
21 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Reliability Evaluation Flow for Assessing the Impact of Permanent Hardware Faults on Integer Arithmetic Circuits /
Deligiannis, Nikolaos; Guerrero-Balaguera, Juan-David; Cantoro, Riccardo; Habib, S. E. D.; Reorda, Matteo Sonza. - In:
IEEE ACCESS. - ISSN 2169-3536. - (2025), pp. 1-1. [10.1109/access.2025.3534274]

Original

A Reliability Evaluation Flow for Assessing the Impact of Permanent Hardware Faults on Integer
Arithmetic Circuits

Publisher:

Published
DOI:10.1109/access.2025.3534274

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2997007 since: 2025-01-29T09:25:04Z

IEEE



Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.1120000

A Reliability Evaluation Flow for Assessing the
Impact of Permanent Hardware Faults on Integer
Arithmetic Circuits
NIKOLAOS I. DELIGIANNIS1, (Student, IEEE), JUAN-DAVID GUERRERO-BALAGUERA1,
(Student, IEEE), RICCARDO CANTORO1, (Member, IEEE), S. E. D. HABIB2, (Life Senior Member,
IEEE), and MATTEO SONZA REORDA1 (Fellow, IEEE)
1Politecnico di Torino, Department of Control and Computer Engineering (DAUIN) - Turin, Italy
2Cairo University, Department of Electronics and Electrical Communications Engineering - Giza, Egypt

Corresponding author: Nikolaos I. Deligiannis (e-mail: nikolaos.deligiannis@polito.it).

‘‘This work has been supported by the National Resilience and Recovery Plan (PNRR) through the National Center for HPC, Big Data and
Quantum Computing.’’

ABSTRACT Arithmetic circuits are fundamental building blocks in modern digital computers, allowing
for precise mathematical operations and driving the digital age. They are essential components in almost
every digital device, from basic CPUs to advanced accelerators in AI applications. In particular, in safety-
critical fields like automotive, avionics, and medical equipment, the flawless operation of these circuits is
paramount to ensure the correct system operation. Unfortunately, silicon devices manufactured with cutting-
edge technologies aremore likely to be affected by faults. Their effects can eventually produce computational
errors and lead to catastrophic consequences. Since arithmetic modules play an important role in AI-oriented
circuits, it is crucial to study the degree of severity of the fault-induced errors affecting them, both to estimate
the achieved level of safety and to support the development of effective fault mitigation mechanisms. The
analysis can also be used to guide designers in the selection of the most suitable arithmetic module for a given
application. Also, the fault evaluation process is an essential part of safety methodologies like failure mode
effects and criticality analysis (FMECA). This work proposes a method to analyze the inherent reliability of
arithmetic modules, and uses as case studies four multiplier circuits: two variants of 32-bit Dadda multipliers
(Circuit A and Circuit B) and two variants of 8-bit Booth multipliers (Circuit C and Circuit
D). The proposed flow allows us to comprehensively assess their reliability and evaluate the impact and
severity of permanent faults affecting the selected circuits. The analysis is based on extensive fault injection
campaigns using both random values and traces from DNN workloads as input operands. We evaluated the
impact of faults on every circuit by calculating and comparing different metrics, such as the mean absolute
error (MAE), the mean relative error (MRE), the mean square error (MSE), the mean operations between
errors (MOBE), the bit error rate (BER), and the fault activation and propagation rate (FAPR). The results
allow for assessing the reliability of eachmultiplier and its suitability for a given application scenario.We also
show that the considered workload significantly impacts the fault severity for all multipliers. As a summary,
the combination of fault injection campaigns with application-specific benchmarks proposed in this work
plays a vital role in accurately forming a reliability verdict for a circuit design when adopting different
evaluation metrics in terms of error analysis, error rate, and fault severity evaluations.

INDEX TERMS Reliability, Safety, Stuck-At Faults, Fault Injection, Arithmetic Circuits, DaddaMultipliers,
Artificial Intelligence

I. INTRODUCTION

RELIABILITY is a paramount concern in the realm of
modern digital systems. As our reliance on digital tech-

nology continues to expand, the accurate and dependable

operation of arithmetic circuits has become integral to our
daily lives since even minor errors can have profound conse-
quences. Hence, the evaluation of arithmetic circuit reliability
is a major concern, especially when dealing with safety-
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critical systems (e.g., in automotive, healthcare, or aerospace
applications [1]–[5]).

Arithmetic operations (e.g., multiplication, addition, divi-
sion) are extensively utilized in different areas such as signal
processing, communications, scientific computing, and ma-
chine learning (ML). These arithmetic operations are com-
monly implemented in hardware, leading to fundamental pro-
cessing units used in a wide spectrum of devices, spanning
from CPUs to specialized accelerators like Graphics Process-
ing Units (GPUs) or Tensor Processing Units (TPUs) [6]–
[8]. Indeed, almost every computational device nowadays
incorporates arithmetic circuits (e.g., multipliers and adders)
to execute basic operations, complex algorithms, and math-
ematical functions (e.g., linear algebra operations) [6], [8].
Nowadays, the rise of artificial intelligence (AI) has stimu-
lated the blossoming of specialized hardware accelerators that
implement parallel dot-product and matrix-multiplication op-
erations, accelerating convolutions and linear layers in deep
neural network (DNN) workloads [7], [8].

Recent advancements in the semiconductor industry, like
transistor technology scaling, in combination with chiplet
technologies, allow the incorporation of many components
and functionalities in a single system-on-chip (SoC). For ex-
ample, modern AI accelerators can include hundreds to thou-
sands of arithmetic circuits (mainly multipliers and adders)
embedded in a single chip. This remarkable parallelism al-
lows different systems to achieve exceptional computational
performance (in terms of giga or tera operations per second).
Unfortunately, the outstanding performance of modern com-
putational devices can be overshadowed by reliability issues
associated with the vulnerabilities of modern semiconductor
technologies, that make them increasingly prone to faults [9],
[10].

These faults may belong to two categories: permanent and
transient faults. this work focuses only on the first category.
Permanent faults might exist in a circuit due to several rea-
sons, such as (i) undetected manufacturing defects originated
during chip production, or (ii) sudden damages arising in the
device during in-field operations caused by accelerated aging
or premature degradation, possibly exacerbated by harsh op-
erational conditions (e.g., high temperatures) [1], [9]. These
faults can affect the arithmetic units of a system (e.g., an AI
accelerator) that in turn may induce errors at the application
level and consequently produce serious application conse-
quences (e.g, mistaken DNN predictions causing wrong deci-
sions in an autonomous system). In fact, recent studies have
revealed that faults in cutting-edge scale integration nodes
(7nm and beyond) can produce Silent Data Errors (SDEs) that
propagate through the application execution, jeopardizing the
overall reliability of the systems. Recently, some works (
[11]–[13]) highlighted the relevant impact of faults affecting
devices used in data centers, and not only in safety-critical
applications.

In this regard, the reliability evaluation of arithmetic cir-
cuits with respect to faults is a paramount aspect mandated by
the respective standards (e.g., ISO-26262 for the automotive,

DO-254 for avionics, or ISO-14971 for medical devices). In
effect, system manufacturers can ensure that their products
meet the required levels of reliability and safety by applying
methodologies like failure mode effects and criticality analy-
sis (FMECA) [14]. This failure analysis provides a systematic
methodology for identifying failure modes and their sever-
ity consequences in the criticality assessment of individual
components in the whole system in the case of failures. This
analysis also serves to devise remedies or practices that con-
tribute to increasing or maintaining the overall dependability
and accuracy of the system, thereby minimizing the risks
associated with any system failures.
In this regard, it is crucial to evaluate the effect of faults in

arithmetic circuits to quantify their severity and consequently
provide realistic information to perform FMECA analysis.
Furthermore, detailed fault evaluations can be used to select
the most suitable arithmetic module for a given application,
considering aspects like area, speed, power consumption, and
reliability. Thus, based on this analysis, it is up to the designer
to identify the module version that best suits the application
standards.
This work proposes a general fault evaluation flow in com-

bination with a set of evaluation metrics to assess the impact
of permanent hardware faults in arithmetic circuits, using data
traces from representative DNN workloads.
In particular, our work targets integer multiplier circuits

as a study case since these arithmetic modules are crucial
units in most modern hardware accelerators. For example,
the convolution multiply accumulation (CMAC) core of the
NVDLA accelerator incorporates 1,024 fp16/int16 multipli-
ers, representing almost 80% of the total computational units
of the accelerator [15], [16]. Although this work uses as
test cases some multiplier circuits, it is worth noting that
the proposed fault evaluation flow can be adapted to any
arithmetic circuit. In order to exemplify the usage of our
methodology four different multiplier circuits were selected:
Two variants of the 32-bit Dadda multiplier (Circuit A
and Circuit B), and two variants of the 8-bit Booth mul-
tiplier (Circuit C and Circuit D). The first two multi-
plier circuits correspond to representative circuits commonly
used in general-purpose platforms (i.e., GPUs and CPUs) to
accelerate different application domains, including machine
learning algorithms such as DNNs. The second set of circuits
corresponds to multipliers, which are representative circuits
used in specialized AI accelerators, such as Tensor Core Units
or Tensor Processing Units. It is worth noting that this work
significantly extends the method, study cases, and results of
a previous publication in the area [17].
Although the proposed approach can be easily extended

to transient faults, this work concentrates on the study of
permanent hardware faults. The experimental evaluations are
based on multiple fault injection campaigns that assess the
impact of faults on every circuit. The evaluations consid-
ered traces from four different workloads corresponding to
three DNN models for image classification tasks (LeNet5,
ResNet18, and ResNet50) and a random set of input operands
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following a uniform distribution. It is important to underline
that the DNN traces were used to generate realistic input
data required to characterize the selected circuits. The fault
injection results were analyzed in order to evaluate the overall
reliability of the selected multiplier circuits by calculating
and comparing the mean error distance (MED), mean relative
error distance (MRED), mean square error (MSE), mean
operations between errors (MOBE), bit error rate (BER),
fault activation and propagation rate (FAPR). Furthermore,
this work proposes the fault severity bins (FSBs) and the
fault severity levels (FSLs) as evaluation strategies that permit
quantifying and grouping the faults in the circuits according
to their severity in terms of error distributions and worst error
distance.

In addition to experimentally identifying the more resilient
multiplier architecture, the experiments conducted on the se-
lected circuits showed that every multiplier exhibits different
error distributions in all evaluated benchmarks. In particular,
faults in 32-bit multiplier circuits have significantly larger
error distances than for 8-bit multipliers.

The MOBE and BER evaluation metrics show that perma-
nent faults manifest as intermittent error corruptions during
the circuit operation. In fact, this work demonstrates that
such intermittent effects are particularly associated with the
application workload characteristics.

The fault severity analysis allows for the association of
portions of faults with different severity levels in terms of
MED andWED. This approach also allows the quantification
of the number of faults associated with different severity
intervals, ranging from safe faults with no impact up to faults
that induce large error magnitudes.

Finally, based on the experimental evaluation results, this
work suggests two potential software-level error correction
solutions that contribute to mitigating the large error magni-
tudes induced by permanent faults on 32-bit multipliers when
executing 8-bit DNN workloads.

Although the proposed fault evaluation flow focuses on
arithmetic circuits, it is important to highlight that the eval-
uation strategy also provides circuit characterization with
respect to faults and workloads. Thus, the proposed error rate
metrics (e.g., MOBE and BER) can be further exploited to
assess the reliability of complex AI accelerators or the DNN
workloads using high-level error abstractions. Nonetheless,
such further evaluations fall out of the scope of the present
work.

In conclusion, the combination of fault injection campaigns
with application-specific benchmarks proposed in this work
plays a vital role in accurately forming a reliability verdict
for a circuit design when adopting different evaluation met-
rics in terms of error analysis, error rate, and fault severity
evaluations. In summary, the main contributions of this work
are listed as follows:

• A comprehensive methodology for evaluating the relia-
bility of arithmetic circuits, involving three main phases:
i) circuit and benchmarks preparation, ii) exhaustive

fault injection campaigns and ii) thorough statistical
evaluation to characterize fault effects.

• A collection of evaluation metrics that allow the re-
liability assessment of different arithmetic circuits in
terms of error magnitudes (i.e., MED, MRED, MSE),
fault severity (i.e., WED and FAPR), and error rate (i.e.,
MOBE and BER).

• Adetailed reliability evaluation using the proposed strat-
egy on four multiplier circuits (two 32-bit multipliers
and two 8-bit multipliers) with respect to permanent
faults utilizing data from different DNN benchmarks
(ResNet18, ResNet50 and LeNet5).

• A comprehensive set of experimental results reporting
the impact of faults in terms of error magnitudes and
error rate (e.g., MED, FAPR, MOBE, and BER). The
provided results demonstrate that the reliability of every
multiplier circuit heavily depends on the application
workload, the size of the multiplier circuit (bit precision
32-bit or 8-bit), and its architecture implementation.

• The experimental evaluation of two potential error
correction solutions for software-level implementation,
aiming to mitigate the effects of faults on 32-bit mul-
tipliers circuits in the context of general-purpose de-
vices (e.g., GPUs or CPUs). The results indicate that
the proposed approaches enhance the reliability of 32-bit
multipliers when executing 8-bit workloads by reducing
the MED by about 5 orders of magnitude, increasing the
MOBE to more than 108 operations, and reducing the
BER by approx 0.8 times with respect to uncorrected
scenarios.

• An open-source and fully automated environment spe-
cially developed to implement the fault injection cam-
paigns on the arithmetic circuits regardless of the hard-
ware description or the technology library1.

The rest of the paper is organized as follows. Section II-B
presents some relevant works about the evaluation ofmultipli-
ers circuits in terms of accuracy and error resilience, whereas
section II-C provides some insights about the architecture of
multipliers circuits. Section III presents a detailed description
of the proposed flow to assess the reliability of multiplier
circuits through fault injection campaigns. Section IV reports
the characteristics of each multiplier variant that has been
considered as a case study. Section V reports the experimental
results and the evaluation of the impact produced by faults on
the evaluated circuits. Section VI proposes certain software-
based reliability enhancements based on the observations of
our experimental results. Lastly, Section VII draws some con-
clusions and provides insights into future research directions.

II. BACKGROUND
This section provides an introduction to hardware faults in
modern silicon devices as well as an overview of related
works regarding the reliability evaluation of arithmetic cir-
cuits, emphasizing the evaluation strategy, the target arith-

1github.com/NikosDelijohn/finjenv
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Figure 1. Representation of a stuck-at-0 fault affecting a basic
combinational circuit.

metic hardware, and possible limitations. In addition, this sec-
tion presents some insights about the reliability evaluation of
multiplier circuits, followed by a comprehensive description
of the main architectural details of different integer multipli-
ers.

A. HARDWARE FAULTS AND RELIABILITY
The advancements in CMOS technologies have enabled the
creation of smaller, faster, and more energy-efficient elec-
tronic devices (e.g., AI accelerators, GPUs, or CPUs) used
in a wide spectrum of applications (e.g., AI domains). These
advancements mainly involve the incorporation of high tran-
sistor densities on a single chip pushing the technology scal-
ing ruled by the Moore’s law [1]. However, the continuous
miniaturization of these technologies (e.g., 7nm and below)
has also led to reliability concerns as they are more suscep-
tible to faults caused by aging, over-stress, environmental
harshness, or potential manufacturing defects. In fact, tech-
nology scaling highly contributes to an increased probability
of hardware defect occurrence (e.g., induced by terrestrial
radiation effects [18]). Several studies have demonstrated that
the failure rate grows as technology scales [1], [9], [19].
This accelerated failure rate of modern silicon technologies
can seriously reduce the lifespan of devices and affect the
reliability of a vast amount of applications nowadays.

The relationship between the increased failure rate and the
technology scaling can be attributed to changes in manufac-
turing methods used to improve the performance of modern
devices as the transistors shrink. This has resulted in the
introduction of new materials, transistor architectures, and
a shift towards 3D chip design [1]. Unfortunately, all these
changes can produce silicon defects corresponding to per-
manent faults that can appear during the operative life of
the device, ultimately leading to serious problems such as
system failures [20]–[22]. A tangible sign of the occurrence
of permanent faults in modern devices has been found in
field tests/reports from large-scale server operations from
Google [12], [21], Facebook [20], and ORNL [23]. In fact,
authors in [12] discovered that CPUs in data centers exhib-
ited wrong computation results that caused the failure of the
system or silent data corruption on the application workloads.

For all the above reasons, being able to estimate the im-
pact of permanent faults in current circuits is crucial. Fault
simulation is a widely used strategy that permits mimicking
the behavior of a physical defect through circuit simulation
at different hardware abstraction levels, such as gate or RT

levels. The stuck-at-fault model is themost common approach
used to describe permanent faults affecting individual signals
in a circuit netlist by forcing them to 0 or 1 values. Fig-
ure 1 depicts a simple example of an stuck-at-0 fault inside
a basic combinational circuit. Fault simulation campaigns of
permanent faults are essential for devising testing strategies
like Built-in Self-Test (BIST) or Software-Based Self-Test
(SBST). Likewise, fault simulations are crucial for evaluating
the impact of permanent faults on different digital circuits
(e.g., arithmetic circuits) to characterize the fault behaviors
or to devise possible fault-tolerance mechanisms during the
circuit’s design phases.

B. RELATED WORKS
Considerable research effort has been put on the topic
of the accurate reliability evaluation of integrated circuits
that resulted in the introduction of rigorous mathematical
tools [24]–[26].
In [27], the authors evaluate the reliability of various ma-

jority gates full adder circuits while comparing them against
XOR-based full-adders at the gate level. The study reveals
that the majority of gate adders demonstrate superior robust-
ness. While the number of gates is a reliability factor, the
specific implementation and interconnection of these gates
play a crucial role in determining the reliability of the circuit.
In [28], the authors present a comprehensive approach to

understanding and predicting errors in arithmetic operations,
particularly focusing on addition. They introduce a novel
error model to analyze the behavior of a common arithmetic
unit, emphasizing the importance of enhancing the reliability
of arithmetic operations in computing systems, especially in
safety-critical applications where undetected errors can lead
to significant issues.
Regarding the general area of arithmetic circuits, in [29],

the authors present a novel approach for evaluating the re-
liability of combinational arithmetic circuits at the transis-
tor level. They develop a framework for calculating output
probabilities of basic logic primitives and propose an efficient
algorithm for computing the overall circuit reliability. They
demonstrate how transistor-level reliability analysis can in-
form design choices by providing insights into achieving high
reliability without significant hardware expansion.
In [30], the authors perform a comprehensive comparative

analysis of various approximate multipliers, considering both
error and circuit characteristics and applying these findings to
a practical image processing application to assess real-world
performance.
Regarding arithmetic circuits based on the approximate

computing paradigm, in [31], the authors present a detailed
overview of the test and the reliability of such circuits. They
discuss the intricate balance between the achieved system
reliability and the efficiency gains from using approximate
hardware, with a focus on strategies like fault classification,
error detection, and selective hardening techniques.
In [32], the authors propose two methods for evaluating

the reliability of approximate arithmetic circuits using signal
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reliability analysis. The methods incorporate subtraction and
division correlation coefficients to address the correlation
issue caused by fanout reconvergence. These techniques are
validated against Monte Carlo simulations. The methods are
more efficient and accurate compared to existing reliability
analysis approaches. Additionally, the paper provides detailed
experimental results showing the methods’ scalability and
reduced memory overhead compared to prior methods.

In [33], the authors present an efficient method for evaluat-
ing the reliability of approximate arithmetic circuits (AACs)
under varying input signal probabilities. By addressing the
correlation issues caused by reconvergent fan-outs, they de-
velop a new model to estimate the reliability of AACs and
propose two heuristic search algorithms to determine the
lowest possible reliability, forming a reliability boundary.
The method is validated on several AAC designs, including
adders and multipliers, and demonstrates higher accuracy
and efficiency compared to prior models. The drawbacks, as
mentioned in the paper, include higher memory overhead due
to the storage of intermediate data like signal probabilities and
correlation coefficients.

To the best of our knowledge, this is the first work to
propose a reliability evaluation flow in combination with
evaluation metrics specifically designed to assess the impact
of permanent hardware faults on arithmetic circuits. Our pro-
posed work seeks to provide different metrics for assessing
the reliability and contribute to the failure mode effects and
criticality analysis (FMECA) of these units, which can be
incorporated into different computational devices in safety-
critical systems. Unlike most existing studies focusing on
approximate circuits, our approach quantifies the effects of
permanent hardware faults accurately at the gate level of an
arithmetic circuit, producing statistical information regarding
the fault severity and error rates.

C. MULTIPLIER CIRCUITS
The multiplication operation is ubiquitous in electronic sys-
tems nowadays, from simple consumer gadgets to high-end
computational systems used for scientific computation. In-
deed, multiplication is one of the most critical operations
in any arithmetic circuit or accelerator since it significantly
impacts the circuit’s speed, area, power expenditure, and re-
liability. These main aspects of multiplier circuits are strictly
related to the complex nature of multiplication in hardware,
which also implies the extensive number of logic gates re-
quired to perform the operation. In fact, multiple strate-
gies are adopted to implement efficient multiplier circuits
to accomplish strict design constraints such as performance,
power budget limitations, area overhead, and speed. Nonethe-
less, when considering safety-critical systems, reliability is a
paramount aspect that every design, including the multipliers,
must accomplish. Therefore, evaluating their vulnerabilities
regarding hardware defects is important to provide enough
information to the designer when selecting an adequate mul-
tiplier architecture for a target application.

In general, a multiplier circuit is composed of two main

an−1 an−2 . . . a0
× bn−1 bn−2 . . . b0

z0,n−1 z0,n−2 . . . z0,0
z1,n−1 z1,n−2 . . . z1,0

. .
.

. .
.

. .
.

+ zn−1,n−1 . . . zn−1,0

p2n−1 p2n−2 . . . p1 p0
Figure 2. Multiplication of two n-bit integer operands (A, B), using the
classical multiplication algorithm.

building blocks: (i) a partial product generation block and
(ii) an array of adders that performs the "sum of products".
How each of these blocks is constructed or organized defines
the specific architecture that directly impacts the physical
and operational characteristics of the final circuit (e.g., area,
power, and delay). Figure 2 depicts the basic algorithm of
an array multiplication circuit. This architecture comprises a
significant amount of half-adders and full-adders that highly
impact by the carry propagation delay of the multiplier, espe-
cially in the critical path from z0,0 to p2n−1 [34].
In this regard, there are multiple works in the literature

that propose architectural variations that are able to tackle the
delay limitations and the area and power features of the final
circuit. Nonetheless, none of such works have considered the
impact on the reliability of the multiplication operation when
considering variations of the architecture in the underlying
computational hardware. In this work, we study Two well-
known multiplier architectures: Booth, and Dadda multipli-
ers. In the following subsections, we provide further details
about each of them.

1) Wallace and Dadda multiplier architectures
Wallace [35] and Dadda [36] multipliers are designed to de-
liver high speed computations. In fact, the Dadda multiplier is
a variation of theWallacemultiplier architecture with reduced
amount of gates. These multipliers focus their optimization
on the delay reduction of the ‘‘sum of products’’ block of
the multiplier. Their main idea is to carry out any HA or FA
operation in a given bit position as soon as its operands are
ready, irrespective of their partial product (row) position. In
fact, these multiplier architectures try to run as many HA or
FA operations in parallel as possible. Consequently, they gain
in terms of speed. The multiplier operation is split into several
phases. For each phase, the ready FA or HA operations are
carried out, and thus, the tree depth is reduced as we move
from phase i to phase i + 1 until the number of tree rows is
reduced to two rows. These two rows are then passed to a
fast n-bit adder (e.g., carry-look-ahead adder) to get the final
multiplication result. The detailed algorithms of Wallace or
Dadda tree multipliers include several tweaks to ensure that
the final tree is reduced uniformly to two rows across as many
bit positions as possible.
In Figure 3, we illustrate an example of these reduction

strategies for 4-bit operand multiplication. The algorithm is
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(a) wallace reduction

i
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(b) dadda reduction

Figure 3. Summand reduction using Wallace and Dadda strategies for
d=3,2 (see [34], [36]). Dots represent z i,j summands, and red/blue boxes
represent HAs/FAs, respectively.

carried out in the following phase sequence:

i. The zi,j summands are re-organized into a tree structure
and divided into HA/FA groups.

ii. The tree depth is recursively trimmed by the usage of
HAs and FAs according to the algorithm until it reaches
a depth of 2.

iii. The final 2 rows are passed to a fast n-bit adder to get
the final multiplication result.

FAs are alternatively called 3:2 compressors as they com-
press their three input into two-bit outputs. Similarly, HA
are called 2:2 compressors. The research community further
dived into the reduction process (step ii), and besides the
HAs/FAs, further compressor schemes have been proposed
[37], which resulted in even faster and more efficient multi-
plier circuits.

2) Booth multiplier architecture
The Booth multiplier architecture can perform both unsigned
and two’s complement signedmultiplications with slight vari-
ations, without changing the complete circuit architecture.
One of the main advantages of the Booth multiplier is that
it optimizes the partial product generation stage instead of
changing the sum of product reduction as Wallace or Dadda
multipliers do. Typically, the Booth multiplier reduces the
number of partial products by a factor of two, reducing
the number of stages required to perform the sum of prod-
ucts [38].

Figure 4 illustrates the typical architecture of an 8-bit
Booth multiplier that uses radix-4 encoding for one of the
inputs (i.e., Multiplier). The Booth encoder takes 3-bits from
the multiplier input to generate one multiplicative factor
Enci = {0,±1,±2}. In total, for an 8-bit multiplier, four
Booth encoders generate four partial products. The partial
products generation uses a special Booth decoder unit that
implements the product between the inputM and the encoder
Enci generating the partial product PPi = EnciM .

The ‘‘sum of products’’ takes the partial products and
implements an adder tree structure to calculate the final result.
It must be noted that partial product accumulation can also be
implemented by following the Wallace or Dadda reductions.
We selected four multiplier architectures spanning two

important bit widths (8 and 32 bit widths) and two important,
yet orthogonal, directions for enhancing the performance of
binary multipliers (Dadda and Booth multiplication algo-
rithms). A vast myriad of multiplier architectures is available
in the literature, including approaches that combine theDadda
and Booth algorithms to achieve a higher performance level
for binary multipliers. Our focus is on exact multipliers only.
Also, we avoided prospective approaches that are not ripe
yet for industrial use or over complex approaches. Although
we used four examples, we believe that we covered the vast
multiplier design space in a reasonable and feasible way. Our
approach for assessing binary multipliers’ reliability can be
easily applied to any other multiplier architecture.

Multiplicand A

Adder Tree

CPA

Product AXB

M
ul

tip
lie

r B

Figure 4. Booth multiplier architecture.

III. RELIABILITY EVALUATION OF MULTIPLIERS CIRCUITS
This section describes the proposed procedure to quantita-
tively assess the impact of permanent (stuck-at) faults on
different multiplier circuits. Also, we introduce the evaluation
metrics used to estimate the fault criticality of any arithmetic
circuit. The evaluation strategy comprises the following main
stages: (i) circuit and dataset preparation, (ii) fault injection
campaign, and (iii) data post-processing. In the following
sections, we introduce further details about every stage of the
evaluation methodology.

A. CIRCUIT AND INPUT DATA PREPARATION
This is a crucial stage in the reliability evaluation of the
arithmetic circuits since it uses the real hardware implemen-
tation of the target circuit in order to define (1) the set of
faults to be considered and (2) the input stimuli to be used
during the reliability evaluation. In an ideal case, the reliabil-
ity evaluation should consider the evaluation of all possible
faults in the circuit in combination with all possible input
combinations of operands that could eventually be applied
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Figure 5. CNN implementation using a TCU accelerator of shape
ms × ns × ks = 16 × 16 × 16. One of the multipliers of one DPU was
profiled in order to get the operand traces during the inference of a
neural network.

to the target arithmetic circuit. In the first case, some faults
inside the circuit are considered functionally equivalent [39]–
[41], producing the same effects on the circuit. Thus, the
redundant faults can be removed or collapsed into a subset of
faults to be used during the fault injection campaigns, directly
reducing the overall evaluation effort.

On the other hand, using exhaustive input stimuli combina-
tions to feed the circuit during the fault injection campaigns
does not provide substantial benefits to the reliability evalua-
tions. First, the number of possible operationsmay result in an
unmanageable set of possible operand values. For example,
in a 32-bit arithmetic circuit, there are 264 or ≈ 1.8 × 1019

possible input operand combinations, which would require an
extremely high simulation time even when only considering
the circuit without faults. In contrast, when the circuit is
included in the context of an application like DNN model
computation, then the operands are bounded between certain
ranges, limiting the number of combinations but increasing
the number of times the hardware executes a particular oper-
ation. Therefore, using representative sampling traces from a
target application provides better insights into the reliability
of the circuit under realistic workloads.

Thus, considering these crucial aspects, we used the fol-
lowing sequence of steps to generate both the list of faults and
the set of evaluation stimuli. First, we assume that the target
circuits are available as an RTL description in a given Hard-
ware Description Language (HDL) representation. Then, the
circuit is synthesized into its gate-level netlist using a target
technology library through an EDA tool. In addition, the
synthesis stage also provides preliminary information about
the circuit, such as the number of cells, area, power, and delay.

After the gate-level synthesis, the circuit netlist is analyzed
to identify the list of faults to be used during the fault injection
campaigns. In this work, we performed the evaluations using
the stuck-at-fault model. However, considering other fault
models, the same steps can also be applied. The fault list is
generated by resorting to the fault manager of a commercial
Automatic Test Pattern Generation EDA tool. The fault man-

ager performs a structural fault analysis of the target circuit
and fault-collapsing procedures (to remove equivalent faults),
keeping only the prime faults [42]. The fault-collapsing pro-
cedure is significant since it produces only the fundamental
set of faults, reducing the total number of fault injection
campaigns.
Finally, the input stimuli selection for the fault injection

experiments is composed of quantized 8-bit integers from
a set of convolutional neural networks and a set of data
randomly generated as pairs of 8-bit integers. In the first
case, the stimuli selections were conducted by extracting
traces of a single multiplier from a Tensor Core Unit (TCU)
like accelerator [8], [43] while executing a DNN workload.
For the purpose of this paper, we employed a single TCU
core composed of 256 dot product units (DPUs) arranged
in a bi-dimensional shape of 16×16. The TCU comprises
4,096 multipliers, that is, 16 multipliers per DPU. In addition,
the DNN computations were mapped to the TCU core by
transforming convolutional and linear layers into tilingmatrix
multiplications of size 16×16×16 as depicted in the Figure 5.
It is important to highlight that the multiplication traces were
obtained using typical 8-bit quantized DNN models while
executing the inference of the 20% of the evaluation dataset
using the described TCU core.
The data tracing procedure may result in a huge volume

of data, ranging from thousands to hundreds of millions of
possible operations. However, the parameters of the DNN and
the intermediate features of a DNN make the data uniformly
distributed around zero. This means that a significant number
of multiplications correspond to the same operands (i.e., pairs
of weights and activations). In order to reduce the number of
stimuli to be applied during the fault evaluations, we can filter
the traced data, extracting only the unique pairs of operands
rather than considering the number of times they are used
during the DNN computation. This subset of operands is then
sampled uniformly using only 10,000 unique samples (i.e.,
operand pairs). This sampling procedure significantly reduces
the computational cost required during the fault injection,
which still represents more than 99% of the data used during
the computation of a DNN algorithm.

B. FAULT INJECTION CAMPAIGNS
The next step in our evaluation flow is the simulation-based
fault injection procedure. This procedure allows us to assess
the impact of every fault on the circuit’s results when applying
a given input stimulus. At this stage, the gate-level description
of the circuit under evaluation is wrapped in a testbench
(TB) that applies the input stimulus and captures the circuit
responses, creating a file used in the post-processing stages.
The Fault injection campaign is orchestrated via a commercial
simulation tool through simulation commands (i.e., force)
that control the status of the internal circuit signals according
to the selected fault model.
Algorithm 1 describes the fault injection procedure used

in this study. First, the TB is responsible for importing the
fault list and an input stimulus source. Subsequently, the TB
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Algorithm 1 Fault Injection Campaigns routine for CUT.

1: Results← ∅
2: Errors← ∅
3: for all stuck-at-fault sa in fault-list do
4: FM_responses← ∅
5: GM_responses← ∅
6: inject_fault(sa)
7: for all operand pair (a, b) in stimulus source do
8: FM_responses = FM_responses ∪ CUT (a, b)
9: GM_responses = GM_responses ∪ a× b
10: end for
11: remove_fault(sa)
12: end for
13: statistics = error_analysis(GM_responses , FM_responses )
14: return statistics

generates two instances of the circuit under test, one for the
Golden Machine (GM) and one for the Faulty Machine (FM).
These two circuits are used to form a miter circuit, which
keeps track of the different responses of the two circuits. In
an iterative fashion, the FM is injected with one stuck-at-fault
at a time. Then, the TB feeds the operand pairs to both the
FM and GM models while logging their responses. When all
operands have been processed, the FM and GM responses
are dumped into an output file that is later used to assess the
impact of each injected stuck-at-fault.

C. FAULT INJECTION POST-PROCESSING
Finally, the reports obtained from the fault injections are used
to assess the effect of faults in the target circuit and quantify
their severity. Inspired by previous studies in the field of
approximate circuits [44]–[46], we used the Error Distance
(ED), the Mean Error Distance (MED), the Mean Relative
Error Distance (MRED), the Mean Square Error (MSE), and
the Error Rate (ER) as evaluation metrics that grade the
impact produced by defective arithmetic circuits.

The Error Distance (ED) describes the arithmetic differ-
ence between the results of the FM and GM circuits. There-
fore, the ED is calculated as ED = |RGM − RFM|, where RGM

and RFM represent the result of an operation produced by the
GM and FM circuits during the fault injection campaigns,
respectively.

The MED describes the average error induced by a fault
in the computation results of the evaluated circuit. MED is
computed according to Equation (1), where N is the total
number of operand pairs in the input stimulus sequence, and
EDi is the error distance between the FM and GM responses
for the input operand pair i.

MED =
1

N
×

N∑
i=1

EDi (1)

The Relative ED (RED) shows the relative difference of a
fault-induced error with respect to the fault-free result. The
RED is calculated as RED = ED

RGM . This metric allows us to
assess the severity of the fault considering the magnitude of

the expected results, such that the higher the severity of the
fault, the higher the RED value. For example, a single fault
may produce the same ED for two different operations in the
same arithmetic circuit. Nonetheless, the fault will produce
more critical effects on the operation that yields a smaller
magnitude result. In addition, we can calculate the mean RED
per fault according to Equation (2), where N is the total
number of operand pairs of the input stimulus source, REDi

the relative error distance between the FM and GM responses
for the input operand pair i.

MRED =
1

N
×

N∑
i=1

REDi (2)

TheMean Squared Error (MSE) is another metric typically
used to quantify the accuracy of approximate circuits [44]–
[46]. However, MSE can be used to quantify the severity
of faults affecting a given arithmetic circuit. In that case, a
higher MSE magnitude indicates higher fault severity on the
evaluated component. The MSE that represents the effects of
a fault on a circuit can be defined as follows:

MSE =
1

N
×

N∑
i=1

EDi
2 (3)

Although these metrics are widely used to assess the prob-
ability of arithmetic errors in different contexts, it is also im-
portant to underline that a circuit may be affected by hundreds
or thousands of faults. Hence, each fault may have a different
impact on the circuit behavior. This means that some faults
can produce tolerable or accepted errors, while others can
severely corrupt the circuit’s operation. Thus, the severity of
faults on the complete circuit cannot be described as a scalar
evaluation metric only. In this paper, we propose additional
evaluation metrics that can be used to perform an FMECA
analysis on the arithmetic circuits.
Following this approach, we propose a criticality evalua-

tion analysis, based on statistical quantiles, that allows us to
identify each fault’s severity or group of faults. Hereafter, we
refer to this severity evaluation as Fault Severity Bins (FSBs).
The FSB considers the MED per fault and groups them into
five statistical quartiles defined as follows:
Q0: The minimum value of the distribution.
Q1: The value under which the 25% of the data are located.
Q2: The value under which the 50% of the data are located.
Q3: The value under which the 75% of the data are located.
Q4: The maximum value of the distribution.

The FMECA procedure will identify the most critical
faults, i.e., those belonging to the highest bins (Q3 and Q4).
The Q0 bin reports faults that do not produce any erroneous
results, which can thus be considered as safe faults accord-
ing to the definition of some safety standards, such as ISO
26262 [47].
On the other hand, the fault severity analysis can be com-

plemented by considering the worst error distance produced
by a given fault on the circuit’s behavior. In fact, faults do
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not necessarily produce errors in the complete dynamic range
of the circuit outputs. Instead, the errors produced by a fault
might be associated with its location inside the circuit, which
also determines how the fault propagates through the circuit
structure, affecting only portions of the final result.

In order to study such fault effects, we define the Worst
Error Distance (WED) of a fault as:

WED = max
i∈[1,N ]

{EDi}

where N is the total number of operand pairs of the input
stimulus set, andEDi is the error distance between the FM and
GM responses for the computed operation i. This metric can
be used to assign faults with similar error effects to a common
severity group. We define as many severity levels βn as the
number of bits Nbit in the output port of the arithmetic circuit
under analysis. The severity levels are mutually exclusive,
which means that a fault assigned to a group can not be part
of another severity level. Equation (4) presents the definition
of a severity level βn in terms of the bit n and WED. It is
worth noting that the β0 represents the lowest and βNbit−1 the
highest severity levels, respectively. This permits associating
the maximum possible error induced by a fault with a single
bit flip observed at the output result. For example, if a fault
induces a WED = 2, 000, the fault is assigned to the severity
level β11 = 210 < 2, 000 ≤ 211 which approximates the
worst error as a bit-flip in the 11-th bit of the output result.

βn = 2n−1 < WED ≤ 2n (4)

Lastly, complementary evaluation metrics are used to eval-
uate the impact of the faults in terms of the error rate. First,
we define the Fault Activation and Propagation Rate (FAPR)
as a scalar metric that represents the fraction of faults in the
evaluated circuit that generate at least one corrupted result at
the circuit’s output. Equation (5) describes the FAPR calcula-
tion, whereK is the total number of faults in the circuit,WEDi

is the worst error distance for the i-th fault, and δ(WEDi ̸= 0)
is the indicator function, that is equal to 1 when WEDi ̸= 0
and 0 when WEDi = 0.

FAPR =
1

K
×

K∑
i=1

δ(WEDi ̸= 0) (5)

We also define the Mean Operations Between Errors
(MOBEs) as an evaluation metric that indicates the number
of correct operations produced by the faulty circuit before
one corrupted result appears. It is important to mention that
MOBEs consider the number of times every operand is used
during the whole application execution. MOBE can be math-
ematically described by the Equation (6), whereM represents
the length of the tracing report; EDij corresponds to the error
distance induced by the i-th fault on the j-th multiplication
(from the fault injection results);Wj corresponds to the num-
ber of times the j-th operand pair is used during the CNN
computation, and δ(EDij ̸= 0) is the indicator function that is
equal to 1 when EDij ̸= 0 and 0 when EDij = 0.

MOBE =
K ·M∑K

i=1

∑N
j=1Wj · δ(EDij ̸= 0)

(6)

Similarly, the bit error rate (BER) measures the fraction
of bits that are corrupted when considering the complete
workload execution in the presence of faults. Equation (7)
illustrates the BER calculations from the fault injection re-
sults. In the equation, d(RGM

ij ,RFM
ij ) represents the Hamming

distance between the GM and FM responses for the i-th fault
in the j-th operation, whereas Nbit represents the number of
bits of the output port of the evaluated circuit.

BER =

∑K
i=1

∑N
j=1 d(R

GM
ij ,RFM

ij ) ·Wj

K ·M · Nbit
(7)

IV. EXPERIMENTAL SETUP
The first two circuits correspond to different implementations
of a signed 32-bit Dadda multiplier. Namely, Circuit A is
a variant that uses 7 to 3 compressors and a carry look-
ahead adder for the final addition, whereas Circuit B is a
variant that uses 3 to 2 compressors and a Han-Carlson adder,
respectively [37]. The RT-level description of these circuits
has been developed by members of the Aoki laboratory at
Tohoku University.
The other two multipliers correspond to two variants of an

8-bit Booth multiplier architecture. TheCircuit C implements
the classical Booth multiplier circuit [48], whereas Circuit
D is a multiplier taken from the publicly available NVDLA
accelerator [49]. Moreover, the NVDLAmultiplier is a mixed
precision architecture that can be configured to operate as one
16-bit multiplier or two 8-bit multipliers. It is worth noting
that the NVDLA multiplier does not include hardware to
perform the last sum of the final result (i.e., the CPA adder).
This is because the multiplier belongs to a DPU unit that
merges the sum of several multipliers in a common adder
tree unit. As the evaluation of full DPU units is out of the
scope of this work, we implemented the functional behavior
of the last CPA adder in the test-bench to calculate the final
multiplication value.

Table 1. Circuits’ details.

Circuit Area Cells # Stuck-At
Comb. Seq. Buf./Inv. Collapsed Total Faults

A 4,912.22 3,299 0 708 12,456 30,226
B 5,721.92 2,729 0 250 10,512 33,464
C 1,060.54 1,202 2 267 2,920 6,030
D 1,569.67 947 0 128 5,743 9,594

All circuits were synthesized using the OCLNangate 45nm
technology library [50] via Synopsys Design Compiler. Ta-
ble 1 shows the details of the logic synthesis for every circuit.
In detail, we report the area in terms of the number of cells
(combinational and sequential) and I/O buffers. Interestingly,
Circuit A reports less cell area than Circuit B while
having a higher number of cells, which naturally results in
more stuck-at faults. On the other hand, the NVDLA multi-
plier (Circuit D) is only 45% larger than the basic Booth
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Figure 6. Distribution of operands for ResNet50 multiplications.
OperandA corresponds to the neuron activation values, and OperandB
corresponds to the values of ResNet50 weights. The operands
combinations around zero in the range [-32, 32] are the most frequently
used, exceeding in more than 106 other operands combinations.

multiplier (Circuit C), even though it implements the
functionality of two 8-bit multipliers in parallel. Nevertheless,
Circuit D has almost double the amount of permanent
faults with respect to Circuit C.

For the input stimuli selection, we used three CNN models
for image classification applications: LeNet5, ResNet18, and
ResNet50. All models used 8-bit Post Train Quantization us-
ing PyTorch [51]. The LeNet5 model performs image classi-
fication among ten different classes from the MNIST dataset,
whereas both ResNet models classify images in the CIFAR10
dataset.We extracted the multiplication traces from one of the
multipliers in a 16x16x16 TCU accelerator while executing
the inference of all CNNs using the 20% of the validation
dataset (i.e., 20,000 images from MNIST and 2,000 images
for CIFAR10).

The length of the traces significantly increases as the DNN
models grow in size (i.e., in terms of the number of lay-
ers). Thus, for the LeNet5 model, we obtained 5x106 dif-
ferent multiplications operations, whereas, for the ResNet18
and resNet50 models, the number of traced multiplications
reached 104x106 and 2x108 multiplications, respectively. As
mentioned in the previous section, the CNN computations
are typically concentrated into a small set of unique operand
combinations. Figure 6 reports the traced distribution of
operands in the ResNet50 model. At first, we observed that
the OperandB covers the complete dynamic range of the
signed int 8-bit representation. This is because this multiplier
input operand is always fed with the weight values of the
neural network. This is explained by the per-channel symmet-
ric quantization employed on the neural network benchmarks
used in this paper [51]–[53]. On the other hand, the dynamic
range of the Operand A is restricted to the range [-64, 64],
describing the intermediate feature maps of the neural net-
work traced during the inference stage. It is worth noting that

most of the data of the Operan A is distributed mainly in the
range [0, 48]. In addition, we observed that in neural network
computations, most operations are concentrated around zero
for both operands. In fact, the most recurrently used operand
combinations (in more than 106 times) lay in the ranges
[-32, 32] for operand B and [0, 32] for operand A. This
similar data distribution pattern was found for the other neural
network benchmarks used in this paper.
In order to soften the complexity of the fault injection cam-

paigns, we selected the 10,000 unique most frequent operand
pair combinations as the input stimulus during the fault injec-
tion campaigns. In addition, we generated a supplementary
set of evaluation stimuli composed of 10,000 operand pairs
randomly generated according to a uniform distribution. This
last set of stimuli is used to compare the evaluation differences
between data taken from realistic workloads and evaluations
based on artificial data generation for this kind of evaluation.
The fault injection procedure described in the previous

section was implemented in finjenv, an automated fault
injection environment we developed for quantitative reliabil-
ity assessment of arithmetic circuits [54]. The environment
used for performing the fault injection campaigns is based
on QuestaSIM by Siemens EDA. A fault injection campaign
was conducted for every target circuit using the selected
stimulus from theCNNs, injecting one stuck-at-fault at a time.
Subsequently, a complete post-processing analysis allowed
to quantify the degree of severity of each fault for every
multiplier under different CNN application workloads.
All of our experiments were performed in a system using

2 Intel(R) Xeon(R) Gold 6238R processors with 256 GB of
RAM. The tracing procedure for all CNNs required approxi-
mately 12 hours. The fault injection campaigns required about
48 hours for all the circuits and sets of selected stimuli.

V. EXPERIMENTAL RESULTS
This section reports the experimental and quantitative evalua-
tion of the impact of faults on four different multiplier circuits
when considering three representative DNN workloads.

A. FAULT-INDUCED ERROR ANALYSIS
The first set of analyses evaluates the impact of fault in terms
of arithmetic errors affecting the result of every multiplier
circuit.
Figure 7 illustrates the distribution of MED, MRED,

and MSE through their quartiles in the form of a box-
and-whiskers plot for each circuit and application workload
data [55]. The upper and bottom edges of the boxes represent
theQ3 andQ1 quartiles, respectively. The line in the center of
the box represents themedian orQ2. and the upper and bottom
whiskers represent the maximum (Q4) and the minimum (Q0)
without outliers.
In general, the results demonstrate that 32-bit multipliers

are prone to generate high error magnitudes both in terms of
MED and MSE, whereas the 8-bit multipliers induce errors
whose size is several orders of magnitudes lower than their
32-bit counterparts. The reason for this noticeable difference
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Figure 7. Distribution of errors induced by faults on every multiplier circuit.

is associated with the number of bits used by every multiplier,
such that the higher the number of bits at the output of the
multiplier, the higher the error magnitude possibly induced
by any fault in the circuit. Consequently, a fault on a 32-bit
multiplier, commonly present in general-purpose platforms
(e.g., GPU), potentially induces a dominant error magnitude
that overruns application execution during the computation
of 8-bit workloads, making the effects of faults more critical
-in terms of error magnitudes- than using dedicated 8-bit
hardware only.

Going into detail, the results show that faults in both of
the 32-bit multipliers can induce zero as minimum MED and
1019 as maximum MED regardless of the application data.
However, when looking at the Q1, Q2, and Q3 quartiles of
the error distributions, we observe that faults affecting the
Circuit B induce about 104 higher MED when compared
with faults affecting the Circuit A. Interestingly, in the
case of the Circuit A, 25% of the operations (Q1) were
not affected by faults, which led the data under Q1 almost the
same as the minimum MED (Q0). It must be noted that for
both multipliers, the ResNet models and the Random 8-bit
data generate one order of magnitude higher MED than the
LeNet5 CNN.

When it comes to the 8-bit multiplier circuits, the faults can
eventually generate, on average, up to≈ 104 in terms ofMED
magnitudes in both of the cases. In the case of Circuit
C, the faults produce errors almost two orders of magnitude
larger than in the case of faults in Circuit D. Furthermore,
the results also show that different applications in the same
multiplier can be affected differently. For example, the faults
on the Circuit C generate similar MED effects when us-
ing data from CNN workloads; on the contrary, when using
random 8-bit data, faults on the same circuit induce an almost
one order of magnitude higher MED. This indicates that
using stimuli artificially generated for this multiplier leads to
pessimistic results in comparison with real CNN workloads.

On the other hand, faults on the Circuit D produce
noticeable differences when performing multiplications on
data coming from different application sources. In particular,
the results indicate that 50% of the operations of LeNet5
and Random 8-bit benchmarks are corrupted by faults that

induce up to ≈ 101 MED. In contrast, the same percentage
of operations in the ResNet models exhibit a MED lower
than 1. Thus, when using the MED as an evaluation metric
of faults in multiplier circuits, the results show that different
hardware implementations cause faults to produce significant
and myriad error magnitudes regardless of the application
benchmarks. In addition, the results seem to indicate that such
error magnitudes generated by faults are strictly associated
with the final implementation of the multiplier circuit, and
in some cases, the hardware implementation also impacts the
applications differently.

Further evaluations regarding the MRED allow for assess-
ing the fault severity in relation to the expected output results.
In this case, the higher the MRED, the higher the impact of
the fault. In general, the results show that 32-bit multipliers
have higher MRED, which also means that faults affecting
these circuits induce error distancesway far from the expected
output results. On the other hand, while the Circuit A
exhibits an MRED ≤ 1 for ≈75% of the operations in all
of the evaluated benchmarks, the Circuit B generates up
to 1.75 MRED for the same amount of data for the LeNet
and ResNet50 benchmarks and up to 1.5 MRED for the other
benchmarks. These results indicate that the faults in Circuit B
are way more aggressive than in Circuit A and generate errors
that are up to 150% larger than the expected ground truth
values. The same evaluation for the 8-bit multipliers shows
that for both circuits, the MRAD does not exceed 0.25 for
the 75% of the data for all benchmarks, even though there are
some rare cases inwhich the errors are significantly large (i.e.,
MRED > 0.5). It is important to point out that the impact of
faults on every benchmark changes when considering differ-
ent multiplier circuits and different benchmarks. For example,
the CNN benchmarks in Circuit C have similar error effects.
However, in the case of Circuit D, the LeNet5 benchmark has
a higher MRED than the other evaluated benchmarks.

These error evaluations provide a general view of the
fault effects on different multiplier circuits while considering
various representative CNN benchmarks. In these cases, the
results indicate that, in general, using 32-bit multipliers to
perform 8-bit computations will result in higher errors when
permanent faults affect these circuits in comparison with
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Figure 8. Fault Severity Bins of Mean Error Distance (MED).

faults affecting 8-bit hardware computation. Furthermore, the
results show that the error magnitudes induced by faults on
every multiplier may affect every application in different
manners. Consequently, the fault injection campaigns de-
scribed in this work are crucial to characterize the fault effects
on the considered circuits correctly.

B. FAULT SEVERITY EVALUATION

In addition to scalar (i.e., based on single value metrics) eval-
uations of the fault effects on the studied circuits, it is crucial
to discriminate the faults according to their error severity for
all evaluated benchmarks and circuits. In this sub-section,
we present the evaluation results considering two different
strategies: (i) Fault Severity Bin (FSB) evaluation in terms
of the MED, and (ii) Fault Severity Levels (FSL) in terms
of the WED. The first evaluation allows us to compare all
the circuits independently on their precision (i.e., 32-bits or
8-bits) by focusing the analysis on the percentage of faults
associated with the quartiles of the error distributions. The
second evaluation approach ranks the faults in the circuit
according to several fine-grain FSLs regarding the WED.

Figure 8 presents the results of the fault injection cam-
paigns in terms of the Fault Severity Bins (FSBs). We report
an individual plot for each evaluated benchmark. For all
experiments, the Q0 bin contains the stuck-at faults which

do not impact the outcome of the multiplication (i.e., the
safe faults). Each other bin contains the faults for which the
MED value belongs to the interval (Qi−1,Qi]. The reported
results indicate that the faults may behave differently in terms
of the multiplier circuit and the evaluated benchmark. The
percentage of safe faults for both 32-bit multipliers remains
constant regardless of the application benchmark, where 35%
of the faults in Circuit A and 6% of the faults in Circuit
B do not produce any observable effect at the output of the
circuit. Nonetheless, this characteristic does not apply in the
case of the 8-bit multipliers, where the safe faults change
according to the multiplier circuit and the benchmark. For
example, the safe faults in Circuit C (≈5%) are consistent
for all the CNN benchmarks, but in the case of the random
uniform benchmark, the number of safe faults is significantly
lower, dropping to< 1%. In contrast, the portion of safe faults
in Circuit D changes among the evaluated benchmarks. For
example, about 30% of the faults in circuit D are considered
safe faults for the Random Uniform and LeNet5 benchmarks.
However, such percentage increases to 46% and 50% for the
ResNet benchmarks.

Interestingly, 50% of the faults in all multipliers and all
evaluated benchmarks always lead to highly severe error
effects (i.e., Q3, and Q4). This portion of faults is equally
distributed into the Q3 and Q4 bins, where 25% of the faults
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Figure 9. Percentage of faults in the multiplier generating a Worst Error Distance (WED) bounded in the range βn = 2n−1<WED ≤ 2n. The results indicate
that around 50% of the faults, regardless of the circuit, always generate a WED greater than 2m, where m represents the number of bits of the input
operands.

generate up to 75% of the highest MED at the output of the
circuits, whereas the other 25% of faults induce the maximum
error in all circuits for all benchmarks. Notably, less than
1% of the faults in Circuit A and Circuit D generate effects
associated with Q1 across all the evaluated benchmarks. In
contrast, almost 20% of the faults in circuits B and C lay in
the Q1 severity bins for the CNN benchmarks; however, in
the case of circuit C, the number of faults increases to 25%
when evaluating the Random 8-bit benchmark. On the other
hand, in the case of the severity bin Q2, the percentage of
faults in circuits A (15%), B (25%), and C (25%) remain the
same regardless of the evaluated benchmarks. Nonetheless,
for the same severity bin, the percentage of faults in Circuit
D varies significantly across the benchmarks. For example,
when evaluating the Random 8-bit and LeNet5 benchmarks,
20% of the faults in the circuit D generate errors associated
with bin Q2, but in the case of the ResNet benchmarks,
the percentage of faults drops to less than 5% for the same
severity bin Q2.

In general, the FSB results indicate that for all the mul-
tipliers and benchmarks, 50% of the faults are potentially
critical since they produce the most severe MED, and are thus
grouped in the Q3 and Q4 bins. Nonetheless, the other 50%
of faults can produce diverse type of effects that clearly de-
pend on both the hardware implementation and the evaluation
benchmark.

We performed a fine-grain evaluation analysis considering

FSLs regarding the WED of faults on the evaluated circuits
and benchmarks. Figure 9 reports the percentage of faults on
every circuit that lay on each FSL according to their WED on
every evaluated benchmark. We report an individual plot for
each evaluated circuit. For each benchmark, the sum of the
faults in all FSLs corresponds to 100% of the total faults on
every circuit. The label 0 in the horizontal axis indicates that
the faults in that category do not produce any error; in other
words, they are considered safe faults. From the plots, we
observe that the fault severity in the case of 32-bit multipliers
is almost the same across all the evaluated benchmarks. In
fact, the percentage of faults in both Circuit A and B are
almost uniformly distributed among the FSLs from β8 to β47.
On average, 1% of the faults belong to each FSL. However,
while the percentage of faults belonging to the higher FSLs
in Circuit A decreases down to 0.5%, in the case of Circuit
B, it always remains higher than 0.5%, and for the most
severe group, β63 the percentage of faults reaches almost 5%
for this last circuit. Additionally, the percentage of faults is
distributed in the samemanner for both multipliers in the low-
FSLs (i.e., β0 to β7).

We observe from all plots in Figure 9 that the relationship
between WED severity levels and the percentage of stuck-
at faults does not follow a monotonic trend. This can be ex-
plained by the fact that most stuck-at faults do not necessarily
induce higher ED values. Instead, the distribution of stuck-at
fault percentages is architecture-specific and influenced by
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Figure 10. Fault Activation and Propagation Rate (FAPR). This plot
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corrupting at least one operation divided by the total number of faults in
the circuit.
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Figure 11. Mean Operations Between Errors (MOBE) in 109

multiplications.

the executed workload.
On the other hand, when using 8-bit multipliers, we ob-

served that the percentage of faults contributing to the differ-
ent severity levels changes across the evaluation benchmarks,
as well as between multipliers. For example, in the case of
Circuit C, the percentage of faults belonging to the FSLs un-
der β7 is significantly lower for ResNet50 and Random 8-bit
than for the other evaluated benchmarks. This indicates that
when using Circuit C to compute ResNet18 and LeNet5, more
faults generate WED below 27 than in the case of ResNet50
and Random 8-bit benchmarks. For the same circuit, the
ResNet18 benchmark shows a significantly higher percentage
of faults inducing WED in all the FSLs below β12 than all the
other benchmarks. In addition, more than 10% of the faults
seriously impact all the CNN benchmarks by inducing WED
belonging to the β14, which means that such a number of
faults can generate WED about ±214.

Finally, Circuit D shows that the higher the FSL, the higher
the percentage of faults per FSL. More in detail, the percent-
age of faults in the lowest FSLs linearly grows from 1% of

faults in the FSL β1 to 5% of the faults laying in the β6 FSL.
On the other hand, the percentage of faults along the FSLs
above β7 oscillates between 5% to 9% of the faults per FSL.
Interestingly, the application benchmarks seem to impact how
the fault generates different WED according the workload
data. For example, when using ResNet50, the percentage
of faults laying on some FSL (i.e., β2, β7, β8, and β10) is
particularly higher than the other evaluated benchmarks. In
contrast, all the other benchmarks exhibit similar behavior
across all FSLs.

C. ERROR RATE RELATED METRICS
Figure 10 shows the fault activation and propagation rate for
all evaluated circuits and benchmarks. The results indicate
that all evaluated benchmarks activate and propagate the ef-
fects of about 63% of the faults in Circuit A. On the contrary,
the same benchmarks can activate and propagate 94% of the
faults in circuit B. Therefore, these results show that Circuit
B is more likely to be affected by faults in the context of CNN
benchmarks than Circuit A. On the other hand, every bench-
mark has different capabilities of activating and propagating
the effects of faults when using 8-bit multipliers. In general,
all the benchmarks executed on Circuit C can activate and
propagate 30% more faults than Circuit D. In addition, the
CNN benchmarks have a lower fault activation rate than the
random 8-bit benchmark.
Figure 11 introduces the mean operations between errors

for all evaluated circuits and benchmarks. The plot shows the
MOBE when considering a workload execution of 109 multi-
plications. Interestingly, the results show that for most of the
multipliers, large CNN workloads execute, on average, more
correct operations before one operation is corrupted by faults
on the circuits. The reasons behind these results are connected
with the fact that in the CNNs benchmarks, pairs of operands
are recurrently used during the workload computations. Thus,
when such operands are safely computed by the multipliers,
even in the presence of faults, the application is more resilient
to such faults. Nonetheless, it is important to underline that
this is a characteristic of CNN computations, but it might be
different for other workloads, as in the case of the random
8-bit benchmark, which always exhibits lower MOBE.
In terms of multiplier circuits, the MOBE indicates that

Circuit B is the least reliable of all evaluated circuits, while
Circuit D seems to be the most reliable, with more correct
operations computed before an operation is corrupted. The
main reason Circuit D performs a higher amount of oper-
ation correctly than the others is due to the reconfigurable
architecture that allows it to compute in parallel two 8-bit
multiplications. Therefore, a fault affecting one side of the
circuit can only corrupt half of the operations; only faults
in the configuration flip-flops and in the multiplexers that
define the operative mode of the multiplier can corrupt both
of the 8-bit multiplications. It is worth noting that the MOBE
demonstrates that despite the fact that a single permanent fault
can persist during the whole operational workload, it does not
necessarily corrupt all the operations performed in the circuit.
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Figure 12. Bit Error Rates produced by faults on every multiplier circuit
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by faults on every multiplier circuit.

This means that a permanent fault in the multiplier circuit
can be modeled as an intermittent error at the circuit output.
Nonetheless, it is crucial to keep inmind that such intermittent
effects of faults strictly depend on the hardware implementa-
tion of the arithmetic circuit and the specific workload under
analysis.

Finally, we analyze the results of the fault injection cam-
paigns in terms of the bit error rate (BER). This is a well-
known metric typically used to evaluate fault effects at the
application level, describing generally transient phenomena.
However, in this work, we demonstrate that it can also be
applied to describe the intermittent effects of permanent faults
on the multiplier circuits. Figure 12 introduces the bit error
rate as a result of permanent fault effects on the evaluated cir-
cuits for all application benchmarks. A higher BER in the plot
indicates a higher impact of faults in the circuit. As in the case
of the MOBE evaluations, the BER significantly depends on
the workload and the number of operations it performs. In this
case, the large benchmarks we evaluated (i.e., ResNet CNNs)
have the lowest BER in comparison with LeNet5 and the
random 8-bit benchmarks for all the circuits. In addition, Fig-

ure 13 reports the survival function obtained by calculating
the complementary empirical distribution function (CEDF) of
the observed BER for all faults on each multiplier circuit. It
is worth noting that the CEDF is a common function used in
reliability engineering evaluations [56]. In the context of our
evaluation, the survival function indicates the probability that
a fault on a given multiplier is capable of inducing a bit error
rate higher than a given BER.
The results indicate that, in general, faults in the multi-

plier circuits have a decreasing probability of generating high
BERs. Nonetheless, in the case of the 32-bit multipliers, such
probability decreases significantly more than in the case of
8-bit multipliers for cases in which the BER > 10−2. For
example, the vertical black line shows that a fault affecting
Circuit D or C has around 30% probability of producing BER
higher than 10−1.5, whereas for the same scenario, for circuits
A and B, the probability drops down under 10%.
It is important to underline that a high BER probability

does not necessarily imply that the circuit is less reliable or al-
ways induces high critical results. In fact, when looking at the
FAPR and MOBE, Circuit D is the one that always performs
better. This means Circuit D has fewer faults that could poten-
tially produce an error. In addition, the MOBE indicates that
Circuit D provides significantly the highest amount of correct
operations before an erroneous result appears. Consequently,
a high probability reported by the survival function regarding
high BER values indicates that when a fault corrupts a given
operation result, there is a high probability that the fault effect
is observed in more than one bit per operation. In addition, the
fault severity evaluation in terms of MED and WED revealed
that the percentage of fault-inducing high error magnitude is
lower than in the case of other circuits.
In conclusion, the reliability evaluation of an arithmetic

circuit must include several evaluation viewpoints in order
to rank the potential criticality stemming from the inclusion
of the circuit in a safety-critical system. Furthermore, The
results point out that it is crucial to consider the workload
characteristics in order to gather realistic effects of faults
affecting arithmetic circuits. In fact, it is not enough to rely
only on random benchmarks without including information
about the frequency at which every operation is executed
along the time. On the other hand, the BER provides a general
idea about the impact of faults on a given circuit under certain
workload execution. However, BER has to be combined with
other metrics such as FAPR,MOBE, and fault severity assess-
ments to determine a more realistic reliability assessment of
the evaluated circuits.
Hence, our proposed fault evaluation flow, together with

the proposed metrics, can be used to select the best multiplier
in terms of reliability. Thus, when considering several arith-
metic circuits affected by faults, the ones with higher MOBE
values and lowest BER can be considered more reliable than
the others. On the other hand, the fault severity metrics (e.g.,
Worst Error Distance, orWED) seek to classify the number of
faults according to the error magnitude observed at the output
of the circuit. In this case, the circuit with the lowest number
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Figure 14. Reliability evaluation after applying the Fault-Aware Pruning (FAP) as error correction on the evaluated circuits. The results show reliability
improvements in terms of MED, MOBE, and BER when compared with uncorrected results reported in Figure 7, Figure 11 and Figure 12.
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Figure 15. Reliability evaluation after applying the sign extension from 16 to 64/32 bits as error correction on the evaluated circuits. The results show
noteworthy reliability improvements in terms of MED, MOBE, and BER when compared with uncorrected results reported in Figure 7, Figure 11 and
Figure 12.

of faults inducing high error magnitude can be considered
more reliable than others. Hence, these guidelines can help
the designer to select a given arithmetic circuit to enhance
the reliability of the system. Consequently, when we applied
our evaluation methodology to four multipliers, we obtained
that for 32-bit multipliers, CircuitA performed better than
CircuitB, and for 8-bit multipliers, CircuitD performed better
than CircuitC.

Moreover, the proposed evaluation strategy can be used
to identify the hardware structures that induce the highest
fault severity on the performance of the multipliers. This
can be exploited for implementing hardware-based selective
hardening on such identified hardware structures only or
to implement self-checking and self-repair mechanisms that
inform any hardware malfunction, preventing the occurrence
of a catastrophic result. Alternatively, the proposed fault eval-
uation flow can be used to identify the fault effects that can be
most harmful to an AI application. For example, when a fault
induces an operation result that falls out of the bounds of the
maximum expected computation outcome of the application,
the designer can include additional (HW/SW) mechanisms to
detect and mitigate such fault effects. In the following sec-
tion we study two potential software-based error mitigation
strategies derived from the experimental evaluation on the
target circuits. In this regard, our proposed evaluation flow is
a crucial step in designing and selecting reliable AI hardware
for real-world applications.

VI. RELIABILITY ENHANCEMENTS

Given the reliability evaluation results, we observed that the
32-bit multipliers used to execute 8-bit workloads produce
significantly larger error magnitudes under the presence of
some faults. Most of these fault-induced errors exceed the
maximum error margin of an 8 × 8 bit multiplication result
for our 8-bit workload (i.e., DNN workloads). In addition,
general-purpose computational devices (e.g., GPUs) include
32-bit hardware units that can be used to perform highly
computationally intensive applications such as DNNs. In such
cases, the 32-bit multiplier processing 8-bit workloads pro-
duces a 64-bit output result. This result contains the actual
multiplication values in the 16-bit LSB, so the MSB contains
the sign-bit extension. Consequently, any fault inducing an
error in the most significant bits (further than the 16 LSB)
typically creates a large magnitude of errors. In these cases,
we can leverage the extra bits of the hardware units to detect
and counteract the fault effects treating the multiplier circuits.
We propose two main solutions that can be implemented at
the software level: i) Fault-aware pruning (FAP) and ii) sign
extension from 16 to 64 bits.

The first hardening strategy took inspiration from previous
works published by [57]–[59], which skip or drop to zero the
results of faulty multiplier circuits in AI accelerators. This
strategy leverages the typical data distribution in a DNN ap-
plication, which concentrates around zero; therefore, forcing
erroneous results to zero prevents significant shifts in the
inner computation of the DNN, improving the fault resilience
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of these circuits in the context of DNN applications. Conse-
quently, we evaluated the effectiveness of the FAP approach
when adopted at the software level by dropping to zero those
multiplication results that fall out of the expected boundaries
of the application. It is worth noting that the evaluation of
the fault countermeasure strategies focuses on the evaluation
metrics of the arithmetic circuit proposed in this paper; we did
not assess or provide further evaluation of the DNN outputs,
which fall out of the scope of this work. However, consid-
ering that the proposed solution uses software instructions
already available in the target device (e.g., GPU, CPU, etc.)
to implement FAP, there is execution overhead that also may
slightly impact the energy consumption in the host device.
For example, if we consider a hypothetical scenario of a 32-
bit multiplier in a GPU device, the FAP implementation will
require two additional operations, a comparison, and a zeroed
register operation. According to the data reported by [60], the
average energy consumption of an integer multiplication in a
GPU device is about 165.6pJ, and the energy consumption of
logical and comparison operations corresponds to 28.3pJ and
91pJ, respectively. Thus in this particular scenario, the energy
consumption overhead of the FAP strategy per every multipli-
cation can reach about 119pJ extra, representing around 70%
of the consumed energy by the multiplication only.

Figure 14 reports the main results in terms of MED,
MOBE, and BER when applying the FAP fault countermea-
sure on 32-bit multipliers. In general, the results show con-
siderable reliability improvements in terms of MED, MOBE,
and BERwhen compared with uncorrected results reported in
Figure 7, Figure 11 and Figure 12. In detail, the MED metric
reports a significant error reduction for 32-bit multipliers,
circuits A and B, in approximately 5 orders of magnitude
compared to the uncorrected results presented in the Figure 7.
Moreover, the MOBE metric indicates a significant improve-
ment when computing DNN benchmarks. In fact, the number
of operations correctly executed increased by approximately
2.5x108 operations for the ResNet models and 1x108 opera-
tions for LeNet5 in comparison with the uncorrected results
depicted in the Figure 11. It must be noted that in the case
of uniformly distributed data (i.e., Random 8-bit), there is
negligible improvement in terms of MOBE, which remains
almost the same as the uncorrected cases.

When considering the BER metric, we observed that the
FAP increased the BER by 2.5 times for the Random 8-bit
benchmark and by 0.9 times for the LeNet in comparison
with the uncorrected results. Nonetheless, in the case of the
ResNet models, there is a significant improvement in terms
of BER by approximately 0.7 times compared with the un-
corrected results reported in Figure 12. In conclusion, the
FAP strategy has a positive impact on the reliability of 32-bit
multiplier circuits since it is possible to correct a significant
amount of operations > 108 operations when executing 8-
bit DNN workloads. In addition, the FAP effectively reduces
the error distance between the expected and faulty results,
which positively contributed to increasing the reliability of
the DNN workloads, as demonstrated by different authors in

the literature [57]–[59]. On the other hand, FAP may, in some
cases, significantly reduce the BER produced by faults on 32-
bit multipliers while executing large DNN workloads.
The second strategy applies sign extension from 16 to

64/32 bits, which overwrites any error produced in the output
representation of the 32-bit multiplier further than the 16 LSB
of the result. This sign extension can be performed right after
the execution of every multiplication and can be implemented
at the software level by resorting to shift operations or by
using data type casting in two stages. For example, casting
from int32/64 to int16 will drop all MSB to zero, then a
casting procedure from int16 to int32/64 will extend the sign
and recover from an error that may propagate through the
workload accumulator. The energy consumption per multipli-
cation required by this software-based fault countermeasure
can be calculated as in the previous example for FAP. Let’s
assume a GPU device scenario where two-shift operations
are required: one shift left and one arithmetic shift right. In
such a case, we assume that the shift operation consumes
equivalent energy as an integer adder (91.3pJ). Therefore, the
energy consumption overhead per multiplication corresponds
to 182.6pJ, which is equivalent to 1.1 times the consumed
energy by the multiplication only.

Figure 15 shows the results after applying the error correc-
tion based on sign extension from 16 to 64/32 bit. It is worth
noting that the results show noteworthy reliability improve-
ments in terms of MED, MOBE, and BER when compared
with uncorrected results reported in Figure 7, Figure 11 and
Figure 12.More in detail, the results demonstrate a significant
reduction in terms of the MED, where 75% of the evaluated
data for all benchmarks has an error close to Zero for both
Circuit A and B. Similarly, the MOBE raised above 9x108

operations regardless of the evaluation benchmark. These
results significantly surpassed the MOBE achieved by 8-
bit multipliers. In addition, the proposed strategy allows a
significant reduction of the BER for all application bench-
marks executed on the 32-bit multiplier circuits. These results
demonstrate that applying a sign extension from 16 to 32/64
bits at the result of the multiplication significantly improves
the reliability of the circuit but also has a positive impact on
the executed application since there is a significant reduction
of the error that can potentially be propagated.
Finally, we demonstrate that the proposed evaluation met-

rics allow us to effectively assess the reliability of arithmetic
circuits but also provide a quantitative way of measuring
the effectiveness of hardening strategies in the reliability of
hardware used for DNN computations. In addition, we show
that in the context of general-purpose platforms that use 32-
bit hardware, it is possible to adopt software countermeasures
that significantly improve the reliability of the hardware in the
presence of faults while executing 8-bit DNN workloads.

VII. CONCLUSIONS
Arithmetic circuits are integral to any digital system; their sig-
nificance encompasses various applications, from traditional
computing tasks to advanced fields, such as AI and cryptog-
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raphy. Unfortunately, the outstanding advancement in semi-
conductor technologies makes electronic devices, including
arithmetic circuits, increasingly prone to faults. Hence, the
evaluation of arithmetic circuit reliability is of major impor-
tance in modern digital systems, especially in safety-critical
applications, such as automotive, aerospace, and healthcare.

This paper presents a quantitative approach to the relia-
bility evaluation of different multiplier circuits with respect
to permanent faults under deep learning contexts. The pro-
posed evaluation flow combines various evaluation metrics
to measure the impact of faults, such as mean error distance
(MED), mean relative error distance (MRED), mean square
error (MSE), worse error distance (WED), and bit error rate
(BER). In addition, this work proposes a novel evaluation
strategy that quantifies and ranks the percentage of faults
in the circuit according to their severity level in terms of
MED and WED. Also, The mean operations between errors
(MOBE) was introduced as an evaluation metric that quanti-
fies the resilience of the circuit in terms of the average number
of correctly computed operations between errors.

The experimental evaluations resort to four different in-
teger multiplier circuits: two 32-bit Dadda multipliers and
two 8-bit Booth multipliers architectures. Every multiplier
circuit was evaluated using four application benchmarks: (1)
Three representative Convolutional Neural Networks (CNNs)
(LeNet5, ResNet18, and ResNet50) and (2) a random uni-
form sample of 8-bit operands. The CNN benchmarks were
obtained by profiling one multiplier of a Tensor Core accel-
erator during the inference of an evaluation dataset. Then,
an exhaustive stuck-at-fault injection campaign was carried
out to study the impact of every fault on the operation of the
evaluated circuits by using the traced information from the
previous step.

The experimental results indicate that 32-bit multipliers
used for computing 8-bit workloads exhibit significantly
higher MED, MRED, and MSE figures than in the case of
8-bit circuits. On the other hand, the results indicate that
the evaluation workload plays a crucial role in the evaluated
circuits’ reliability in terms of error distribution and error rate
metrics. In conclusion, the reliability evaluation of an arith-
metic circuit must include multiple evaluation viewpoints to
rank criticality in a safety-critical system, also taking into
account the specific reliability target parameters of each ap-
plication scenario. Workload characteristics should be con-
sidered to gather realistic effects of faults affecting arithmetic
circuits.

In addition, the experimental results showed that in the case
of 32-bit multiplier circuits used in general-purpose compu-
tational devices (i.e., GPUs), it is feasible to adopt software-
level solutions that contribute to reducing the impact of faults
in those circuits as well as to enhance the reliability in terms
of MOBE, MED and BER metrics. In fact, the experiments
show that the proposed solutions (FAP and sign-extension
from 16bit to 64/32 bit) enhance the reliability of 32-bit
multipliers in the DNN contexts, by reducing the MED by
about 5 order of magnitude, increasing the MOBE to more

than 108 operations and reducing the BER by approx 0.8
times with respect to unhardened scenarios.
We highlight that the proposed method for reliability eval-

uation is general and can be adapted to deal with other arith-
metic modules and other fault models. Albeit the reliability
evaluation has been performed on 32 and 8-bit multipliers,
it can be performed on any arithmetic circuit of arbitrary
precision. Of course, when considering a higher precision
circuit, e.g., a 64-bit multiplier, the fault injection campaigns
will be longer as the fault list is bigger than the case of,
e.g., an 8-bit circuit. However, it is important to note that the
design trend for hardware used in AI-related applications is
to employ lower-precision circuits.
Finally, future activities derived from the current work

may involve the application of the proposed fault evaluation
metrics (e.g., fault severity level, MOBE, and BER) to effec-
tively conceive accurate error modeling of Silent Data Errors
(SDEs) in modern computing systems to study the potential
impact of faults at the application and system levels. Such
levels of evaluation provide more realistic cross-layer fault
evaluations that delve into the development of hardware or
software hardening strategies capable of counteracting criti-
cal effects produced by an eventual defective arithmetic unit.
Furthermore, in our future work we plan on considering other
arithmetic units (e.g., adders, shifters, accumulators) as case
studies.
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