sequences of arrival proves that
the MCTS is generally slightly preferable. However, the two methods
perform very similarly and can be used interchangeably, unless specific
requirements on execution speeds must be satisfied.

5.4. Further experiments

In the previous sections, we stressed the fact that, given our setting,
we inevitably have to roll the horizon forward and solve the problem
again when risk factors change significantly. Assuming such an adap-
tation is a relatively frequent task to perform, in we have limited our
main experiments to instances that are only relatively large, because
a longer lookahead would not make too much sense under such an
assumption. However, for the sake of completeness, we believe it is
valuable to assess the behavior of our approaches on longer time hori-
zons, assuming, this time, that risk factors do not change as frequently
and, thus, we can schedule ahead more orders. To this aim, we present
a further experiment, labeled as extra-large instance, characterized as
follows:

Instance 3:

» K =100 orders, sampled at random from the ones in Table 2;
total number of items to collect 400 < Q < 600, depending on the
sampling:

time horizon T = 12500 seconds;

* O =5 object types;

* D =3 trays;

® On a machine equipped with RAM 16 GB.

M. Battistotti et al.

Assign most urgent order
to the robot and remove it
from the queue

Expert Systems With Applications 271 (2025) 126590

No Robot still
has items to

Are items
of object type 0
demanded?

Robot moves to the box
associated to object type o

Is this the
last box?

Any
object left?
e.g., throws
failed

Are there
some orders in
the queue?

No

v

Robot picks item

throw? Yes

of type 0

Robot has
reached
capacity?

Robot throws
rostreres | neton
Y tray

Fig. 5. Flowchart illustrating the sequential heuristic procedure. The condition on not having reached the time horizon is implicit: it is not shown in the flowchart but it is

intrinsically verified at every step.

* |N'| = 8 graph vertices.

All hyperparameter values are set as in the previous experiments,
except for the homogeneous arrival gap, adjusted to %M, due to
the longer list of orders to be completed. One may observe that we do
not change the parameters R of the MR and ¢ and p of the MCTS, but
we should note that keeping the same structure of the graph does not
affect the local decision-making step of the lookahead approaches. In
order to assess their quality, we compare the results of our approximate
methods to those of a simple sequential heuristic that serves orders one
at a time (D = 1). The heuristic procedure is illustrated by the flowchart
in Fig. 5. Each time a robot is assigned an order, it is initially guided
towards a box in a boundary location (i.e., the first or the last one).
From there, it starts picking items of the object type associated with the
box if any are demanded, otherwise it moves to the next adjacent box.
When it reaches its capacity, it quits picking and moves towards the
only tray in use to unload all the items collected. After the entire load
has been thrown to the assigned tray, if there are missing items to meet
the order’s demand, the robot returns to the box from where the picking
was interrupted. When the mission is completed, the robot recedes to
the initial box location to repeat the procedure for the immediately
succeeding order. The process is repeated for all orders in the queue or
until a fixed time horizon is reached. The approach may be interpreted
as a simple priority rule to sequence tasks associated with orders, much
like dispatching rules in machine scheduling.

Let us start by analyzing Table 8, which shows the results of our
experiments conducted on the extra-large Instance 3 when having
fixed a sequence for the arrival of the orders and their priority (see
Section 5.2.1). The MCTS presents lower average waiting times for the
orders and better compliance with priority levels when compared to
MR. We can draw similar conclusions when our methods deal with a
stochastic sequence of arrival, for which results are reported in Table 9.
Additionally, we note that their average waiting times with respect to
arrival V, and entrance V, increased in the latter scenario with respect
to the fixed-sequence one and that the compliance with priority levels
is worse too. This behavior is already visible when analyzing the results

12

Table 8
Comparison of the performances of our approaches on Instance 3. All runs are executed
with the same fixed sequence of arrival and priority levels of the orders. The gap

between arrivals was set to K :H_] ~ 127 seconds.

Resolution method v, v, Vipax Vpseratl Execution time
MR 175 169 2.53 93.96 16.89s

MCTS 157 148 1.8 97.1 798.49s
Heuristic 144 115 0 100 0.43s

of our approaches on (large) Instance 2, while it does not hold for
(small) Instance 1. We conclude that our methods tend to struggle on
longer time horizons when dealing with stochastic sequence of arrivals
as more uncertainty is introduced.

Both tables show that the average waiting time with respect to
entrance V, is lower when the heuristic is used. This is no surprise,
as the heuristic deals with one order at a time, while our methods try
to serve multiple orders simultaneously. For this reason, we are more
interested in the average waiting time with respect to arrival V, to
make comparisons. This value is lower for the heuristic in the fixed-
sequence case, but higher in the case of stochastic sequence of arrival,
and suggests our methods present results similar to a simple heuristic.
However, note that the value of V, for the heuristic reflects the average
time needed to serve an order once it is assigned to a tray, that is 115
seconds. In these experiments we set the fixed arrival gap to a value of
approximately 127 seconds: when following the heuristic procedure, the
robot has plenty of time to serve an order before another one arrives.
In such a framework, the system is not stressed and the advantages of
our methods are not shown. We repeated the experiments with a lower
fixed arrival gap of 100 seconds and a higher Poisson rate equal to 0.01.
Tables 10 and 11 confirm our intuition that, under a more stressful
situation, our methods guarantee an average waiting time with respect
to arrival lower than the one presented by the sequential heuristic.

M. Battistotti et al.

Table 9
Comparison of the performances of our approaches on Instance 3. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders. The

Poisson rate was set to g ~ 0.008.
Resolution method v, Vv, Viax Voserail Execution time
MR 458 276 3.6 80.16 18.98s
MCTS 412 262 3.6 86.7 703.26s
Heuristic 494 115 0 100 0.33s

Table 10

Comparison of the performances of our approaches on Instance 3. All runs are executed
with the same fixed sequences of arrival and priority levels of the orders. The gap
between arrivals was set to 100 seconds.

Resolution method v, v, Viax Voerall Execution time
MR 812 324 4.26 74.3 13.27s
MCTS 661 319 2.8 80.4 798.49s
Heuristic 835 115 0 100 0.48s

Table 11

Comparison of the performances of our approaches on Instance 3. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders. The
Poisson rate was set to 0.01.

Resolution method v, Vv, Viax Voserail Execution time
MR 918 312 4.0 76.55 12.99s

MCTS 913 311 3.0 82.1 612.99s
Heuristic 1174 115 0 100 0.48s

In the end, all these further experiments reinforce the conclusions
drawn in the previous sections about the better performances reached
by the MCTS when compared to MR. Nevertheless, they are both
valuable alternatives to exact methods and heuristics, for their trade-
off between solution quality and runtime. In fact, concerning runtime,
we recall that both MR and MCTS execution times refer to the total
time taken for the actual scheduling of a simulated scenario. Hence,
on average, the MCTS only took 0.3 s per decision and the MR even
less, given that during their execution they scheduled more than 2000
actions. However, we should note that for other instances, larger in
terms of graph structure (number of trays and boxes), a MCTS would
require a higher number of iterations for the construction of a decision
tree with the same lookahead of MR - due to the extended action space
— and this could result in slower decision making.

6. Conclusions

Throughout the text we have discussed the application of the Dy-
namic Programming paradigm, especially of its Approximate counter-
part, on a specific intralogistic robot scheduling problem. We envi-
sioned a scenario where a single agent is tasked with the transportation
of objects from boxes to trays situated in a warehouse. We modeled the
warehouse as a completely connected undirected graph with vertices
corresponding to box locations, where the robot can pick the various
object types, and other vertices corresponding to locations from where
the robot can throw the collected items into the trays. We considered
such trays as assembly spots for specific orders that randomly arrive
into the system, requesting multiple object types in different quantities.
We let the orders being associated with a (randomly assigned) priority
level, essential for the definition of a sorted queue determining the
assignment of an order to an available tray, if any. The limited number
of assembly spots implied the definition of a dynamic mission collecting
the various jobs assigned to the available trays. Finally, we considered
the system to be subjected to static risk factors associated to moving
and throwing actions and distributed as Bernoulli random variables.
Then, the problem’s main objective was to define a time-efficient and
risk-aware scheduling of tasks for the robot, respecting natural priority
rules.

13

Expert Systems With Applications 271 (2025) 126590

It is well-known that the exact DP paradigm provides optimal
scheduling of tasks but suffers from curses of dimensionality; on the
other hand, approximate methods output less optimal decisions but
are generally more time-efficient. Guided by this knowledge, we had
the intuition of applying the exact paradigm only to small instances of
the problem described above, and used the results as benchmarks for
the validation of two lookahead policies: Myopic Rollout and Monte
Carlo Tree Search. Indeed, extensive experiments conducted on small
instances showed a significant difference between the execution times
of the approximate approaches and the ones of the exact paradigm,
without significantly compromising performances. Given the promising
results on small instances, we repeated various experiments on larger
instances for approximate methods only. By evaluating the average
waiting times of the orders and the compliance with priority levels, we
were able to confirm that Myopic Rollout and Monte Carlo Tree Search
are valid techniques for the resolution of dynamic scheduling problems,
like the one at hand.

In conclusion, the approaches we presented have not been previ-
ously explored in the literature, making our work a valuable contri-
bution. As the automation of warehouses and/or fulfillment centers is
currently a compelling topic for major technological companies, our
findings offer significant insights in this area.

6.1. Further developments

Further developments could focus on even larger instances of the
problem, on the automated tuning of the hyperparameters here manu-
ally chosen, on the implementation of speed-enhancing techniques, and
on the effects of considering dynamic risks.

In fact, we treated risk factors as static in nature and thus main-
tained them fixed throughout our simulations. However, over longer
time horizons, it is plausible that they may dynamically change, partic-
ularly those linked to moving actions involving collisions with humans,
who are mobile as well. A future topic of research could indeed involve
more extensive experimentation with dynamic risks and incorporate a
suitable rolling procedure to our scheduling problem.

Regarding the implementation of the algorithms we opted for native
Python language. However, speed-enhancing techniques, as leveraging
Python packages like Numba, could be employed to further optimize
execution times. Nevertheless, our choice of programming language
does not compromise the validity of our conclusions: our experiments
enable valuable comparisons under a time perspective despite the
non-optimal runtimes.

CRediT authorship contribution statement

Margherita Battistotti: Conceptualization, Investigation, Method-
ology, Software, Writing — original draft. Paolo Brandimarte: Method-
ology, Supervision, Writing — review & editing. Francesca Giancola:
Conceptualization, Supervision, Writing — review & editing. Nicolo
Mazzi: Conceptualization, Project administration, Resources, Supervi-
sion, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work has been partially funded by the European Union’s Hori-
zon 2020 research and innovation programme, under grant agree-
ment No 101017274. See https://darko-project.eu/about/ for more
information about the DARKO project.

https://darko-project.eu/about/

M. Battistotti et al.
Data availability

No data was used for the research described in the article.

References

Allgor, R., Cezik, T., & Chen, D. (2023). Algorithm for robotic picking in Amazon
fulfillment centers enables humans and robots to work together effectively. IN-
FORMS Journal on Applied Analytics, 53, 266-282. http://dx.doi.org/10.1287/inte.
2022.1143.

Battistotti, M. (2024). Dynamic optimization of intralogistic robot scheduling. Master’s
Degree in Mathematical Engineering: Politecnico di Torino -, URL http://webthesis.
biblio.polito.it/id/eprint/30370.

Bertsekas, D. P. (2019). Reinforcement learning and optimal control. Athena Scientific.

Bertsekas, D. P. (2020). Rollout, policy iteration, and distributed reinforcement learning.
Athena Scientific.

Bertsekas, D. P., & Castanon, D. A. (1999). Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5, 89-108.

Bertsekas, D. P., Tsitsiklis, J. N., & Wu, C. (1997). Rollout algorithms for combinatorial
optimization. Journal of Heuristics, 3, 245-262.

Boysen, N., & de Koster, R. (2024). 50 years of warehousing research—An operations
research perspective. European Journal of Operational Research, http://dx.doi.org/
10.1016/j.ejor.2024.03.026.

Boysen, N., de Koster, R., & Weidinger, F. (2019). Warehousing in the e-commerce era:
A survey. European Journal of Operational Research, 277, 396-411.

Boysen, N., de Koster, R., & Weidinger, F. (2019). Warehousing in the e-commerce
era: A survey. European Journal of Operational Research, [ISSN: 0377-2217]
277(2), 396-411. http://dx.doi.org/10.1016/j.ejor.2018.08.023, URL https://www.
sciencedirect.com/science/article/pii/S0377221718307185.

Boysen, N., Schwerdfeger, S., & K., S. (2023). A review of synchronization problems
in parts-to-picker warehouses. European Journal of Operational Research, 307,
1374-1390.

Boysen, N., Schwerdfeger, S., & Ulmer, M. W. (2023). Robotized sorting systems:
Large-scale scheduling under real-time conditions with limited lookahead. European
Journal of Operational Research, 310(2), 582-596.

Brandimarte, P. (2021). From shortest paths to reinforcement learning: A MATLAB-based
introduction to dynamic programming. Springer.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. L., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of Monte
Carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in
Games, 4, 1-43.

Cheng, C.-Y., Chen, Y.-Y., Chen, T.-L., & Jung-Woon Yoo, J. (2015). Using a hybrid
approach based on the particle swarm optimization and ant colony optimization
to solve a joint order batching and picker routing problem. International Journal of
Production Economics, 170, 805-814.

Geist, M., & Pietquin, O. (2013). Algorithmic survey of parametric value function
approximation. IEEE Transactions on Neural Networks and Learning Systems, 24,
845-867.

Goodson, J. C. (2013). Rollout policies for dynamic solutions to the multivehicle
routing problem with stochastic demand and duration limits. Operations Research,
61, 138-154.

14

Expert Systems With Applications 271 (2025) 126590

Justkowiak, J. E., Kovalyov, M. Y., & Pesch, E. (2024). A dynamic programming
algorithm for order picking in robotic mobile fulfillment systems. Networks, 84,
481-490. http://dx.doi.org/10.1002/net.22245.

Kocsis, L., & Szepesvéri, C. (2006). Bandit based Monte-Carlo planning. In J. Fiirnkranz,
T. Scheffer, & M. Spiliopoulou (Eds.), Machine learning: ECML 2006 (pp. 282-293).
Springer, http://dx.doi.org/10.1007/11871842_29.

Li, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project schedul-
ing problems by closed-loop approximate dynamic programming. European Journal
of Operational Research, 246, 20-33.

Loffler, M., Boysen, N., & Schneider, M. (2022). Picker routing in AGV-assisted order
picking systems. INFORMS Journal on Computing, 34, 440-462. http://dx.doi.org/
10.1287/ijoc.2021.1060.

Loffler, M., Boysen, N., & Schneider, M. (2023). Human-robot cooperation: Coordinating
autonomous mobile robots and human order pickers. Transportation Science, 57,
979-998. http://dx.doi.org/10.1287/trsc.2023.1207.

Pan, J. C.-H., Shih, P.-H., & Wu, M.-H. (2015). Order batching in a pick-and-pass
warehousing system with group genetic algorithm. Omega, 57, 238-248.

Powell, W. B. (2009). What you should know about approximate dynamic
programming. Naval Research Logistics, 56, 239-249.

Powell, W. B. (2010). Merging AI and OR to solve high-dimensional stochastic
optimization problems using approximate dynamic programming. INFORMS Journal
on Computing, 2, 2-17.

Powell, W. B. (2011). Approximate dynamic programming: Solving the curses of
dimensionality (2nd ed.). Hoboken, NJ: Wiley.

Powell, W. B. (2019). Reinforcement learning and stochastic optimization: A unified
framework for sequential decisions. Wiley.

Powell, W. B., & Simao, B. (2012). Approximate dynamic programming in transporta-
tion and logistics: a unified framework. EURO Journal of Transportation Logistics, 1,
237-284.

Schiffer, M., Boysen, N., Klein, P. S., Laporte, G., & Pavone, M. (2022). Optimal picking
policies in E-commerce warehouses. Management Science, 68, 7497-7517.

Solomon, S., Li, H.,, Womer, K., & Santos, C. A. (2019). Multiperiod stochastic resource
planning in professional services organizations. Decision Sciences, 50, 1281-1318.

Ulmer, M. W., Soeffker, N., & Mattfeld, D. C. (2018). Value function approximation
for dynamic multi-period vehicle routing. European Journal of Operational Research,
269, 883-899.

Ulmer, M. W., & Thomas, B. W. (2020). Meso-parametric value function approxima-
tion for dynamic customer acceptances in delivery routing. European Journal of
Operational Research, 285, 183-195.

Valle, C. A., Beasley, J. E.,, & Salles da Cunha, A. (2017). Optimally solving the
joint order batching and picker routing problem. European Journal of Operational
Research, 262, 817-834.

Winands, M. H. M. (2015). Monte-Carlo tree search. In N. Lee (Ed.), Encyclopedia of
computer graphics and games (pp. 1-6). Springer, http://dx.doi.org/10.1007/978-3-
319-08234-9_12-1.

Xie, F., Li, H., & Zhe, X. (2021). An approximate dynamic programming approach
to project scheduling with uncertain resource availabilities. Applied Mathematical
Modelling, 97, 226-243.

Zhang, S., Zhuge, D., Tan, Z., & Zhen, L. (2022). Order picking optimization in a robotic
mobile fulfillment system. Expert Systems with Applications, 209, Article 118338.
http://dx.doi.org/10.1016/j.eswa.2022.118338.

Zhou, C., Stephen, A., Tan, K. C., Chew, E. P, & Lee, L. H. (2024). Multiagent
QO-learning approach for the recharging scheduling of electric automated guided
vehicles in container terminals. Transportation Science, 58, 664—-683.

http://dx.doi.org/10.1287/inte.2022.1143
http://dx.doi.org/10.1287/inte.2022.1143
http://dx.doi.org/10.1287/inte.2022.1143
http://webthesis.biblio.polito.it/id/eprint/30370
http://webthesis.biblio.polito.it/id/eprint/30370
http://webthesis.biblio.polito.it/id/eprint/30370
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb3
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb4
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb4
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb4
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb5
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb5
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb5
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb6
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb6
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb6
http://dx.doi.org/10.1016/j.ejor.2024.03.026
http://dx.doi.org/10.1016/j.ejor.2024.03.026
http://dx.doi.org/10.1016/j.ejor.2024.03.026
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb8
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb8
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb8
http://dx.doi.org/10.1016/j.ejor.2018.08.023
https://www.sciencedirect.com/science/article/pii/S0377221718307185
https://www.sciencedirect.com/science/article/pii/S0377221718307185
https://www.sciencedirect.com/science/article/pii/S0377221718307185
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb10
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb10
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb10
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb10
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb10
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb11
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb11
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb11
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb11
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb11
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb12
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb12
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb12
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb13
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb14
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb15
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb15
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb15
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb15
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb15
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb16
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb16
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb16
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb16
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb16
http://dx.doi.org/10.1002/net.22245
http://dx.doi.org/10.1007/11871842_29
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb19
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb19
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb19
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb19
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb19
http://dx.doi.org/10.1287/ijoc.2021.1060
http://dx.doi.org/10.1287/ijoc.2021.1060
http://dx.doi.org/10.1287/ijoc.2021.1060
http://dx.doi.org/10.1287/trsc.2023.1207
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb22
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb22
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb22
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb23
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb23
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb23
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb24
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb24
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb24
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb24
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb24
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb25
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb25
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb25
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb26
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb26
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb26
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb27
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb27
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb27
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb27
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb27
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb28
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb28
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb28
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb29
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb29
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb29
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb30
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb30
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb30
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb30
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb30
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb31
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb31
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb31
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb31
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb31
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb32
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb32
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb32
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb32
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb32
http://dx.doi.org/10.1007/978-3-319-08234-9_12-1
http://dx.doi.org/10.1007/978-3-319-08234-9_12-1
http://dx.doi.org/10.1007/978-3-319-08234-9_12-1
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb34
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb34
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb34
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb34
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb34
http://dx.doi.org/10.1016/j.eswa.2022.118338
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb36
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb36
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb36
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb36
http://refhub.elsevier.com/S0957-4174(25)00212-X/sb36

	Scheduling autonomous robots for an intralogistic application: A comparison of lookahead-based ADP strategies
	Problem description and motivation
	Literature review
	Warehousing in e-commerce
	Strategies for approximate dynamic programming
	Paper positioning and contribution

	Formal problem statement
	The problem setting
	Problem definition
	Mission, queue, and service priorities
	State space
	Action space
	Risk factors, immediate contributions and state transitions
	Problem objective

	Solution strategies
	Exact Dynamic Programming
	Lookahead-based ADP strategies
	Myopic Rollout
	Monte Carlo Tree Search

	Experimental results
	Evaluation metrics
	Experimental setting
	Experiments with a fixed sequence of order arrivals

	Results
	Small instance
	Large instance

	Further experiments

	Conclusions
	Further developments

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

