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Effective Fault Effects Evaluation for Permanent Faults in
GPUs executing DNNs∗

JUAN-DAVID GUERRERO-BALAGUERA, Politecnico di Torino, Italy
JOSIE ESTEBAN RODRIGUEZ CONDIA, Politecnico di Torino, Italy
MATTEO SONZA REORDA, Politecnico di Torino, Italy

Deep Neural Networks (DNNs) have permeated multiple applications, including cutting-edge safety-critical
domains, which require relevant computational power, often provided by Graphic Processing Units (GPUs).
GPUs are manufactured with advanced semiconductor technologies that can be affected by faults during
the operational phase (e.g., due to wear-out, aging, or environmental harshness), whose effects possibly
reach the DNN outputs, in some cases leading to catastrophic consequences. Hence, hardware-aware relia-
bility assessments of DNNs are crucial to be considered in the context of safety-critical systems (following
regulations/standards of specific application domains). Application-level fault injection (FI) techniques (i.e.,
DNN parameter corruption) are often adopted for the reliability evaluation of DNNs; unfortunately, these
approaches hardly represent fault effects from GPU hardware. This work proposes an FI strategy based on
Hardware-Injection-Through-Program-Transformation (HITPT) to mimic the effect of permanent faults (PFs)
at the GPU instruction level, enabling effective assessment of PFs on DNN’s reliability. Our approach provides
a good trade-off between the fault effect evaluation’s accuracy and the required computational time. Using the
proposed approach, for the first time, we systematically assessed the effects of PF in GPUs executing some DNN
sample cases. The results indicate that the faults injected closer to the hardware, using our evaluation strategy,
can produce a higher accuracy degradation than the evaluations performed by the typical application-level FI
that modify only the DNN parameters. Furthermore, the proposed FI methodology provides insightful results
to identify the most suitable fault-tolerance solutions (e.g., selective hardening or design diversity) for their
application at thread levels inside GPU’s kernels.

CCS Concepts: •Computer systems organization→Reliability;Neural networks;Multiple instruction,
multiple data.

Additional Key Words and Phrases: Artificial Neural Networks, Deep Neural Networks (DNNs), Graphic
Processing Units (GPUs), Fault Simulations, Reliability Evaluation, Permanent Faults
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1 Introduction
Current advances in Deep Neural Networks (DNNs) technologies allow them to exhibit noticeable
accuracy capabilities, attaining human-level performance for solving complex tasks, e.g., for image
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2 Guerrero-balaguera et al.

and speech recognition, natural language processing, and decision-making [34]. These outstanding
capabilities of DNNs have permeated a broad spectrum of application domains, including self-
driving vehicles [26, 34, 37], unmanned aerial vehicles (UAVs) [33], and medical equipment [26, 59].
However, the remarkable accuracy and performance of the DNNs in solving challenging problems
also demand high computational capabilities, which can only be granted by specialized hardware
accelerators.
Today, a wide variety of hardware accelerators are available for speeding up DNN execution,

including Tensor Processing Units (TPUs), Field Programmable Gate Arrays (FPGAs), and Graphics
Processing Units (GPUs) [8, 26, 35]. Despite the existence of all these options, in many cases, GPUs
have become the preferred choice for artificial intelligence (AI) applications due to their outstanding
performance and programming flexibility [36, 52]. GPUs possess specialized programming tools
that facilitate the deployment of DNNs and optimize the device’s performance [3, 16].

The widespread use of DNNs in safety-critical domains is, unfortunately, being partly overshad-
owed by several reliability concerns, hardware failures being a major concern [5, 54]. Indeed, several
studies have demonstrated that GPU devices can be highly susceptible to transient faults that impact
the operation of DNNs [47–49]. Furthermore, GPUs are nowwidely used in applications that require
long lifespans (e.g., automotive, aerospace, or military) and often operate under harsh conditions
with extreme temperatures [21]. These conditions, combined with semiconductor miniaturization
(e.g., 5nm for the NVIDIA GPU Hoper architecture), exacerbate the degradation of the device due to
possible test escapes, aging, premature wear-out, and even terrestrial radiation phenomena [21, 24],
leading to an increased occurrence of permanent faults [28]. Recent studies have demonstrated that
hardware faults in AI accelerators are often challenging to detect and counteract since they do not
always produce visible effects, such as a complete system crash. Instead, they may silently propagate
through the application execution as Silent Data Errors (SDEs) [4, 20, 53]. These reliability concerns
can apply to GPU devices, which are pervasive in multiple application domains nowadays. Moreover,
over-stressing specific units within a GPU (e.g., the register files or the logic arithmetic resources)
can significantly increase the likelihood of permanent fault occurrence and negatively impact the
system’s overall reliability. In addition, permanent hardware faults may drastically reduce the
effectiveness of error protection mechanisms (e.g., ECCs), increasing the device’s vulnerability even
during its operational life [31]. Finally, permanent faults can not be considered stemming from
manufacturing defects only; they may also arise during the in-field operational phase, seriously
threatening the dependability of modern applications, including DNN-based systems.
In this regard, most safety standards (i.e., ISO 26262) require identifying faults that can cause

critical failures and demand more precise reliability evaluations, which are essential for creat-
ing effective hardening solutions. Moreover, heightened attention to the reliability of DNNs in
safety-critical contexts has intensified efforts to accurately assess the impact of permanent faults.
Unfortunately, identifying GPU permanent faults that can produce critical failures in DNNs, de-
pending on the application, remains challenging using current methods and tools. Currently,
predominant fault evaluation methods for DNNs rely on Fault Injection (FI) at the application level.
However, these FI approaches are based on agnostic fault models that target synapses (i.e., using
dropout, stuck-at, or single bit-flip models in DNNs’ weights [9, 32, 38]), or neurons (i.e., using
dropout or byzantine neuron fault models in DNN’s feature maps [32, 43]). These FI approaches
overlook the low-level hardware details, making it difficult to estimate the real impact of permanent
faults affecting any GPU component and their effects on the DNN’s performance. Thus, adopting
FI methodologies supporting hardware-aware fault models is crucial for obtaining more realistic
reliability evaluations.

Gate- or RT-level fault simulations offer high accuracy but become impractical due to the massive
size of GPU accelerators (billions of gates) and the complexity of DNN architectures (tens of layers
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and hundreds of millions or billions of parameters), resulting in prohibitively long simulation
times [11, 40]. For example, simulating a thousand faults on an RT-level GPU model running a small
DNN (e.g., LeNet) would exceed 10,000 days. Therefore, exploring alternative solutions, such as dif-
ferent abstraction levels, is necessary to balance simulation time and fault evaluation accuracy [11].
Alternatively, the Software Implemented Fault Injection (SWIFI) strategies model hardware faults
in the software, propagating them through code execution at device speed. SWIFI induces software
errors during application execution or by modifying source code beforehand [7]. Recently, it has
been adapted for GPUs using the Hardware Injection Through Program Transformation (HITPT)
method. HITPT inserts corruption routines at the GPU’s instruction level by instrumenting GPU
kernels before execution, offering precise control by modeling faults on specific GPU structures
like registers and core units using software-level hardware identifiers.

Recent works have successfully conducted reliability evaluations of DNNs concerning transient
faults on GPU devices using the HITPT approach [27, 47–49]. However, this FI approach has yet
to be fully explored to evaluate the effects of permanent faults, making it an attractive strategy to
model and evaluate the impact of these faults on DNNs.
Despite the significant benefits of HITPT, the practical support for analyzing permanent faults

is still challenging since, in this case, the fault (inside a given hardware structure) must persist
during the entire application’s execution. In this regard, former works have attempted to propose
strategies to effectively adopt HITPT and enable the evaluation of permanent faults in GPUs
executing DNNs. The authors in [11] proposed evaluating stuck-at faults in GPUs and their impact
on DNN workloads, combining gate-level FI simulations with HITPT. Nevertheless, their approach
still demands a significant computational effort, leading to long fault evaluation times (≈ 1,180
hours for only one tiny DNN model). On the other hand, authors in [22] and [23] propose a HITPT
mechanism for assessing the resilience of DNNs concerning permanent faults on register files and
functional units of a GPU, respectively. Their preliminary evaluations indicate that FIs require 10 to
90 seconds per fault on small DNN models. Their results suggest that DNNs are highly sensitive to
faults affecting the first set of registers per thread [22] and the Fused-Multiply-Add (FMA) units [23].
Unfortunately, their evaluations are restricted to a few small DNN models for image classification
on just one GPU device. However, DNN implementations can vary across GPU systems, leading to
different fault behaviors at both the layer and overall execution levels. Thus, additional evaluations
are necessary, encompassing diverse DNN applications and detailed characterization of DNN layers
to address permanent faults that could correspond to errors at the application level.
In this work, we unified and extended the capabilities of our prior works [22, 23] regarding

the fault injection strategies based on HITPT to evaluate the resilience of DNN models against
permanent faults in several hardware structures of GPUs. This paper presents some general
mechanisms to model permanent faults to general-purpose register files (GPRFs), scalar processors
(SPs), and special function units (SFUs) and extends the modeling of permanent faults on predicate
registers (PRs) and Tensor Core Units (TCUs) in GPU devices. Our approach offers several advantages
over existing techniques for assessing DNN reliability: i) it employs a more realistic fault model
by injecting and propagating permanent faults at the device instruction level, as opposed to
application-level fault injections targeting weights or intermediate activations; ii) it enables faster
evaluations compared to simulation-based methods; iii) it provides a comprehensive solution for
identifying sensitive hardware structures during full DNN workload execution; and iv) it facilitates
the characterization of individual layers to create more realistic fault/error models at the application
level.

We applied the proposed fault injection technique to assess the effect of over 160,000 permanent
faults in the GPRFs, PRs, SPs, SFUs, and TCUs of a GPU across ten different DNNs. The first set of
seven models corresponds to image classification applications (namely LeNet5, AlexNet, DarkNet19,
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4 Guerrero-balaguera et al.

VGG-16, MobileNetv3, ResNet50, and ViT); the second group comprises three variations of Yolo-v3
for object detection. Additionally, we injected more than 240,000 permanent faults into individual
convolutional layers to analyze their propagation effects across various GPU devices, including
a Jetson Nano board and an Ampere GPU architecture. The experimental evaluation required
approximately 500 hours of computational time to complete.

The following are the major contributions of this work:
• We introduce a unified Fault Injection strategy utilizing HITPT to evaluate the impact of
permanent faults (PFs) affecting GPU devices, evaluating their effects on DNN workloads.
Our FI technique is designed to target PFs within various hardware components of a GPU,
including GPRFs, PRs, SPs, SFUs, and TCUs.

• We developed a prototypical fault injection tool based on the binary instrumentation tool
NvBit1. In addition, we conceived a fault injection flow and framework that facilitates the
evaluation of the impact of permanent faults on different DNN workloads2 (i.e., full DNN
inference or individual DNN layers characterizations).

• Employing the proposed solutions and tools, we assessed the fault sensitivity of the DNN at
both the register and bit-wise levels. The results show that faults affecting the first ten registers
per thread lead to a notable degradation in DNN accuracy, exceeding 68%. Furthermore, we
observed that faults affecting the most significant bits of the GPRFs can result in a degradation
of up to 70%. On the other hand, faults in the PRs mainly cause the GPU to crash due to
memory access violations; in only a few cases, some faults (< 10%) were able to affect the
performance of the DNNs significantly.

• We evaluated at the operation and bit-wise levels the DNN’s fault sensitivity. The evaluation
results show that the DNNs are particularly sensitive to permanent faults affecting the
Integer-Multiply-ADD (IMAD), Floating-Point-Fused-Multiply-ADD (FFMA), and the TCUs,
producing a DNN accuracy degradation of 80%, 20%, and 20%, respectively.

• We demonstrated the existence of notable differences in fault rates and DNN accuracy degra-
dation between conventional application-level fault injections and our proposed approach,
which models permanent faults closer to real hardware.

• We evaluated the effects of permanent faults on individual DNN layers executed on different
GPU devices, providing an overall analysis of the sensitivity of several layers.

The paper is structured as follows: Section II outlines the motivations for our work and overviews
the previous related works. Section III covers essential background information. In Section IV, we
detail the proposed fault injection methodology. The experimental setup is described in Section V.
Section VI presents the experimental results and discusses the evaluation of DNN reliability using
both application and architectural fault injection levels. Finally, Section VII concludes the paper
and outlines future research directions.

2 Motivations and Related Work
Fault Injection (FI) is a widely accepted approach used to assess the resilience of electronic systems
regarding hardware faults. However, the complexity of modern hardware devices (such as Graphic
Processing Units or GPUs) and the sophistication of DNNs limit the effectiveness of the FIs’
evaluations, exacerbating the evaluation time or making evaluations less realistic. Thus, it is crucial
to adopt FI approaches that can handle the hardware and software complexity of DNNs while
accurately evaluating GPU hardware faults within a reasonable experimental time frame.

1https://github.com/divadnauj-GB/nvbitPERfi/tree/Dev
2https://github.com/divadnauj-GB/pytorch-DNNs
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Table 1. A qualitative comparison of Fault Injection techniques for assessing DNN resilience to GPU hardware
faults.

Parameter Simulation-based Emulation-based Hardware-based Software-implemented
uArch-level Cycle-level Application-level HITPT

Cost High Medium Medium-High High Low Low
Development effort High Medium Medium-High Low Low-Medium Medium-High

Accuracy High Low Medium-High Low-Medium Low Medium-high
Flexibility Low Medium Medium High High Medium

Fault injection time High Medium-High Low-Medium Low Low-Medium Low-Medium

Main advantages • High Accuracy • Flexibility • High Accuracy
• Fast

• Realistic Evaluations
• Fast

• Cheap
• Fast

• Cheap
• Good Accuracy
•Moderated Sim. time

Main drawbacks • Expensive
• Slow

• Slow
• Low accuracy
• Representative
model required

• High development efforts
• FPGA devices required
• HDL sintesizeble

• Expensive
• Low fault controllability
• Not for static faults

• Low Accuracy
• Hardware Agnostic • GPU HW required

Nowadays, the resilience evaluation of DNNs w.r.t. hardware faults mainly relies on application-
level FI approaches based on corrupting either the parameters of the DNN (i.e., weights or bias) or
its intermediate feature maps. In fact, there exist multiple available frameworks that can perform
such assessments (e.g., PytorchFi [32], ARES [38], and TensorFI [9] among others). Although this
is the most popular approach for fast and cheap reliability evaluations of DNNs, there are still
concerns about its capabilities to effectively model faults in the underlying hardware (i.e., GPU
devices).

Indeed, when conducting fault injection (FI) in DNN parameters (i.e., synapse corruption), some
studies suggest that stuck-at or bit-flips affecting the weights of the DNN could represent permanent
faults impacting system memory [6, 42]. However, many of these evaluations fail to differentiate
between detailed system implementations, treating CPU-based and GPU-based systems similarly.
Moreover, when applied to GPU-based systems, such error models overlook insights into GPUs
and their internal memory units (such as shared memory, constant memory, and register files),
which can also play a critical role in the DNN’s reliability.

On the other hand, some studies employ neuron-level fault injection (FI) strategies to model
faults in the data-path units of a specific accelerator by corrupting the output feature maps of the
DNN’s layers [1, 51, 58]. These strategies are commonly used to assess transient or permanent fault
effects on small AI accelerators. Typically, this type of evaluation involves FI campaigns where
permanent faults are assumed to either completely disable a Multiply-Accumulate (MAC) unit (i.e.,
forcing MAC results to zero at the software level [1, 51]) or partially corrupt some bits of MAC
unit results (i.e., injecting stuck-at/bit-flips into the feature maps of the DNN [46]).

Unfortunately, neuron-level fault injection (FI) fails to account for the fact that a computational
core may be reused multiple times and perform various operations before propagating fault effects
to the final feature map results. In GPU devices, arithmetic cores are utilized for both DNN compu-
tations (e.g., convolutions, activation functions) and application parallelism control (e.g., thread
management, memory access). Therefore, modeling a random fault affecting any internal unit of a
GPU (e.g., storage element, functional unit) at the application level using standard FI methodologies
is challenging. Additionally, relying solely on application-level FI campaigns can overlook hidden
GPU vulnerabilities. Consequently, protection strategies developed at the application level based
on such evaluations may prove ineffective, potentially compromising the functionality of the DNN
in the presence of actual hardware defects. Thus, it is imperative to adopt hardware-aware FI
techniques that enable deeper evaluations, considering architectural or micro-architectural details,
to provide more precise information about the interaction between faults, GPU hardware units,
and the target DNN.
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There are various FI methods that can assess the DNN reliability with respect to GPU faults,
broadly categorized into simulation-based, emulation-based, hardware-based, and software-implemented [2,
5, 44]. However, not all of them are suitable for evaluating GPU faults on DNNs. Factors like cost,
development effort, accuracy, flexibility, and evaluation time must be considered to determine the
optimal tradeoff between accuracy and evaluation time for each method.

Table 1 presents a comparison of various fault injection approaches based on the aforementioned
factors, categorized into three levels: Low, Medium, and High. These factors include Cost, which
encompasses the total costs for reliability evaluation, such as time, resources (e.g., hardware
platforms, computational equipment, specialized software), and engineering effort; Development
effort, which assesses the complexity involved in creating and deploying the fault injection
setup; Accuracy, which measures how closely each FI method describes the effects of real faults
in the hardware; Flexibility, which evaluates the adaptability and portability of a given fault
injection technique across different evaluation scenarios (e.g., various GPU architectures, simulation
complexities, or DNN models and frameworks); and Fault Injection time, which denotes the time
required to inject and observe the effects of each fault.

2.0.1 Simulation-based FI. uses simulation models to study the behavior of a fault while the
hardware computes a given task. Nonetheless, this evaluation strategy is limited by the availability
of simulation models and tools. This reliability evaluation approach has mainly two hardware
abstraction levels: Micro-architectural simulation (uArch-level) and architectural level mainly using
cycle-level simulation models and tools.
The first approach uses the RTL or gate-level descriptions of the hardware to simulate faults

while executing small benchmarks [10, 40]. The uArch-level simulation strategies provide accurate
results when evaluating an individual or a few units. Unfortunately, the main drawback of this
approach lies in the huge simulation time required when considering neural network workloads,
which might lead to unfeasible evaluation times (e.g., >10,000 days to evaluate a tiny DNN running
on top of an RTL GPU’s model [11]). On the other hand, this approach can be costly since it requires
specialized simulation tools, extensive development expertise to set up the simulation frameworks,
and high computational power to execute the experiments.

The second simulation abstraction (cycle-level) simulates the behavior of functional components
(e.g., Adders, controllers, multipliers, or registers) inside the system. In this case, faults can be
only simulated at the outputs of such blocks, or in the interconnections between blocks [50, 57].
Although this fault simulation approach can provide acceptable fault evaluation results, it requires a
nonnegligible effort to model the faults and perform the simulations since it requires to development
of custom simulation tools that are not always freely available. Moreover, the accuracy of the
evaluation is limited by the fault model used at these levels and the simulation time requires a
significant amount of time in function of the target workload.

2.0.2 Emulation-based FI. reduces the evaluation time using FPGAs to implement the target circuits
of the DNN with a corruption mechanism either inserting saboteurs inside the device’s RTL model
or corrupting the FPGA bit-stream [19]. Although the evaluations at this level provide accurate
evaluations close to reality, this FI technique requires synthesizable GPU models in HDLs, costly
FPGA devices or clusters of FPGAs, and non-negligible development time.

2.0.3 Hardware-based FI. (also known as physical FI) induces faults in real hardware platforms
while executing a DNN application. This approach is mainly used to assess the impact of transient
fault effects in the form of Single Events Upsets (SEUs) [48, 49]. This strategy requires special facili-
ties with radiation equipment capable of performing particle strikes into the device. Unfortunately,
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such evaluations are expensive and limited to transient fault effects, leaving static fault models out
of scope.

2.0.4 Application-level FI. is the preferred approach to assess the reliability of DNNs by corrupting
the weights or the feature maps of the model. In recent works, this fault evaluation strategy has
become popular to assess the reliability of such applications with respect to hardware faults[41,
42, 45]. However, there are serious concerns about the level of realism this fault evaluation level
can provide due to its hardware-agnostic features since CPUs, GPUs, or any accelerators are
indistinguishable at this level [5, 54].

2.0.5 Hardware Injection Through Program Transformation (HITPT) FI. This software-based FI
strategy mimics the behavior of hardware faults by inserting saboteur routines on the original
application software at the assembly level, such that the faults are activated during the program
execution [56]. While HITPT is limited to injecting faults on visible hardware structures at the
software level (e.g., register files, arithmetic cores, and memory resources), injecting faults at the
assembly level enables more realistic evaluations for complex DNNs. This approach offers faster
evaluation times compared to simulation-based methods, and its speed is par with or slightly slower
than emulation-based or application-level fault injection strategies. HITPT has primarily been
utilized to assess transient fault effects on GPU workloads, including DNNs, using instrumentation
tools like SASSFI [25] and NvBitFI [56]. However, the resilience of DNN workloads concerning
GPU’s permanent faults has still not been fully explored through this method.
It is essential to mention that recent advancements have explored cross-layer FI approaches

combining RT/gate-level simulations with software-based fault propagation using HITPT. Such
evaluations combine the accuracy provided by simulation-based approaches on the target core of
the GPU and the fast fault propagation of the software-based FI. Several works have successfully
explored this approach [11, 21]. Indeed, in [11], the authors devise a cross-layer FI mechanism to
study the resilience of Neural Networks w.r.t. permanent faults on Integer and Floating-point cores
in GPU devices. Such a work used simulation-based FI to create syndrome tables, which were later
used by a software-based approach to propagate the errors at the ISA level. Although this method
significantly reduces the evaluation time compared to simulation-based strategies, it still requires a
significant amount of time, (around 1,180 hours), to evaluate a tiny DNN model. In this regard, the
fault injection method we propose works at the GPU’s instruction level and effectively evaluates
the reliability of DNN workloads concerning permanent faults on several hardware structures, such
as register files, functional units, and tensor core units. Moreover, our proposed method enables
fast evaluations that allow managing even large DNN models.

3 Background
3.1 Graphics Processing Units
Graphic Processing Units (GPUs) are hardware accelerators specially designed to provide a high
throughput during the execution of high-performance applications, such as machine learning using
DNNs. Modern GPUs are composed of Streaming Multiprocessors (SMs) organized hierarchically.
The SM is the primary execution unit in the GPU, which encompasses several independent sub-cores
(up to four for modern GPUs). Figure 1 depicts the general structure of a GPU device. Each SM
sub-core comprises several parallel processing cores known as Stream Processors (SPs), Special
Function Units (SFUs), and Tensor Cores Units (TCUs). The SP supports integer (INT) and floating-
point operations (FP32), the SFU executes transcendental functions, and the TCU performs parallel
matrix multiplications usually employed to deploy DNNs. Typically, one SM sub-core contains up
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Fig. 1. GPU architecture

Table 2. GPU Kernel execution for the first five PyTorch convolutional layers of several DNN architectures
(LeNet5 only has two).

DNN Layer RTX 3060TI Jetson Nano

Lenet Conv1 fusedConvolutionReluKernel trt_maxwell_scudnn_128x32_relu_interior_nn_v0
Conv2 fusedConvolutionReluKernel trt_maxwell_scudnn_128x32_relu_small_nn_v0

AlexNet Conv1 voidimplicit_convolve_sgemm
voidop_generic_tensor_kernel trt_maxwell_scudnn_128x64_relu_large_nn_v0

Conv2 fusedConvolutionReluKernel trt_maxwell_scudnn_128x64_relu_small_nn_v1
Conv3 fusedConvolutionReluKernel trt_maxwell_scudnn_winograd_128x128
Conv4 fusedConvolutionReluKernel trt_maxwell_scudnn_winograd_128x128
Conv5 fusedConvolutionReluKernel trt_maxwell_scudnn_winograd_128x128

MobileNetv3 Conv1 voidimplicit_convolve_sgemm trt_maxwell_scudnn_128x32_relu_small_nn_v0
Conv2 voidcudnn::cnn::conv2d_grouped_direct_kernel voidcuDepthwise::depthwiseConvFP32Kernel
Conv3 voidimplicit_convolve_sgemm trt_maxwell_scudnn_128x32_relu_interior_nn_v0

Conv4 voidcask_trt::computeOffsetsKernel
trt_ampere_scudnn_128x32_relu_interior_nn_v1 trt_maxwell_scudnn_128x64_relu_interior_nn_v1

Conv5 voidcudnn::cnn::conv2d_grouped_direct_kernel voidcuDepthwise::depthwiseConvFP32Kernel

ResNet50 Conv1 voidcask_trt::computeOffsetsKernel
trt_ampere_scudnn_128x64_relu_xregs_large_nn_v1 trt_maxwell_scudnn_128x64_relu_medium_nn_v1

Conv2 sm80_xmma_fprop_implicit_gemm_f32f32_f32f32_f32_ trt_maxwell_scudnn_128x64_relu_interior_nn_v1
Conv3 trt_ampere_scudnn_winograd_128x128_ldg1_ldg4_relu_tile148t_nt_v1 trt_maxwell_scudnn_winograd_128x128

Conv4 voidcask_trt::computeOffsetsKernel
trt_ampere_scudnn_128x64_relu_interior_nn_v1 trt_maxwell_scudnn_128x64_relu_interior_nn_v1

Conv5 voidcask_trt::computeOffsetsKernel
trt_ampere_scudnn_128x64_relu_interior_nn_v2 trt_maxwell_scudnn_128x64_relu_interior_nn_v1

to 32 SPs, 4 SFUs, and 2 TCUs. Additionally, an SM includes load/store units (LD/ST) to access local
memories and register file banks, supporting the parallel execution of several threads [10, 14].

The GPU device computes a parallel program called kernel that comprises multiple parallel threads
distributed among the available resources of the device. The threads in a kernel are organized in
groups called Thread-Blocks. The block scheduler assigns to each SM several blocks scheduled in a
queue, maximizing the occupancy and the GPU’s performance. When one Thread-Block releases
the SM resources, another Thread-Block initiates the operation. The SM core in a GPU adopts
the Single-Instruction Multiple-Tread (SIMT) to schedule and execute on Thread-Block in smaller
groups of threads called Warps (i.e., one SIMT group of 32 threads) [14].
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Fig. 2. System abstraction layers and fault propagation effects from the GPU device to the DNN execution.

3.2 Deep Neural Networks
A Deep Neural Network is an Artificial Neural Network composed of many computational layers
that process a given input and produce an output prediction. A DNN comprises an input layer,
several hidden layers, and an output layer. Convolutional Neural Networks (CNNs) are DNNs
whose hidden layers perform convolution operations between filter elements and input data. The
inputs typically correspond to a two-dimensional matrix (i.e., an image). The filter is also a two-
dimensional matrix but smaller in size. There are weight filters and bias filters. The weight filter
element is multiplied by the input node, and the bias filter element is added. Pooling operations are
performed to reduce the dimensions of the output. Additionally, each layer of the DNN contains a
non-linear activation function to limit the output value of neurons. Finally, the output layers of the
DNN employ a fully connected layer to perform the classification task [18] [55]. Well-known DNN
architectures include LeNet, AlexNet, ResNet, and DenseNet.
Nowadays, multiple frameworks exist for developing and deploying DNNs using GPU accel-

eration, such as Darknet, Pytorch, and TensorFlow. Darknet corresponds to a C-language DNN
implementation that uses Cublas libraries to run on GPU devices [39], while PyTorch and Tensor-
flow are Python-based frameworks that provide flexible development and deployment of DNNs on
GPU devices using cuDNN libraries [16].

3.3 Fault propagation through the GPU’s system abstraction layers
Contemporary electronic systems, like GPUs, consist of layered hardware and multiple software
abstraction levels. Particularly, the hardware layers physically execute the functionalities outlined
in an Instruction Set Architecture (ISA). This execution is dictated by the microarchitecture, which
delineates the components of the device from a high-level to a low-level perspective. Meanwhile, on
the software front, applications utilize assembly language to enact algorithms and interface with the
hardware in accordance with the specifications of the ISA [10, 14]. Indeed, the GPU acceleration of
DNNs involves several software layers between the ISA and the application level (refer to Figure 2).
The DNN uses high-level operations that describe layer computations (e.g., convolutions) at the
application level. Every layer operator wraps libraries that provide GPU kernels, maximizing the
performance of a DNN computation (e.g., Cublas, Cutlas, or CuDNN). Moreover, several GPU
kernel functions may be used by the same type of layer, considering the size of the layer, the GPU
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architecture, and the computation algorithms that leverage the maximum performance of the GPU
device.

Table 2 showcases example kernels utilized across various GPU devices for convolutional
layers sourced from different DNN models in PyTorch. The GPU kernels employed in DNNs
exhibit diversity both across different GPU devices and within layers on the same device. Thus, a
hardware-level defect inside the GPU may result in faults at higher abstraction levels, potentially
going unnoticed and causing a nonobservable impact. If a fault arises, it could spread through the
hardware structures, affecting the functionality of software layers and leading to significant system
malfunctions. While certain fault effects may be suppressed within various system layers, others
may penetrate the software layer, resulting in system failures [29]. Consequently, only those faults
that reach the software level can seriously affect the application’s operation. In essence, the intricate
software architecture of DNNs dictates the propagation effects of those faults that become visible at
the GPU instruction level. Therefore, adopting fault injection mechanisms targeting DNN software
layers at the assembly level, such as using HITPT, enables a more realistic evaluation of hardware
faults compared to injections at the application level, where hardware faults are challenging to
represent.

4 Software-based Fault Injection methodology
This work introduces a method to assess DNN resilience with respect to permanent faults in GPUs.
Although this work focuses on DNNworkloads only, the method can also be extended to other GPU-
based applications (e.g., LLMs used in safety-critical systems or linear algebra applications). Our
strategy can assess the impact of permanent faults on either the full DNN inference or individual
layers.The proposed method employs the HITPT technique to mimic the effect of hardware faults,
within the GPU, using injection procedures at the instruction level. It focuses on efficient fault
injection mechanisms for modeling permanent faults on different hardware structures inside the
SMs of GPUs. More in detail, we develop a hardware-aware instruction level fault injection model
for emulating permanent faults on the General Purpose Register Files (GPRFs), Predicate Registers
(PR), Scalar Processors (SPs), Special Function Units (SFUs) and Tensor Core Units (TCUs) in GPUs.

4.1 Fault injection flow for reliability evaluation of DNNs
We devised a fault injection flow that incorporates each fault injection mechanism specifically
devised for each type of unit (i.e., GPRFs, PRs, SPs, SFUs, and TCUs) to evaluate the resilience
of DNN workloads concerning PFs on GPU devices. The flow allows to assess the impact of PFs
either in full DNN models or in individual layers extracted from a DNN. In the first case,
the evaluations permit quantifying the impact of faults on the performance of the DNN (e.g., the
accuracy of the model). The second evaluation type seeks to investigate the fault propagation effects
when considering different GPU devices and kernel implementations for basic DNN operations,
as introduced in Table 2. This last evaluation can be used to effectively produce layer-level error
models with respect to permanent faults to enable the hardware-aware evaluation of faults in large
DNN workloads resorting to application-level error injections.
Our proposed fault injection flow comprises four main stages as depicted in Figure 3: 1 DNN

model setup, 2 fault list generation, 3 fault injection campaign, and 4 fault classification and
fault impact evaluation.

In the first stage (model setup), we select and configure the DNNmodel according to the validation
dataset, the number of images to be evaluated, the DNN framework for GPU implementations, and
the model type. The model type defines the evaluation of either i) a full inference of the DNN or ii)
the execution of a single layer. When evaluating single layers, we devise a DNN instrumentation
mechanism that creates a custom dataset and extracts the target DNN layer from the original model.
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Fig. 3. Fault injection flow for reliability evaluation of DNNs.

The dataset is generated by performing a full inference of the DNN model on the initial dataset (e.g.,
ImageNet). At the same time, the inputs and output tensors of the target layer within the DNN are
captured, compressed, and stored. The layer extraction isolates the target layer from the original
DNN model, creating a new single-layer model with the same parameters and configurations as
the original one. Then, during the evaluation process, the individual layer processes the custom
dataset, storing the outputs for later evaluations.

In the second stage (fault list generation), we used a similar philosophy of the HITPT approach
introduced by [56] that comprises two steps: i) DNN profiling and ii) faults list generation. The pro-
filing gathers all the information about the DNN execution on the GPU device, such as disassembled
kernels, number of Threads per Kernel, and registers per Kernel. The extracted information during
the profiling is used later by the fault list generation process to create a set of fault descriptors that
indicate the target hardware structure (i.e., GPRFs, PRs, SPs, SFUs, or TCUs), the type of fault (i.e.,
stuck-at 0/1), among other additional parameters associated to each target structure. In fact, these
additional parameters are specifically generated to describe the persistent effects of faults and may
change according to the target hardware structure during the fault injections. In the following
subsections, we provide more specific details about the addition fault descriptors and how they
differ from the state-of-the-art for transient faults introduced in [56].

The third stage (fault injection campaign) first executes the DNNworkload in a fault-free scenario.
Then, it takes the list of faults and orchestrates an entire fault injection campaign by executing
the DNN workload with one fault at a time. During the fault injection, the following reports are
generated: i) a fault injection profiling report, ii) an output data corruption report, and iii) a GPU
error log report.
In the fourth stage, the reports of the fault injections are analyzed to evaluate the impact of

the injected fault by comparing the fault-free execution results against the faulty scenarios. This
evaluation process considers two different evaluation approaches. The first one evaluates the impact
of the faults on the whole performance of the DNN (e.g., accuracy degradation). On the other hand,
we evaluate the impact of faults on the individual layer by evaluating spatial and scalar effects at
the output tensors.

4.1.1 Fault classification for full DNN inference. In the case of the full DNN evaluation, it is worth
noting that the impact of faults manifests as degradation in the operational capabilities of the
targeted DNN. Consequently, In this paper, we evaluated such DNN degradation induced by
hardware faults by evaluating specific DNN metrics. In particular, we used the Accuracy for image
classification models and Intersection over Union (IoU) for object detection models.
In the first class of DNNs, we define the Relative Accuracy Degradation (RAD) as the relative

difference between the DNN accuracy of the fault-free and faulty DNN executions. Equation (1)
describe the MRAD calculation, where 𝐴𝐶𝐶𝑔𝑜𝑙𝑑 and 𝐴𝐶𝐶𝑓 𝑎𝑢𝑙𝑡𝑦 indicate the classification accuracy
of the fault-free and the faulty models, respectively.
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𝑅𝐴𝐷 =
𝐴𝐶𝐶𝑔𝑜𝑙𝑑 −𝐴𝐶𝐶𝑓 𝑎𝑢𝑙𝑡𝑦

𝐴𝐶𝐶𝑔𝑜𝑙𝑑
(1)

On the other hand, for object detection DNNs, we used the Jaccard index or Intersection over
Union (IoU) between the bounding boxes of the fault-free and faulty DNN executions. Equation (2)
describes the calculation of the IoU per fault (𝐼𝑜𝑈𝑃𝐹 ), where 𝐵𝐵𝑥𝑔𝑜𝑙𝑑 and 𝐵𝐵𝑥 𝑓 𝑎𝑢𝑙𝑡𝑦 refer to the
bounding boxes of the fault-free and faulty detected objects within the image, respectively.

𝐼𝑜𝑈𝑃𝐹 =
| 𝐵𝐵𝑥𝑔𝑜𝑙𝑑 ∩ 𝐵𝐵𝑥 𝑓 𝑎𝑢𝑙𝑡𝑦 |
| 𝐵𝐵𝑥𝑔𝑜𝑙𝑑 ∪ 𝐵𝐵𝑥 𝑓 𝑎𝑢𝑙𝑡𝑦 | (2)

These evaluation metrics can be used to classify the severity of every fault considering four main
categories as listed in the following:

• Masked: 𝑅𝐴𝐷 = 0.0 or 𝐼𝑜𝑈𝑃𝐹 = 1. No difference is observed between the faulty scenario and
the golden one.

• Safe-SDC: Safe Silent Data Corruption describes the 𝑅𝐴𝐷 = 0.0, meaning that the confidence
prediction values for at least one image differ from the fault-free scenario, but the classification
is still correct. In the case of object detection, an 𝐼𝑜𝑈𝑃𝐹 greater or equal to 0.9 represents
the cases where the detected objects are slightly shifted w.r.t the fault-free scenario, but the
bounding boxes still localize the object correctly.

• Critical-SDC: Critical Silent Data Corruption described as𝑅𝐴𝐷 < 0.0 for image classification.
At least one image was wrongly classified in comparison with the fault-free scenario. In
the case of object detection, an 𝐼𝑜𝑈𝑃𝐹 lower than 0.9, indicates that at least one detection
bounding box is significantly shifted or resized w.r.t to the fault-free scenario.

• DUE: Detected Unrecovered Error describes the fault effect of producing a system hang or
crash. This error interrupts the execution of the DNN at any time. The causes of this behavior
can be memory access violation, memory misalignment violation, or timeout; the last one
makes the DNN model enter an infinite loop.

4.1.2 Fault classification for individual layers execution. Regarding the evaluation of single layers,
we classify the faults according to the effects they produce at the output tensor of the layer as
follows.

• Masked: There is no difference between the output tensor in the fault-free and faulty modes
of the evaluated layer.

• SDC: The fault produces an error in the output tensor compared to the fault-free tensor.
• DUE: A sudden crash or hand of the GPU while executing the layer. The causes of such fault
effects are typically memory access violation, memory misalignment violation, or timeout.

In addition, we can further evaluate the SDC faults using the fault injection profiling report in
combination with the Output data corruption report to obtain the corruption pattern (i.e., spatial
error distribution) associated with the fault effects on the evaluated hardware structures of the
GPU as well as the magnitudes of error induced at the output of the layers.

4.2 Fault Injection in General Purpose Register Files (GPRFs)
Modeling Permanent Faults in general-purpose register files using HITPT strategies leverages the
GPU execution model, where each active thread within a single Thread-Block executed in a given
SM has access to a private set of registers to support the SIMT parallel execution model. In addition,
the same register can be used by other threads of different thread blocks executed in the same SM.
Consequently, the PF implementation requires ensuring that the fault effect persists during the
application’s execution, corrupting every computation on the targeted defective register across
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Fig. 4. Propagation of PFs from GPU register files to the application level.
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Fig. 5. Illustration of the GPU’s divergence operation using the predicate register P0. In the example, a group
of threads with a true value in P0 takes the path of the predicted instructions (i.e., instructions with @P0
modifier), and a second group of threads with a false P0 value executes the non-predicted instructions.

the associated threads in multiple thread blocks. Figure 4 illustrates the propagation mechanism
of a PF affecting the register files and its interaction with the GPU kernel execution. This means
that one faulty register can impact more than one thread, mainly when they belong to different
Thread-Blocks executed by the same SM. For example, a faulty register (e.g., R1) used by one of the
SM0’s active threads (e.g.,𝑇0 in𝑊𝑎𝑟𝑝0) will induce errors on equivalent threads for all Thread-Blocks
executed in the same faulty SM.
This fault behavior can be modeled at the software level by modifying the instruction-level

program, where the fault effect must be refreshed every time the faulty register is used as a
destination. This register corruption is conducted by inserting special routines (i.e., software-level
saboteurs) after all Kernel’s instructions using the selected register as the destination. The saboteur
routines use hardware and software identifiers to identify the specific register where the fault
has to be injected. More in detail, to ensure the fault controllability, we used the following fault
identifiers: <SMID, threadID, RegisterID, Mask, stuck-at>. SMID represents the SM where the fault
is injected; threadID is the resident or active thread inside the SM ; this identifier allows identifying
the set of registers for a unique WarpID and LaneID; RegisterID is the faulty target register; Mask is
the bit location inside the target register; stuck-at represents the type of the fault (0 or 1) according
to the stuck-at fault model.

4.3 Fault Injection in Predicate Registers (PRs)
The predicate registers in GPUs are special hardware units that support the control flow execution
of the GPU’s kernel execution, also known as thread/warp divergence [12, 17]. In this case some
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Fig. 6. Effects of permanent faults on the predicate registers P0 of two threads that caused those threads
(highlighted in red) to take a different path in comparison to the fault-free scenario.

threads in a warp may be required to execute different algorithm paths. Consequently, GPUs
incorporate a set of private registers (up to 8 different predicate registers) per active thread in an
SM that support the control flow of a parallel application execution. Given the complexity of the
GPU kernel, the compiler determines the usage and the number of predicate registers during the
compilation stages.

During the normal kernel execution of the thread divergence, the control flow instructions (e.g.,
comparisons) set the value of a selected predicate register for all active threads. Then, the subsequent
instructions using predicated conditions are executed only by those threads with valid values in
the associated predicate register. Finally, when all predicated and not predicated instructions are
executed, a warp synchronization instruction reestablishes the lockstep execution for all threads,
continuing the program execution in parallel for all threads.

Figure 5 illustrates an example of the usage and operation of predicate registers in a divergence
execution of a GPU. First, the ISETP instruction compares the content of two registers and, according
to the comparison operation (e.g., equals (EQ)), sets the result of the comparison into the selected
predicate registers (e.g., P0). It is worth noting that this comparison and PR assignment occur in
parallel for all the active threads at the time the comparison is issued. Then, the stored value in
the predicate registers is used to decide whether a thread executes a predicted instruction or not.
In a GPU kernel, the predicated instructions use the predicate condition (e.g., @P0), indicating
that a given thread executes the instruction if its associated predicate register (P0) contains a true
condition. In addition, the threads that do not execute the predicated instruction take a different
path, executing instructions in an alternative path. The divergence mechanism finishes with a
thread synchronization instruction such as BSYNC.

However, when a fault affects any PR of a given active thread, it potentially will cause changes
in the GPU’s divergence operation, causing the affected thread to follow a different execution path
with respect to the one that is supposed to take in a fault-free situation. Figure 6 depicts the case
where faults on the PR of two different threads (highlighter in red color) change their execution
flow following the wrong path of the algorithm. This behavior may produce critical effects on
the execution of the application, and in the case of a DNN execution, it can produce either wrong
prediction outputs or a crash of the whole system.
In this regard, we implemented a fault injection mechanism that targets the PR of the GPU’s

SMs by corrupting a specific PR of a selected active tread. The fault injection resorts to a saboteur
routine allocated right after the instructions that use the target PR as the destination. This saboteur
routine maintains the permanent effect of the fault during the complete kernel execution. In order
to ensure the fault controllability on a single thread and PR, we used similar fault identifiers as
the case of GPRFs as follows: <SMID, threadID, PRID, stuck-at>. PRID corresponds to the specific
PR target of the fault injection, and stuck-at represents the type of fault (0 or 1) according to the
stuck-at fault model.
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Fig. 7. Propagation of PFs from Functional Units to the application level.

4.4 Fault injection in SP and SFU cores
The fault modeling of a PF in SP and SFU cores of the GPU follows a strategy similar to the
one introduced for the GPRFs. Nonetheless, in this case, the HITPT strategy must corrupt all
instructions associated with the target core inside an SM. Figure 7 depicts an illustrative example
of the propagation effects of a faulty GPU’s core through the GPU’s kernel execution. Specifically,
a defective core (e.g., the FP32 core of the SM sub-core 0 inside the SM0) produces incorrect
computations in several threads of the parallel application. Nonetheless, only the warps assigned to
the faulty SM’s sub-core are exposed to data corruption. Likewise, the permanent effect of a fault
will affect all Thread-Blocks assigned to the SM where the faulty core resides.

It is worth noting that the hardware defects in the arithmetic cores of the GPU are visible at
the software level on the register files associated with the threads computed by the defective core.
Consequently, we devise a HITPT-based fault injection mechanism corrupting the registers (i.e.,
Destination or Source) used by the instructions issued on the targeted defective functional unit,
mimicking faults on the interfaces (i.e., inputs and outputs) of the target GPU core. We used such
hardware/software interaction to model single stuck-at faults in each data-path core’s input/output
interfaces affecting one arithmetic core at a time. Hence, the fault injection modifies all instances
of the same instruction associated with the selected core, transforming the values of the
registers (i.e., forcing stuck-at 1/0). In order to guarantee fault controllability, we selected several
hardware and software identifiers as follows <SMID, SubCoreID, CoreID, OpcodeID, Mask, IOPortID,
stuck-at>. SMID represents the SM where the fault should be injected; SubCoreID is the number of
the SM sub-core targeted for the injection; CoreID defines the target core number inside the SM
sub-core; OpcodeID defines the faulty operation affected by the injected fault. IOPortID defines the
input/output ports interface where the fault will be allocated (e.g., 0: output port, 1, 2, or 3 input
ports index); Mask is the bit location inside the target port; stuck-at represents the type of the fault
(0 or 1) according to the stuck-at fault model.
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Fig. 8. Modeling the effect of permanent faults on the Ampere’s TCU while executing the HMMA.1688 instruc-
tion. According to the A100 Ampere architecture, the TCU hardware performs one 8x4x8 Matrix Multiplication
in one clock cycle per warp (i.e., 32 threads) [13]. In addition, the HMMA.1688 instruction spends four clock
cycles to compute a Matrix Multiplication (MM) of shape 16x8x8 [13]. Therefore, one fault in the TCU hard-
ware can be modeled by corrupting four values in the input and output matrices of the executed instruction
(i.e., A, B, C, or D).

4.5 Fault injection in Tensor Core Units (TCUs)
The fault injection targeting the TCU cores resorts to a modeling strategy that mimics the effect of
permanent faults at the inputs/outputs of the TCU unit, following a similar strategy used for the
case of SPs and SFU cores. Figure 8 illustrates the TCU operation and the fault effects propagation
for an Ampere GPU architecture when executing the instruction HMMA.1688.F32 R0,R4,R6,R0.
Unlike the SPs or SFU cores, the operation of the TCU requires that all threads in a warp (i.e.,
32 threads) collectively hold the A, B, C, and D operands matrices. The size of such matrices is
determined by the instruction specifier𝑚 ×𝑛 ×𝑘 , meaning that A, B, and C/D have shapes of𝑚 ×𝑘 ,
𝑘 × 𝑛, and𝑚 × 𝑛, respectively [15].

In the example depicted in the Figure 8, the instruction specifier 1688 corresponds to m=16, n=8,
and k=8 matrices dimensions computed by one warp, which also determines how the operands
matrices are loaded and distributed in the registers across all threads within the warp. In detail,
the matrix A (light blue) uses two 32bit registers per thread (e.g., R4 and R5), and every register
allocates two different float16 values (named as ℎ0 and ℎ1), allowing to have a matrix of size 16 × 8.
Similarly, matrix B (light red) uses one 32-bit register per thread (e.g., R6) that fits two float16
values, creating a matrix of size 8 × 8. Finally, the accumulation and result matrices C/D (light
green) use four different 32-bit registers (e.g., R0, R1, R2 and R3) producing a result matrix of size
16 × 8 in float32 representation.

It is worth noting that the TCU core in the Ampere architecture executes a matrix multiplication
of shape 8x4x8 in 1 clock cycle. Therefore, the execution of the HMMA.1688 instruction requires four
clock cycles to generate the final result [13]. This behavior indicates that the HMMA.1688 instruction

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: January 2025.



Effective Fault Effects Evaluation for Permanent Faults in GPUs executing DNNs 17

incorporates an inner tiling execution that splits the original shapes into four independent matrix
multiplications, one per output register in the warp. For example, the first TCU computation
executes 𝑅0 = 𝑅4 × 𝑅6𝑒𝑣𝑒𝑛 + 𝑅0 for all the threads in the warp, where 𝑅0 corresponds to the first
segment results of the multiplication, 𝑅4 holds the first half of the matrix A of shape [8x8], and
𝑅6𝑒𝑣𝑒𝑛 indicates the elements in the even columns of matrix B forming the shape [8x4]. Similarly,
the second TCU computation executes 𝑅1 = 𝑅4 × 𝑅6𝑜𝑑𝑑 + 𝑅1, where 𝑅6𝑜𝑑𝑑 indicates the elements
in the odd columns of matrix B forming the shape [8x4] and 𝑅1 corresponds to the second segment
result.

According to the assembly-level execution of TCU instructions, any fault in the inputs/outputs
of the TCU core can be effectively modeled directly in the registers that contain the HMMA operands.
For example, a fault in one of the outputs of the TCU core (orange) is equivalent to corrupting all
output registers for a single thread within a warp (e.g., R0, R1, R2, and R3 for T0). On the other
hand, any fault at the inputs of the TCU can be modeled by corrupting the registers associated
with the inputs matrices A and B, for instance, corrupting R4 and R5 in T14 for operand A, or
corrupting R6 in T3 and T7 for operand B. In order to guarantee the persistence of the permanent
fault during the execution of the application, it is necessary to insert an instrumentation function in
all HMMA instructions. The instrumentation functions are placed before or after the target instruction
according to the location of the fault.

In order to guarantee fault controllability for the TCU, we selected several hardware and software
identifiers as follows <SMID, SubCoreID, 𝐼𝑂𝑇𝐶𝑈𝐼𝐷 , ThreadID,Mask, and stuck-at>. SMID represents
the SM where the fault should be injected; SubCoreID indicates the target TCU inside the SM; in
Ampere GPUs architectures, there are four TCU units; 𝐼𝑂𝑇𝐶𝑈𝐼𝐷 defines the input/output ports
interfaces of the TCU where the fault will be allocated (e.g., 0: output matrix, 1, 2, or 3 are the
indexes of the input matrices A, B, and C respectively). ThreadID indicates the specific DPU inside
the TCU targeted for fault corruption. Mask is the bit location inside the target register associated
with the selected matrix operand; stuck-at represents the type of the fault (0 or 1) according to the
stuck-at fault model.

4.6 Unified fault injection procedure
Algorithm 1 describes the unified mechanism we devised to mimic the permanent effect of a fault
on a GPU device during the DNN’s execution. This process works per Kernel issued to the GPU by
following two main steps: i) kernel instrumentation and ii) kernel compilation and execution. In the
first step, every GPU’s Kernel is intercepted to insert the fault injection mechanism at the assembly
source code. Such kernel transformation first inspects every assembly instruction to obtain the
instruction 𝑂𝑝𝑐𝑜𝑑𝑒 and the destination and source operands (i.e., 𝑅𝑑𝑒𝑠𝑡 , 𝑆𝑟𝑐1, 𝑆𝑟𝑐2 and 𝑆𝑟𝑐3), and
then insert specialized saboteur routines according to the specific faulty hardware structure of
the GPU. When considering faults on the GPRFs or PRs, the same saboteur routine is inserted
after all instructions containing the target register 𝑅𝑒𝑔𝐼𝐷 or 𝑃𝑅𝐼𝐷 as the destination register. On
the other hand, when targeting SP, SFU, or TCUs, there are two types of saboteur routines. The
first one models PFs in the input interfaces of the target core, and it must be allocated before each
instance of the target𝑂𝑝𝑐𝑜𝑑𝑒𝐼𝐷 instruction. The second type of saboteur routine models PFs at the
output interface of the core, and it is placed after the target 𝑂𝑝𝑐𝑜𝑑𝑒𝐼𝐷 instruction. The 𝐼𝑂𝑃𝑜𝑟𝑡𝐼𝐷
or 𝐼𝑂𝑇𝐶𝑈𝐼𝐷 identifier defines the saboteur routine to be inserted.

Once the Kernel is instrumented, the next step performs the Just-in-Time compilation to create
the binary representation of the new Kernel’s version [56]. Also, the GPU resumes the execution
of the application and submits the faulty Kernel instead of the original one. The fault is injected
and propagated during the execution of the instrumented Kernel (i.e., the faulty Kernel). This
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Algorithm 1 GPU kernel Instrumentation flow for fault injection on the GPRFs, PRs, SPs, SFUs, and TCUs

Inputs:
GPRFs fault descriptor: Fault 𝐹𝑖 defined by: < 𝑆𝑀𝐼𝐷 , 𝑇ℎ𝑟𝑑𝐼𝐷 , 𝑅𝑒𝑔𝐼𝐷 ,𝑀𝑎𝑠𝑘 , 𝑆𝑇@ >

PRs fault descriptor: Fault 𝐹𝑖 defined by: < 𝑆𝑀𝐼𝐷 , 𝑇ℎ𝑟𝑑𝐼𝐷 , 𝑃𝑅𝐼𝐷 , 𝑆𝑇@ >

SPs & SFU fault descriptor: Fault 𝐹𝑖 defined by: < 𝑆𝑀𝐼𝐷 , 𝑆𝑢𝑏𝐶𝑜𝑟𝑒𝐼𝐷 , 𝐶𝑜𝑟𝑒𝐼𝐷 , 𝑂𝑝𝑐𝑜𝑑𝑒𝐼𝐷 ,𝑀𝑎𝑠𝑘 ,
𝐼𝑂𝑃𝑜𝑟𝑡𝐼𝐷 , 𝑆𝑇@ >

TCUs fault descriptor: Fault 𝐹𝑖 defined by: < 𝑆𝑀𝐼𝐷 , 𝑆𝑢𝑏𝐶𝑜𝑟𝑒𝐼𝐷 , 𝐼𝑂𝑇𝐶𝑈𝐼𝐷 ,𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷 ,𝑀𝑎𝑠𝑘 , 𝑆𝑇@ >

Output: Application output affected by the fault 𝐹𝑖
1: for each kernel 𝐾𝑖 in the DNN model do
2: for each instruction 𝐼 𝑗 in 𝐾𝑖 do
3: if FI-Mode == GPR then ⊲ Registers FI Mode
4: Inspection(𝐼 𝑗 : 𝑂𝑝𝑐𝑜𝑑𝑒 𝑅𝑑𝑒𝑠𝑡 , 𝑆𝑟𝑐1, 𝑆𝑟𝑐2, 𝑆𝑟𝑐3)
5: if 𝑅𝑑𝑒𝑠𝑡 in 𝐼 𝑗 matches the target 𝑅𝑒𝑔𝐼𝐷 then
6: Insert injection function after 𝐼 𝑗
7: end if
8: end if
9: if FI-Mode == PR then ⊲ Predicate registers FI Mode
10: Inspection(𝐼 𝑗 : 𝑂𝑝𝑐𝑜𝑑𝑒 𝑅𝑑𝑒𝑠𝑡 , 𝑆𝑟𝑐1, 𝑆𝑟𝑐2, 𝑆𝑟𝑐3)
11: if 𝑅𝑑𝑒𝑠𝑡 in 𝐼 𝑗 matches the target 𝑃𝑅𝐼𝐷 then
12: Insert injection function after 𝐼 𝑗
13: end if
14: end if
15: if FI-Mode in [SP, SFU] then ⊲ Functional Units in SPs and SFU FI Mode
16: Inspection(𝐼 𝑗 : 𝑂𝑝𝑐𝑜𝑑𝑒 𝑅𝑑𝑒𝑠𝑡 , 𝑆𝑟𝑐1, 𝑆𝑟𝑐2, 𝑆𝑟𝑐3)
17: if 𝑂𝑝𝑐𝑜𝑑𝑒 matches the target 𝑂𝑝𝑐𝑜𝑑𝑒𝐼𝐷 then
18: if 𝐼𝑂𝑃𝑜𝑟𝑡𝐼𝐷 in [𝑆𝑟𝑐1, 𝑆𝑟𝑐2, 𝑆𝑟𝑐3] then
19: Insert injection function before 𝐼 𝑗
20: else
21: Insert injection function after 𝐼 𝑗
22: end if
23: end if
24: end if
25: if FI-Mode == TCU then ⊲ Tensor Core Units FI Mode
26: Inspection(𝐼 𝑗 : 𝑂𝑝𝑐𝑜𝑑𝑒 𝑅𝑑𝑒𝑠𝑡 , 𝑆𝑟𝑐1, 𝑆𝑟𝑐2, 𝑆𝑟𝑐3)
27: if 𝑂𝑝𝑐𝑜𝑑𝑒 matches the target 𝐻𝑀𝑀𝐴 then
28: if 𝐼𝑂𝑇𝐶𝑈𝐼𝐷 in [𝑆𝑟𝑐1, 𝑆𝑟𝑐2, 𝑆𝑟𝑐3] then
29: Insert injection function before 𝐼 𝑗
30: else
31: Insert injection function after 𝐼 𝑗
32: end if
33: end if
34: end if
35: end for
36: Just In Time compilation ⊲ Faulty Kernel Execution
37: Instrumented kernel execution
38: end for
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propagation is ruled by the saboteur routines that select a specific SM, Warp, and thread according
to the runtime identifiers selected for each specific faulty hardware.

5 Experimental Setup
The proposed fault injection strategy for assessing the effects of permanent faults at the architectural
level of the GPU was implemented as a binary instrumentation tool by customizing NVBitFI. This
new fault evaluation strategy was applied to a set of representative DNN models, also focusing on
a selection of individual layers to evaluate the effects of permanent faults in different hardware
structures of GPUs. More in detail, we evaluate permanent fault effects in general-purpose register
files, predicate registers, scalar processors, special function units, and tensor core units in GPUs.
The experimental evaluation features a selection of representative DNN model architectures

that use the most common GPU operations during a DNN inference, ranging from small DNNs
(e.g., LeNet) with few compact GPU kernels to large DNN models (e.g., transformers) that use
complex GPU kernels. This spectrum of applications is representative of different scenarios in
terms of possible GPU usage, and enables effective evaluation of the impact of permanent faults.
Specifically,We used ten pre-trained non-quantized DNN models: LeNet, AlexNet, Darknet19,
VGG-16, MobileNetV3, ResNet50, Vision-Transformer (ViT), Yolo-V3-tiny, Yolo-V3-MobileNetv1
(yolo-V3-MNV1), and Yolo-V3-MobileNetv3 (yolo-V3-MNV2). The LeNet model can classify images
of handwritten digits (0 to 9) using the MNIST dataset. AlexNet, Darknet19, MobileNetV3, and
ResNet50 classify images from 1,000 categories from the ImageNet dataset. VGG-16 and ViT classify
images from 10 classes defined by the CIFAR-10 dataset. The Yolo models perform object detection
capabilities that can detect 23 different objects from images of the COCO dataset.

It is important to underline that the models AlexNet, MobileNetv3, and ResNet50 were obtained
from the available pre-train models in Torchvision. The DarkNet19 model was obtained from the
darknet environment [39]. The VGG-16 and ViT models were fine-tuned using the cifar10 dataset
using PyTorch, and the Yolo-v3 models were obtained from the pre-trained framework available
in [30]. In addition, 1,000 images were used from the validation datasets to perform the inference
of the image classification models. On the other hand, for the object detection models, we used 100
images from the validation datasets containing 3 to 5 different objects.
In this work, we adopted Pytorch+TensorRT as the DNN evaluation framework for all DNN

models, except for Darknet19 implemented using the darknet framework [39]. All DNN models
were configured to use the TCU core of the GPU. In addition, we developed a PyTorch-based DNN
setup to evaluate 17 individual convolutional layers taken from the most representative DNN
architectures (i.e., two layers from LeNet and the first five layers of AlexNet, MobileNetv3, and
ResNet50, respectively).

The universe of permanent faults to be considered during the FI campaign may be excessive due
to the complexity of the DNN and the number of fault locations, which might be proportional to
the size of the GPU device. For example, the number of faults in the GPU’s GPRFs of a single SM
can exceed 5 million for the Ampere architecture. In this regard, leveraging the regular structure of
a GPU, we target a single hardware structure on a single SM core (e.g., GPRFs, SPs, or TCUs) to
perform FI campaigns. As the GPU has multiple SMs, the FI targeting only one of them is expected
to show similar effects when targeting the same hardware component in other SMs, as it was
already demonstrated in [11].

In order to demonstrate the flexibility of the FI framework, we performed several fault injection
campaigns. In the first place, when considering full DNN workloads, we conducted six FI campaigns
per DNN model targeting the SM0 of the GPU (i.e., one FI campaign targeting the GPRF, PR, INT,
FP32, SFU, and TCU structures). We selected the SM0 since, according to the profiling information
obtained for different DNNs, we observed that such an SM core has higher thread block assignation
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Fig. 9. Usage of GPU’s Registers and Sensitivity of GPU’s Registers to Permanent Faults.

than the others. Therefore, the higher the usage of a given SM, the higher the probability a fault
will significantly impact the application, and consequently, the same faults in other SM cores will
have an equivalent or slightly lower impact as demonstrated in [11].

The experiments related to GPRF involve the evaluation of around 112,000 faults corresponding
to all the registers for one thread of a unique Warp (i.e., ≈ 16,000 faults per DNN). Likewise, we
evaluated 1,280 faults on the PR of one thread in one warp for all DNN models. Regarding the FI
campaigns targeting the computational cores of the GPU, we conducted four different FI campaigns
considering all possible faults for only one INT, FP32, TCU, and SFU operation at a time in the
𝑆𝑢𝑏𝐶𝑜𝑟𝑒0 of the 𝑆𝑀0 of the GPU. For this fault simulation, the list of faults includes all instructions’
opcodes related to the target functional units. This set of experiments resorted to injecting around
48,000 faults in total (i.e., ≈ 4,800 per DNN).

Additionally, we executed a further FI campaign at the DNN’s application level, targeting the
permanent faults on the static parameters of the DNN (i.e., weights). This fault injection follows
the state-of-the-art approach presented by [41], injecting stuck-at faults on the weights of the
DNN, adopting a statistical fault sampling providing a confidence level of 99% and an error margin
of 1%. This FI campaign allows us to quantitatively compare the differences between the results
produced by high-level and instruction-level FI approaches. This experimental evaluation involved
the evaluation of around 3 million faults (i.e., ≈ 14,000 faults per layer on convolutional or fully
connected layers for all DNNs).
Finally, we performed FI on individual convolutional layers taken from different DNN models.

The experiments allow us to assess the impact of faults in the GPU while executing single DNN
operations. The experiments consist of performing 34 FI campaigns targeting different GPU archi-
tectures. Every layer was assessed using two different FI campaigns: (1) statistical fault injections
targeting the register files of one SM adopting a statistical fault sampling based on a confidence
level of 99% and an error margin of 1% (≈ 5,000 faults per layer), and (2) an exhaustive FI campaign
targeting the outputs of three individual floating point operations (i.e., FMAD, FMUL, FADD) in all
the Scalar Processors (SPs) of the SM0 (≈ 2,048 faults per layer).
The experiments were conducted on a workstation HP Z2 G5 with an Intel Core i9-10800 CPU

with 20 cores and 32 GB of RAM. It was equipped with an RTX 3060TI GPU platform incorporating
an NVIDIA Ampere architecture. In addition, the experiments related to FI campaigns on individual
convolutional layers were also carried out on the embedded GPU Jetson Nano.

6 Experimental results
This section presents the experimental results regarding the reliability evaluation of DNNs with
respect to permanent faults in GPUs. It is worth noting that the complete experimental setup
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Fig. 10. Fault classification results for GPRF and PR fault injections.

exercised the target GPU by executing more than 40,000 GPU kernels for every evaluated fault.
This significant number of kernels is due to the fact that some layers at the DNN architectural level
(e.g., PyTorch) are mapped into more than one GPU kernel. Hence, our experimental evaluation
encompasses about 6.5 × 109 kernel executions for all DNNs and evaluated faults. The experiments
concerning the full DNN workloads required around 309 hours on the RTX 3060TI GPU. The
individual layer evaluation experiments lasted for 168 hours using the Jetson Nano and 84 hours
using the RTX 3060TI GPU. The application-level fault injections lasted for around 108 hours.

6.1 FI results for full DNNs: Register Files
Figure 10 depicts the fault classification results of FI on the GPRF and the PR of the GPU device, re-
spectively.When the FI campaign considers all registers in one resident thread (𝑆𝑀0,𝑊𝑎𝑟𝑝0,𝑇ℎ𝑟𝑒𝑎𝑑0),
the results show that between 32% to 55% of faults crash the GPU device (DUE), preventing the
DNN’s complete execution. Furthermore, the number of faults inducing wrong results (Critical-SDC)
for LeNet, Darknet19, VGG-16, MobileNetv3, and ResNet50 does not exceed 10%; only for AlexNet
and Yolo-V3-MNV3 the number of these faults reaches almost 20%. Between the 20% and 37% of the
faults corrupt the generated DNN outputs without changing the classification results (Safe-SDC),
and less than 40% of faults do not have any impact on the DNN’s inference (Masked).

On the other hand, the FI on the predicate registers indicated that faults affecting this hardware
structure mostly produce a device crash on hang (i.e., DUEs). In fact, for all DNN models, more
than 60% of the faults led to DUEs caused mainly by illegal memory access. Interestingly, the faults
on PR for the LeNet Model only produced DUEs in only 20% of the cases, while other faults did
not produce any effect or only caused critical SDC in a few cases. After studying the differences
between LeNet and the other models, we found out that in the case of LeNet, the GPU’s kernels
only used four PR out of eight possible ones. In addition, the number of kernels and the workload
size (e.g., number of Thread Blocks) is significantly lower for LeNet than other DNNs such as
ResNet or Yolo-V3 models. It is important to note that up to 5% of the faults in the PR can induce
wrong predictions of the DNN, especially for AlexNet, MobileNetV3, and ViT; in the case of yolo-v3
models, more than 95% of the faults cause DUEs, and just around 4% produce wrong object detection
or significant deviations for yolo-v3-MNV2.

6.1.1 Register-wise sensitivity to PFs. A register-wise evaluation indicates that some registers are
more sensitive to faults than others due to their usage inside the application. Such register usage is
defined by the compiler considering aspects such as the performance and occupancy configurations
of the GPU kernels. In fact, as depicted in Figure 9.a, the set of the first ten registers is the most
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Fig. 11. Fault classification results for fault injection campaigns targeting the GPU’s FUs.

used one for the evaluated DNNs, which, at the same time, cause faults in those registers to produce
significant DNN degradation.

Figure 9.b depicts the impact of PFs arising in the GPRF (faults inducing DUE effects are not
included in the analysis). The figure represents the Mean Relative Accuracy Degradation (MRAD)
per register. This MRAD metric measures the average degree of misclassification produced by faults
in the registers used by one resident thread in the SM0. From the plot, we can observe that the
registers from R3 to R11 are the most critical ones, producing more than 50% MRAD and reaching
up to 90% MRAD for R8. The accuracy degradation in the other registers is uniform and does not
exceed 15% MRAD. Although PFs in many registers produce less than 20% MRAD, this is still a high
percentage of critical effects that create risky results for any application relying on DNN models
executed by GPUs.

A deep inspection of the disassembled kernels indicates that the first ten registers of each thread
in a GPU are used as an indexing mechanism to manage the parallel execution on the GPU. These
registers contain the threadID and blockID parameters that individualize every thread execution and
their memory accessing. Therefore, a fault affecting those registers can propagate by corrupting
the parallelism of the GPU, forcing some threads to compute wrong data, which in turn corrupts
the complete kernel computation.

6.1.2 Bit-wise sensitivity to PFs. We also evaluated the registers’ bit-wise sensitivity to PFs consid-
ering the MRAD metric. Figure 9.c illustrates the bit-oriented accuracy degradation for the AlexNet
model produced by stuck-at-0/1 faults. Although we introduced the results for AlexNet in order to
simplify the presentation of the results, it is important to highlight that we found a similar behavior
for all other evaluated DNNs. The results consider only the effect of the faults silently propagated
to the DNN’s output (SDCs).
The results show that the propagation effect of stuck-at-0 faults does not exceed 9% of MRAD.

However, stuck-at-1 faults significantly impact the classification result of the DNN, especially for
the most significant bits (MSBs) of the registers (25th to 30th, but especially the 30th bit), which
generate an accuracy degradation up to 68%. Interestingly, the MSBs causing the higher accuracy
degradation correspond to the exponent bits used by the IEEE754 standard for the floating-point
representation. The results prove that stuck-at-1 faults located in the 25th bit and beyond produce
a significant MRAD. Consequently, such bit locations on the register files are highly sensitive to
faults, corresponding to a high probability that a fault generates wrong DNN outcomes.
In the end, the observed results point out new challenges regarding the development of fault

tolerance mechanisms able to counteract the fault effects of permanent faults on GPUs’s registers.
Although there are multiple attempts to enhance the reliability of DNNs by resorting to high-level
hardening solutions (e.g., clipping the activation functions at the DNN architecture level), their
scope is restricted to mitigate fault effects after the execution of one or several GPU operations
(i.e., kernels). This means that high-level hardening solutions do not have control over the GPU
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execution itself, which constrains their effectiveness in mitigating complex effects of permanent
faults (e.g., broken thread executions caused by predicate or register files). Hence, it is necessary to
devise or adopt more elaborate solutions that are able to act within the GPU device. In this regard,
the fault effects generating wrong thread indexing or changes in the execution flow inside the GPU
can only be addressed by adopting fault-tolerant mechanisms at the level of the GPU kernels or
threads. This unveils opportunities for adopting selective hardening solutions at the thread level by
recomputing the thread index values and extra control flow checking strategies able to identify
possible wrong thread execution in case of divergencies (e.g., Triple modular redundancy (TMR) or
duplication with comparison (DWC) strategies).

6.2 FI results for full DNNs: SPs, SFUs, and TCUs
Figure 11 shows the fault classification results for the experiments described in Section 5 regarding
faults on the SPs (i.e., INT and FP32), SFU and TCU cores of a GPU. The results presented by Figure 11
show that a significant amount of faults (> 40%) injected in the integer units (INT) produce a crash
or hang of the device (DUE), preventing the DNN from completing the inference process. A deep
study of the generated FI reports indicate that faults on the INT cores mainly produce memory
misalignment or memory access violations. The experimental results also show that around 15% of
the faults in the INT cores can induce wrong classification results (Critical-SDC) for all evaluated
DNNs. Interestingly, a minimum number of faults in the INT unit (< 3%) have a tolerable impact
on the DNN’s output (classified as Safe-SDCs), except for the LeNet, where around 9% of the faults
correspond to Safe-SDCs. We can also observe that approximately 24% and 40% of the injected
faults in the integer units do not impact the DNN outputs (Masked).
Regarding faults on the SFU cores, the results show that around 25% of the faults can induce

an application crash (i.e., DUEs) for LeNet, AlexNet, DarkNet19 and VGG-16; whereas for yolo-v3
models this number of faults might increase up to ≈40%. On the other hand, between 20% to 50% of
the faults in the SFU core can be classified as Critical-SDCs depending of the evaluate DNN. LeNet,
AlexNet, and the yolo-V3 models exhibit the higher percentage of fault that produce critical-SDCs,
while ResNet50 and ViT have the minimum percentage of faults (≈20%) falling in the same category.
When it comes to the faults classified as safe-SDCs, we observed that 30% of the injected faults
produce tolerable effects for LeNet, Darkent19, Yolo-v3, and VGG16, whereas less than 10% of the
faults are considered Safe-SDCs for AlexNet, MobileNetv3, and ResNet50. Interestingly, around 80%
of the faults evaluated on the SFU while executing the ViT lead to safe-SDCs. Although all DNNs
use the SFU mainly to compute the reciprocal 1/𝑥 , exponential 2𝑥 , and reciprocal of square root
(RSQ) 1/

√︁
(𝑥) operations, we found that on MobileNetv3 and ResNet50, the kernel implementation

does not use the SFU to perform RSQ operations. Therefore, it seems to appear that removing the
RSQ operation from kernels in a DNN masks the effects of the faults in around 70% of the cases,
whereas, for the models that use the SFU with RSQ, less than 30% of the faults are masked.

It is worth noting that the FP32 and TCU cores are used exclusively for the DNN dot product
computations. Therefore, none of the faults in those hardware units unexpectedly stops the ap-
plication (DUE), but many of those faults produce SDC effects. In fact, The evaluation of faults
injected in the FP32 core’s interconnections shows that many of them can be labeled as SDCs.
The number of faults classified as Critical-SDCs oscillates between 10% to 40% depending on the
evaluated DNN. For example, LeNet and ViT have a lower percentage of critical SDCs below 15%,
whereas 40% of the faults in the FP32 cores lead to critical effects in the case of Yolo-V3-MNV2. On
the other hand, more than 40% of faults are categorized as Safe-SDCs for all image classification
DNNs. Nonetheless, the number of safe-SDCs for the yolo-v3 models accounts for approximately
10% of faults only. Likewise, the percentage of faults considered as Masked does not represent more
than 30% for the image classification models and around 40% for the object detection models.
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Fig. 12. Operation-wise sensitivity of DNNs to Permanent Faults in the GPU. The solid bars represent the
average MRAD across all faults and evaluated DNNs, and the error bars indicate the maximum and the
minimum MRAD across the same evaluations.

Finally, we observed that all the faults injected in the TCU core of the GPU produce only SDCs
when evaluating image classification models, whereas some small percentage can be masked in
the case of object detection models (i.e., yolo-v3). More in detail, when analyzing the results for
image classification, we observed that the percentage of critical faults varies depending on the
DNN. For example, less than 20% of the fault in the TCU changes the expected outcome in LeNet,
AlexNet, VGG-16, and ViT models. Nonetheless, this percentage of faults increases to 40% in the
case of large DNN models such as ResNet50 and MobileNetv3. Interestingly, the percentage of
faults on the TCU that affect the object detection models is significantly higher than in the case of
image classifications. More in detail, around 80% of the faults in the TCU, significantly degraded
the detection capabilities of the yolo-v3-MNv2 model.

6.2.1 Operation-wise sensitivity to PFs. Figure 12 presents the impact of PFs on the accuracy of the
image classification DNNs, considering faults that affect the INT, FP32, SFU, and TCU instructions.
The plots represent the Mean Relative Accuracy Degradation (MRAD) per instruction. The MRAD
metric measures the average degree of misclassification of the DNN produced by faults injected
in each processing unit’s input/output interfaces. It is worth noting that faults classified as DUEs
are not considered in the MRAD calculation because they induce a crash or a hang in the GPU,
preventing the generation of a valid inference outcome.
From the charts, we can observe that faults affecting the INT core significantly reduce the

accuracy of the DNN when particular instructions are executed. In the case of the Integer-Multiply-
Add (IMAD) instruction, both stuck-at-1 and stuck-at-0 faults degrade the accuracy by around
80% and 63%, respectively. In the case of the SHF (Funnel-Shift) instruction, only the stuck-at-1
faults degrade an average of 80% of the DNN accuracy, and in some cases, this figure reaches
100%. Faults affecting the instructions Integer-Absolute (IABS), Integer-Add-3Inputs (IADD3), and
Logic-Operations-3Inputs (LOP3) can reduce the accuracy by up to 25% for stuck-at-1 and up to
27% for stuck-at-0. The other instructions have less than 10% of DNN degradation. The significant
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Fig. 13. Bit Sensitivity to PFs in the Functional units of the GPU for the evaluated DNN models.

accuracy degradation of the DNN produced by faults in IMAD, Funnel-Shift (SHF), IABS, and LOP3
can be explained by their usage in the CUDA thread indexing preamble at the beginning of each
kernel. These instructions compute the linear thread identification using the ThreadID and BlockID
parameters to identify the individual threads and memory addresses. Hence, wrong calculations in
this crucial step of the kernel execution significantly damage the program execution in the GPU
and, thereby, the DNN computation.

On the other hand, Figure 12.b shows the accuracy degradation produced by faults on the floating-
point cores. The results indicate that stuck-at-1 faults significantly impact the performance of a
DNN by 7% for the Floating-Point-Compare-Set (FSET) operation and up to 20% for the Floating-
Point-Fused-Multiply-Add (FFMA) operation. In contrast, the stuck-at-0 faults reduce the DNN
accuracy by less than 5% for the Floating-Point-Multiply (FMUL), Floating-Point-Add (FADD), and
FFMA hardware operations. Stuck-at-1 faults have significantly more impact than stuck-at-0 on the
floating-point operations due to the data ranges in most operations (±1). In this case, the exponent
(in the IEEE 754 format) contains some bits in 0 that, once forced to be 1, induce a huge error that
propagates and worsens due to the fault’s persistent behavior on subsequent operations.

In the case of faults corrupting the operations of the SFU core (i.e., MUFU instruction), we found
that the stuck-at-1 faults induce, on average, up to 14% of the MRAD, while the stuck-at-0 faults
maximum can degrade the operation of the DNNs by 12.5%.
Regarding the permanent faults on the TCU core, the results showed that faults affecting this

AI accelerator in GPUs can reduce the accuracy of the evaluated DNN models by around 20% for
stuck-at-1 faults and less than 1% for stuck-at-0 faults. It is worth noting that we only targeted the
Matrix Multiply and Accumulate (HMMA) instructions associated with the TCU execution inside
the GPU.
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6.2.2 Bit-wise sensitivity to PFs. Figure 13 shows the MRAD produced by faults injected in the
input/output interfaces of the hardware cores (INT, FP32, SFU, and TCU) at the bit-level. In the
case of the INT core, only faults in the 20 least significant bits (LSBs) of the targeted core produce
more than 5% degradation in the accuracy of the DNN. The higher impact is observed in the 4
LSBs, exhibiting between 20% and 30% of MRAD. Interestingly, both types of faults, stuck-at-0, and
stuck-at-1, produce similar degradation effects for the evaluated DNNs. These results are explained
by the main usage of the INT cores in the memory addressing and threading management of the
GPU. Therefore, faults on the MSB mainly induced DUEs; on the contrary, faults in the LSB part of
the core imply a wrong memory address but inside the valid addressing memory, which induces
wrong results but without rising DUE conditions. Similarly, these cores can wrongly calculate the
thread indexing, making some threads execute data from a different one.
On the other hand, for the floating-point cores FP32 and TCU, the stuck-at-1 fault seriously

impacts the most significant bits (MSBs) of the input/output interfaces. More in detail, the 10 MSBs
of the FP32 cores exhibit the highest negative impact on the accuracy of the DNN (by 5% up to 50%).
We observed that those bits correspond to the exponent bits and the MSBs mantissa bits, according
to the IEEE-754 representation. On the other hand, the faults on the TCU core show high MRAD in
two-bit ranges, the portion of bits from 21 to 30 and the portion of bits from 8 to 14. The reason
behind this difference, in comparison with the FP32 cores, is due to the TCU operation, which
typically performs computations using IEEE754 FP16 format for the input operands and IEEE754
F32 for the accumulation results. Consequently, one 32-bit input is composed of two 16-bit data
operands for the TCU. In this regard, we observed that the exponent and the mantissa’s MSB are
the most sensitive ones to stuck-at-1 faults. Interestingly, the portion of bits from 21 to 30 shows
significant accuracy degradation that ranges from 30% to 70% on average, while the degradation of
bits from 8 to 14 on average reached 19% of MRAD. The TCU operation can explain this significant
degradation difference since the TCU results use FP32-bits such that a stuck-at-1 fault on the
exponent mostly produces large-magnitude errors that propagate through the DNN execution.
It is worth noting that the stuck-at-0 faults do not significantly affect the accuracy of the DNNs,
showing less than 2% of MRAD.
When evaluating the faults on the SFU core at the bit level, the stuck-at-1 fault type produces

around 25% of MRAD across all evaluated bits, with slightly more degradation in the MSB than in
the LSB. Interestingly, the stuck-at-0 faults only influence the sixteen MSBs with a degradation
ratio similar to that of the stuck-at-1 faults for the same bits, reaching up to 50% of maximum
MRAD.
Although the main focus of our work is on the evaluation of the effects of GPU’s permanent

faults in DNN computations, we obtained results and insights that could guide in the selection
of the most suitable opportunities in developing fault-tolerant mechanisms targeting permanent
faults in the compute units of the GPU. In the case of faults inducing a high magnitude of errors
in floating point operations (FP32 and TCUs), there are two possible fault tolerance strategies to
consider: Fault aware pruning [1], and High magnitude error clipping. The former strategy can
be applied by dropping to zero those operations exceeding a given threshold that can be obtained
from a fault-free profiling stage. The implementation of this strategy in GPUs can be conducted by
modifying the GPU’ kernels by incorporating additional procedures that compare intermediate
floating-point operations and correct the results when exceeding the limits. Likewise, the second
strategy limits the maximum error-induced results by clipping them to a maximum threshold.
On the other hand, faults affecting the INT units in the GPU can require highly elaborated

fault-tolerant solutions due to their usage across the whole kernel execution (e.g., thread indexing,
memory addressing, control flow, etc.). In this regard, several strategies can be explored to mitigate
the impact of faults in such units. For example, thread indexing redundancy can be adopted by
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Fig. 14. Fault classification results for application-level FI campaigns.

using operation diversity, such as replacing INT operations with logical, SFU, or FP32 operations
during thread index calculations. Alternatively, thread redundancy is a potential solution that
can address fault effects on any GPU’s functional units (INT, FP32, SFU, and TCUs). This strategy
requires the duplication of every thread of the DNNs GPU’s kernels in such a way that every replica
is executed on different GPU’ cores. In fact, the implicit parallelism of the GPU can be used in favor
of fault tolerance mechanism development (e.g., including redundancies) to tackle most of the fault
effects at the lowest level (GPU execution), preventing the propagation of errors across the DNN
computation.

6.3 Application-level vs. architectural fault injection campaigns
In the previous subsections, we showed that a significant amount of the evaluated faults can produce
Silent Data Corruption (SDC) effects on the outputs of the DNN. These faults are dangerous for any
DNN-based applications because their presence induces wrong decisions in the system without
knowing that the hardware is faulty, potentially leading to catastrophic events. On the other hand,
the reliability evaluations of DNNs w.r.t. hardware faults are typically carried out by performing
data corruptions at the application level (i.e., stuck-at or bit-flips on the weights). Nonetheless, there
are significant concerns about how realistic these application-level FI are with respect to actual
faults on the underlying GPU device. In this regard, we conducted application-level FI campaigns
to compare the results with those from the FI approach proposed in this work and determined
differences concerning the severity of faults using different FI abstraction levels. The results show
that the number of faults that induce wrong effects in a more realistic hardware fault scenario (i.e.,
the HITPT approach) is significantly higher than when using application-level FI strategies (e.g.,
DNN’s weights corruption).

Figure 14 presents the classification results of faults at the application level, targeting the
weights of all studied DNNs in this work. The results indicate that less than 10% of faults injected
in the parameters degrade the performance of the DNNs by producing a critical impact on the
DNN outcomes (i.e., wrong classification results or deviations of the bounding boxes in the object
detection applications). Additionally, more than 65% of the evaluated faults produced safe or
tolerable results for all the DNNs evaluated, meaning that such faults created some deviations in the
DNN outputs, but the results are still correct. From the experiments, we show significant differences
among the evaluations carried out by fault injections at the DNNs application level compared with
our approach based on HITPT. In fact, the fault evaluations at the application level indicate that
the injected faults on the DNN parameters do not exceed 5% of the DNN degradation. Such limited
degradation is produced mainly by faults on the 30th bit of the floating-point representations of the
parameters. Unfortunately, these levels of evaluation do not allow us to correlate the meaning of
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Fig. 15. Fault classification rates for the FI in the register files of individual convolutional layers on Jetson
Nano and RTX 3060TI GPUs.

the injected faults on the parameters with the actual hardware defects on the GPU. On the contrary,
our proposed evaluation approach is closer to the hardware level, performing fault injections at the
instruction level and providing deeper insights into the possible defective hardware and the impact
on the DNN workload. For this reason, we can state that our approach allows us to more effectively
assess the impact of hardware faults on DNNs, since we inject hardware-aware (more realistic)
faults than the high-level fault injections targeting DNN parameters. In fact, when evaluating faults
on individual layers (see Section 6.4), we observed that the intermediate software layers between
the GPU ISA-level and the DNN high-level framework play an important role in the way a fault
propagates through the DNN.

6.4 FI results for individual layers: Register files
We additionally evaluate the incidence of the GPU device and the kernel implementation on the
propagation effects of permanent faults at the outputs of individual convolutional layers of a DNN.
We report the results of evaluating permanent faults on register files and the FFMA, FMUL, and
FADD units on 17 convolutional layers of different DNN models as described in Section 5. Figure 15
report the fault classification results of the FI experiments targeting the GPRFs. The results show
that the layers of AlexNet and ResNet50 exhibit around 60% of SDC rates, whereas the layers of
MobileNetV3 and LeNet have slightly lower SDC rates (by around 10%). More in detail, the fault
effects have some variations according to the GPU architecture used for the experiments. In the
case of Jetson Nano, the number of faults that induce DUE effects exceeded by approximately 20%
the DUE cases when using the RTX 3060TI GPU. Also, when using an RTX 3060TI GPU device,
there is a significant increment of the Masked cases (by around 30%) compared to the Jetson Nano
GPU scenarios. These results are correlated with the usage of the register on the workload. Since
JetsonNano devices have only one SM, the registers are reused during the complete workload,
increasing the chance of a fault on the GPRFs to induce DUE results. On the other hand, devices
with a higher degree of parallelism (i.e., 38 SMs on RTX 3060TI) distribute the workload among
their SMs so that the GPR on an SM is used only on a portion of the workload, reducing the number
of DUEs but generating Masked or SDCs effects.
It is worth noting that although all evaluated layers correspond to convolution operation at a

high level, the final GPU computation varies by using different kernel operations as presented
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in Table 2. Nonetheless, when several layers of the same DNN use the same GPU kernel imple-
mentation, the fault propagation exhibits similar results of fault effect. For example, the SDCs,
DUEs, and Masked figures are similar for the layers 3, 4, and 5 of AlexNet that use the kernel
trt_maxwell_scudnn_winograd_128x128 for Jetson Nano GPU. Similarly, when implemented on the
RTX 3060TI GPU, layer 2 of ResNet50 shows fewer SDCs by approximately 30% compared to layers
1, 3, 4, and 5. These results can be explained by the fact that layer 2 for ResNet50 implements a
completely different kernel operation in comparison with the other ones.

6.5 FI results for individual layers: Functional Units
After performing the FIs on the GPU units executing FFMA, FMUL, and FADD, we observed that
100% of the faults generate SDC effects at the output of the convolutional layers. It is worth noting
that the TCU core was disabled on the RTX 3060TI GPU in order to compare the same experiments
with the Maxwell architecture, which does not include the TCU accelerator. As expected, faults on
the FP cores of the GPU do not produce DUE effects since these computational units are used only
during the dot-product operations of the convolutional layers of the DNN layers. In addition, we
performed a spatial evaluation of the SDC effects observed at the output tensor of the computed
layer, observing that there are significant differences for the same DNN layers implementing
different GPU devices. The spatial evaluation of the SDC effects shows that faults behave differently
according to the GPU architecture, the target GPU’ core, the layer size, the size of the processed
tensors, and the underlying kernel algorithm executed on the GPU. For the sake of simplicity and to
demonstrate the level of detail that our proposed fault evaluation strategy can provide, we illustrate
only the results for the first convolutional layer of LeNet; other layers for other DNNs show more
complex and diverse fault effects. Such results require further analysis (which is out of the scope of
this work) in order to generalize the propagation effects of permanent faults in GPUs and formalize
error models for fast resilience evaluation at the application level.

Figure 16 depicts a representation of the observed patterns obtained after performing fault
injection campaigns on the FFMA core of the GPU. We observed that for the RTX 3060TI GPU
device, the PFs on the FFMA induce a localized effect on specific regions of the output tensor for
all channels. There is a direct connection between the specific SP and the output channel where
the effect is observed. On the contrary, when the same layer is considered on a Jetson Nano GPU
board, the effects are distributed differently and in a more sparse shape. These results demonstrate
that the proposed fault injection technique can be used for realistic and accurate evaluation of
hardware-level faults, regardless of the software implementation employed to compute a DNN
model. Furthermore, our fault evaluation strategy provides opportunities regarding the layer-
wise characterization of DNNs with respect to permanent faults by generating error modeling
mechanisms that describe the effect of faults in terms of magnitude and spatial data corruption. In
this regard, using HITPT to evaluate permanent faults on DNNworkloads highlights the inadequacy
of relying solely on fault injection at the application level (e.g., in the DNN’s weights) to assess the
impact of real hardware faults in the underlying GPU.
Finally, the level of detail provided by our proposed evaluation of faults on DNN architectures

paves the way for the development of elaborated hardening techniques able to counteract or reduce
the most critical effects produced by permanent faults on GPU devices. In fact, the experimental
evaluation results provided insights regarding the effects of faults on the DNNs that can be used to
explore different opportunities regarding fault tolerance mechanisms at the GPU´s kernel level. To
make these hardening strategies effective, it is necessary in some cases to adopt selective hardening
or to implement thread-level redundancies since any hardening at the DNN application level (e.g.,
activation function clipping) cannot address multiple faults effects such as register files or functional
units involved in the thread indexing of low-level GPU operations. On the other hand, modifying
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Fig. 16. Distribution of the spatial corruption effects on the LeNet’s first convolutional layer (output tensor
and its channels ‘CH’) produced by faults on FFMA units (inside different SPs) for Jetson Nano (Left) and RTX
3060TI (Right) GPUs.

the DNN architecture can introduce additional kernels in the underlying GPU execution, which can
even increase the sensitivity to faults instead of counteracting them. This makes our fault evaluation
strategy essential for the evaluation and enhancement of the reliability of DNNs deployed on GPU
devices.

7 Conclusions and Future Work
This paper proposes a method to investigate the impact of permanent faults (PF) inside GPUs
running Deep Neural Networks. We described an instruction-level fault injection strategy to mimic
permanent faults on the general-purpose register files, Predicate Registers, Scalar Processors,
Special Function Units, and Tensor Core Units in GPUs. We created a prototypical fault injection
tool based on the binary instrumentation tool NvBit and conceived a fault injection flow that
effectively assesses the impact of permanent faults on different DNN workloads with acceptable
computational requirements. To the best of our knowledge, this is the first work proposing an
evaluation methodology and reporting results about the impact of PF on different DNN workloads
using instruction-level fault injection campaigns. The results show that the first ten registers are
significantly more sensitive to PFs than the others, thus inducing a strong degradation in the
operation of the evaluated DNNs in up to 68% of the cases for the evaluated DNNs. On the other
hand, the results show that faults affecting the functional units can also induce substantial DNN
degradation; indeed, the most sensitive cores are the Integer-Multiply-ADD (IMAD), the Floating-
Point-Fused-Multiply-ADD (FFMA), and the Tensor Core Units (TCUs), showing average accuracy
degradation figures of 80%, 20%, and 20%, respectively. The results also show that significant
differences exist between the results produced by the popular application-level fault injection
approaches and those produced by the approach we propose, which models permanent faults closer
to the real hardware. When adopting our proposed approach, the number of faults that cause
critical effects on the DNN’s prediction results can reach up to 64%, whereas less than 10% of the
faults at the application level can induce incorrect DNN predictions. In addition, it is not possible
to associate such faults with a defective GPU structure as we do in our fault injection strategy.
Our evaluation strategy can be used to identify possible strategies and fault tolerance oppor-

tunities. In fact, the evaluation results indicate that selective hardening at GPU’s kernel level, by
adding thread redundancies or operation diversity, is required and can be used as a more effective
fault tolerance mechanism than those developed at DNN abstraction levels. Hence, future works
will focus on implementing and evaluating advanced fault-tolerance strategies against permanent
faults as well as assessing the effectiveness of hardening techniques developed at the application
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level. Finally, we envision using the proposed fault injection method to characterize individual
DNN layers to conceive more effective application- or algorithm-level fault modeling rather than
the typical fault injection on the parameters.
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