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A B S T R A C T

In this work, we present a MultiLayer Perceptron (MLP) model to estimate ground solar radiation, in terms
of Global Horizontal Irradiance (GHI), over a given site and for a specific time. The MLP model generates
GHI estimates from the Meteosat 12-channel satellite images centered over the target location, and GHI values
in clear-sky conditions over the same location. The dataset includes two years of data, covering 2016 and
2017, with a temporal granularity of 15 min, relative to a set of 16 test sites distributed across Europe,
Africa and South America. We populate the training- and test-sets with all available data for the 15 and
remaining station, respectively. We test all possible combinations of stations to define training and test sets,
demonstrating the generalizability of the presented MLP model over potentially any location included in the
Meteosat full-disk image. The estimated GHI values are compared to ground-measured GHI data achieving an
overall Root Mean Square Error (RMSE) and Coefficient of determination (R2) of 77.682 W/m2 and 0.929,
respectively, across all locations. Finally, the GHI estimates are set against those generated by the Heliosat-
4 method, our benchmark, yielding an overall RMSE improvement of 3 W/m2. The experiments show that
neural networks produce competitive results with fewer and accessible inputs compared to complex physical
models for estimating solar radiation. Furthermore, historical and near real-time GHI estimation enabled by
the proposed methodology would help photovoltaic (PV) planners determine the irradiance profile of a site
where the deployment of a weather station is precluded.
1. Introduction

Solar energy generated by the sun is the source of photovoltaic (PV)
systems, representing a renewable and eco-friendly form of energy. In
2021, global electricity demand increased by 6% (IEA, 2022), and to
cope with such necessity, it becomes necessary to exploit renewable
energy sources due to the limited availability of fossil fuels. In addition,
the Earth receives enough solar energy in a single hour to meet the
world’s energy needs for an entire year (Shaikh et al., 2017). Using
such an amount of energy would reduce dependence on fossil fuels,
leveraging their impact on climate change. The rapid increase in elec-
tricity demand in developing countries requires the rapid deployment
of renewable energy sources in these regions to meet their needs and
enable gradual growth.

Solar radiation is a flux of energy measured as power per unit
area, expressed in W/m2. The total amount of solar radiation from
the entire sky on a horizontal surface is called Global Horizontal
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Irradiance (GHI). To measure GHI at a specific location, it is nec-
essary to deploy an unshaded pyranometer onto a stable horizontal
platform (Besharat et al., 2013). Gathering GHI measurements allows
users to quantify the amount of solar radiation received at the site
and evaluate the efficiency of PV panels deployed in the same area.
Prior solar radiation estimation would prevent decision makers from
deploying costly ground sensors and allow them to gain preliminary
insights into the quality of the site. However, installing measuring
devices can be challenging, especially in developing countries, due to
the cost, maintenance and calibration of the instruments.

Nowadays, the availability of remote sensing data enriches data
collection, which can be used in many applications such as early
warning of thunderstorms, monitoring sea surface temperature, and
deforestation (Emery and Camps, 2017b,c,a). Satellite observations
can also be used to improve solar radiation estimation and predic-
tion (Müller and Pfeifroth, 2022). In fact, the literature is rich with
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Nomenclature

List of Acronyms
𝐴𝑁 𝑁 Artificial Neural Network
𝐵 𝑆 𝑅𝑁 Baseline Surface Radiation Network
𝐶 𝐴𝑀 𝑆 Copernicus Atmosphere Monitoring Service
𝐺 𝐻 𝐼 Global Horizontal Irradiance
𝐻 𝑅𝐼 𝑇 High Rate Image Transmission
𝐻 𝑅𝑉 High Resolution Visible
𝑀 𝐿𝑃 MultiLayer Perceptron
𝑀 𝑆 𝐺 Meteosat Second Generation
𝑃 𝑉 Photovoltaic
𝑅2 Coefficient of Determination
𝑅𝑀 𝑆 𝐸 Root Mean Square Error
𝑆 𝐸 𝑉 𝐼 𝑅𝐼 Spinning Enhanced Visible and InfraRed

Imager

studies that use satellite observations or features extracted from such
data to improve solar radiation monitoring. In general, solar radiation
estimation methods are divided into empirical methods and artificial
intelligence methods (Zhang et al., 2017). The former uses mathemat-
cal formulas to empirically model solar radiation. At the same time,

the latter uses nonlinear statistical models to determine relationships
between a series of inputs and solar irradiance, the prediction output.
The state-of-the-art Heliosat method converts observations collected by
geostationary meteorological satellites into ground-level global irradi-
ance estimates (Rigollier et al., 2004). Such a method uses Meteosat
atellite images to collect information about the state of the atmosphere
nd cloud cover over the target to compute the radiation reaching
he ground. However, the Heliosat method struggles with the sudden
ppearance of snow cover in a cloud-free atmosphere, which leads
o large errors (Rigollier et al., 2004). Additionally, physical models

are difficult to reproduce due to their complexity and the difficulty of
etrieving input parameters.

Therefore, a MultiLayer Perceptron (MLP) model, belonging to the
class of Artificial Neural Network (ANN) methods, is proposed to im-
prove the achievable accuracy of solar irradiance estimation in contrast
o the Heliosat method, a sophisticated physical method for solar
adiation estimation.

The presented methodology is shown in Fig. 1 and an explanation
of the main adopted steps is provided. The dataset used includes data
from two years, relating to 2016 and 2017, and is characterized by a
emporal resolution of 15 min. The proposed MLP model generates GHI
stimates over the target location, leveraging the multi-spectral images
rom the Meteosat Second Generation (MSG) satellites and clear-sky
HI estimates. The multi-spectral Meteosat images, collected by Spin-
ing Enhanced Visible and InfraRed Imager (SEVIRI) (EUMETSAT,

2022e), are image data acquired within a specific wavelength from
2 different channels, each capturing specific information about the
omposition of the atmosphere. The multi-spectral images used are cen-

tered on the location of interest and are provided by the 0 Degree High
Rate SEVIRI Level 1.5 Image Data Service, the primary mission of the
MSG satellites (EUMETSAT, 2022a). The satellite images are coupled

ith another input, the estimated clear-sky GHI values over the same
ocation. To obtain such data, McClear (Lefèvre et al., 2013) is used, a
hysical model that generates clear-sky GHI estimates based on a set
f physical laws and a range of astronomical and atmospheric inputs.
he coupling between the input satellite images and the estimated
lear-sky GHI data is necessary to establish a relationship between

the Meteosat satellite observations and the amount of ground solar
radiation reaching the target area.
2

i

The satellite images are disseminated by the source satellite with a
temporal resolution of 15 min, this imposes a bond over the rest of the
data to match the same granularity. Consequently, the GHI estimation
will reflect the same constraint; the MLP model generates GHI estimates

atching the 15-min resolution of the inputs. The target locations
f our analysis include 16 meteorological stations belonging to the
aseline Surface Radiation Network (BSRN) (WRMC-BSRN, 2022). We

wanted to define an estimation model that can generalize over any
location included in the MSG full-disk images. Therefore, given the
input 16 stations, the model is trained independently by selecting all
available samples from 2016 and 2017 for a subset of 15 stations and
we tested it with the samples relative to the remaining station. Through
a location-based K-fold cross validation, all possible combinations of
stations are selected to populate training and testing sets. In this way,
it is possible to verify the efficiency of our methodology in general-
izing over heterogeneous areas. The quality of the proposed model is
demonstrated through a performance assessment. This important step
involves comparing the GHI estimation results for a given target station
and the ground GHI measured from the same station. In addition, the
same estimation results are also compared with those of the Heliosat-4
method, the selected reference benchmark, to verify the effectiveness
of neural network approaches against complex physical models in
estimating irradiance from satellite observations.

The novelty of the proposed methodology lies in the complete inde-
pendence of surface weather information for producing GHI estimates.
In fact, the selected inputs can be accessed anywhere and at any time,
llowing the user to easily reproduce the methodology. Furthermore,
e show that the MLP model can generalize with good accuracy over
nseen locations, enabling GHI estimation potentially over any location
f interest as long as it is geographically included in the Meteosat
ull-disk image.

To further highlight the advantages of the proposed methodol-
gy, the estimation results are compared with those of the Heliosat-4
ethod, a state-of-the-art, fully physical method. Indeed, the selected

physical benchmark Heliosat-4 consists of a complex physical model
that requires a non-trivial acquisition of atmospheric inputs resulting
in a two-day delay for obtaining GHI estimates. On the contrary, the
proposed MLP model is solely bounded to the primary input, the
satellite images, available in near real-time eliminating the Heliosat-
4’s delay in retrieving the GHI estimates. The MLP model generally
proves to be more accurate than its fully physical counterpart and, also,
allows the GHI estimation to be extended to a near real-time scenario.
The remaining sections are organized as follows: Section 2 provides an
overview of the most effective machine learning method for estimating
GHI. Section 3 provides a detailed description of the datasets used.
ection 4 presents an overview of the selected data processing and

the proposed methodology. Then, Section 5 discusses the estimation
results and their comparison with the reference estimates of Heliosat-4
using various analytical indices. Finally, Section 6 presents the relevant
findings of this work and provides some directions for future works.

2. Related works

As explained in Section 1, solar irradiance estimation is essential
or many applications. In the literature, the methods for estimating
olar radiation can be generally divided into empirical and artificial
ntelligence methods (Zhang et al., 2017). The former uses concise

mathematical formulations to relate the target solar radiation with a
disparate set of exogenous parameters, i.e., astronomical, and meteo-
rological factors. latter instead demonstrated their efficiency in solving
nonlinear problems by identifying hidden relationships between a set
of input features and the target variable.

Many empirical methods have been defined to estimate either daily
r monthly global solar radiation using various available meteorolog-
cal data collected from weather stations. The empirical models can
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Fig. 1. The whole pipeline of the presented methodology.
be divided into four groups: sunshine-based, cloud-based, temperature-
based and other meteorological parameter-based models (Besharat
et al., 2013). They differ in how solar radiation is compared with the
available measured meteorological parameters. The most commonly
used parameter to estimate solar radiation is sunshine duration because
it is easy to measure, and has generally been shown to be more
accurate (Zhang et al., 2017). Nevertheless, the constants used in
the mathematical expression mainly depend on the location being
analyzed (Zhang et al., 2017).

Heliosat-4 (Qu et al., 2017; Schroedter-Homscheidt et al., 2022) fea-
tures a state-of-the-art empirical, fully physical method for estimating
the down-welling shortwave ground irradiance in all-sky conditions.
Among the outputs, it provides global irradiance on a horizontal plane
through a fast and accurate radiative transfer modeling. The method
consists of two models: the McClear model, which calculates irra-
diance values under cloud-free conditions, and the McCloud model
that calculates the extinction of irradiance due to clouds (Qu et al.,
2017). Inputs to the Heliosat-4 method include aerosol properties,
total column water vapor, and ozone content. The cloud properties are
derived from satellite images with a temporal resolution of 15 min and
distributed by the geostationary MSG satellites. The accuracy of the
all-sky irradiances produced by Heliosat-4 and the model’s ability to
generalize across all areas included in the Meteosat full-disk images
make it a highly reliable and efficient method. For these reasons, we
choose the Heliosat-4 method as a reference benchmark in our work
to prove the quality of our artificial intelligence-based methodology in
contrast to complex empirical physical models.

The counterpart to empirical models are artificial intelligence meth-
ods, which have become an alternative to traditional techniques and
allow researchers to expand the analysis to obtain more accurate re-
sults (Yadav and Chandel, 2014). In the literature, ANNs have been
shown to be very efficient compared to empirical models in estimating
solar radiation by using different exogenous data collected either from
ground or remote sensors such as geostationary satellites. Khan et al.
3

(2014) developed an ANN model to estimate daily solar irradiance in
Dhaka using multiple daily meteorological data. Their proposed model
outperformed an empirical reference and achieved a Root Mean Square
Error (RMSE) of 113.6 Wh/m2 over a year of test data, proving the
efficiency of artificial intelligence approaches.

Dorvlo et al. (2002) proposed an MLP model for estimating daily so-
lar radiation using exogenous geographic and meteorological measure-
ments collected from a series of eight stations in Oman, Asia; Six were
used to train the proposed MLP model and the remaining two were used
to test the methodology. The proposed ANN estimates the clearness in-
dex from which solar radiation is derived. The model proved to be very
accurate and achieved an RMSE of 1.35 MJ/m2/day. Woldegiyorgis
et al. (2022) investigated the feasibility of using ANN to predict mean
daily Global Solar Radiation (GSR). They combined three years of
multiple daily meteorological data retrieved from the NASA database
and ground-measured sunshine duration over Lalibela, Ethiopia. The
predicted GSR is compared with that provided by the NASA database,
and the ANN model achieves an RMSE of 0.3310 and 0.0433 KWh/m2,
for mean daily and monthly averaged daily, respectively. Furthermore,
they compared the proposed ANN model with three empirical reference
models, with the latter far outperforming the competing benchmark
methods.

Kurniawan and Harumwidiah (2021) used an ANN model to es-
timate daily solar radiation in Surabaya, Indonesia. They selected
five years of daily average weather ground parameters to train the
ANN model, which outputs daily solar radiation. The results are val-
idated with daily average global solar radiation data from the NASA
database. Their proposed model achieved a Mean Absolute Percent-
age Error (MAPE) of less than 20%, illustrating how the estimated
solar irradiance values approach the measured ones. Sahan and Yakut
(2016) proposed an ANN model to estimate the monthly average global
horizontal solar radiation for five locations in Turkey. The model is
trained with more than 14 years of monthly mean meteorological
and geographic data values. The ANN was tested using data over a
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period of three years. The results provide a Coefficient of Determi-
nation (R2) ranging between 0.97 and 0.99 and a minimum RMSE of
0.506 MJ/m2, demonstrating good agreement between estimated and
measured monthly mean global solar irradiation.

Chen et al. (2019) used an ANN model to estimate the hourly GHI
over Hong Kong using three years of ground-measured hourly meteo-
rological data. Given the inputs, the ANN provides the clearness index
as output, from which the hourly GHI is extracted. The proposed ANN
achieves an R2 of 0.925 on the test set. As a less complex alternative to
machine learning, they implemented several empirical models that use
different input combinations to predict the clearness index. However,
the empirical benchmark models, validated over a year of data, did not
improve ANN performances. They also emphasized the importance of
the sunshine duration and solar altitude angle predictors for estimating
global solar irradiance. Kurniawan and Shintaku (2021) developed a
wo-step ANN to estimate daily and hourly average solar radiation over
he Java Island, Indonesia. The first ANN is trained on two years of

meteorological data from the NASA database and outputs daily average
solar radiation. The output of the first ANN, along with geographic
data, is then fed into a second ANN, which provides daily average
estimates of solar radiation. The results of both ANNs are validated
over a year, and they yield an R2 of 0.98 and 0.97 for daily and
hourly estimates, respectively. The presented methodology outperforms
several previous studies in the literature.

Goncu et al. (2021) proposed an ANN model to estimate hourly
SR in Adana, Turkey. The dataset covers a full year, including hourly

ground meteorological measurements and the target GSR. They con-
ducted a fine-tuning of the ANN parameters, and the optimized model
achieves an R2 of 0.87 for the hourly GSR estimates. Choudhary et al.
(2020) provided an overview of solar radiation estimation studies
and also proposed their own ANN model for hourly solar radiation
stimation. They retrieved one year of hourly data from the National
olar Radiation Database for New Delhi, India. The input data includes
ifferent geographical and meteorological measurements, and the ANN
odel achieves an R2 of 0.94 on the test set. The availability of remote

ensing data allows users to improve the quality of proposed solar
rradiance estimation solutions.

In fact, Fallahi et al. (2018) aimed to prove the efficiency of ANN
compared to other regression models and remote sensing data using
ground measurements. They chose an ANN model to estimate monthly
solar radiation over Kurdistan, Iran. They used two independent sets of
geographic data, including monthly mean temperature, one retrieved
from the NOAA satellite’s Advanced Very High-Resolution Radiometer
(AVHRR) sensor and the other measured on the ground. The ANN
trained with remote sensing data achieved an RMSE of 6.4% on the
test set compared to an RMSE of 10.4% for the ANN trained with
ground data, demonstrating the potential of satellite data compared to
expensive ground sensors. Furthermore, the ANN model outperformed
the competing regression model, which achieved an RMSE of 14.7%
using satellite data.

Koo et al. (2020) proposed an ANN model to estimate the hourly
HI in Korea using two-year GHI data from 25 stations, solar position
ariables, and five Communication, Ocean and Meteorological Satellite
COMS) Meteorological Imager (MI) channels. After parameterizing
he ANN model, they validated the model temporally and spatially to
nsure the consistency of the results. Therefore, the final ensemble
NN model was used to estimate the hourly GHI and achieved an
verall RMSE and R2 of 54.44 W/m2 and 0.975. Finally, they used the
nsemble model to generate hourly irradiance maps in Korea.

Guijo-Rubio et al. (2020) developed an ANN model to estimate
ourly solar radiation in Toledo, Spain. To validate the estimates, they
sed two years of hourly GHI ground data, and the selected predictive
ariables include various astronomical and SEVIRI (EUMETSAT, 2022e)
atellite data. They tested different combinations of inputs and several
ypologies of hidden neurons and output functions to train the ANN.
he best configuration achieved an RMSE of 51.82 W/m2 and an R2
4

t

of 0.97. The methodology proposed by Guijo-Rubio et al. (2020) out-
erformed state-of-the-art machine learning algorithms such as Support

Vector Regressors and Extreme Learning Machines.
Tang et al. (2017) worked on methods to estimate instantaneous

surface solar radiation using products from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sensor. In one of their stud-
ies (Tang et al., 2016), they employed an ANN that defines a functional
relationship between MODIS and Multifunctional Transport Satellite
(MTSAT) geostationary satellite signals. The ANN is used to retrieve
the hourly parameters from MODIS, which are instead provided at
a low temporal resolution. Their methodology achieves an RMSE of
98.50 W/m2 for hourly surface solar radiation estimates over three
experimental stations in China.

The related works demonstrate the efficiency of artificial intelli-
ence methods as a valid alternative to empirical models for estimating
olar radiation. Furthermore, they highlighted the benefits of using
emote sensing data; In particular, such data prevents users from having
o deploy costly weather stations, allowing them to expand the study
o any area of interest, thereby achieving state-of-the-art performances.
evertheless, only a few studies use raw satellite images as input to
stimate or predict solar radiation. Most of these works employ either
ime series of remote sensing data or features extracted from satellite
mages.

In addition to ANNs, convolutional neural networks have demon-
strated their effectiveness in extrapolating spatiotemporal features from
satellite images, achieving remarkable results, especially for forecasting
tasks (Yang et al., 2021; Choi et al., 2021). However, the benefits
of using more sophisticated models that implement a convolutional
architecture arise when utilizing a sufficiently large image that allows
the model to extract spatial cloud features from a larger scene (Jiang
et al., 2020). Conversely, ANN proved to be more effective than con-
volutional neural networks in estimating solar radiation whenever the
input satellite images were limited to a smaller ground area (Jiang
et al., 2020).

The proposed solution uses satellite imagery covering a ground
area of about 30 × 30 km at the sub satellite point as explained in
Section 3, and for such geographical extent the ANN results are more
accurate than a convolutional neural network (Jiang et al., 2020).
urthermore, we believe that the convolution operation would result in

pixel values being averaged, thereby losing georeferenced information
rom the input satellite images. Also, the dimension of the kernel for the

convolution operation would not be much larger than input images,
which would result in the extraction of a fewer number of features,
drastically reducing the amount of input information.

These considerations led us to the adoption of an ANN model, pro-
iding each and all image pixels as input, preserving all geographical
nformation in the multispectral images.

In our previous work (Gallo et al., 2022), we have demonstrated the
benefits of Meteosat satellite images used as raw input for training deep
learning models to forecast solar radiation over Turin, Italy. The results
outperformed competing models trained with vast exogenous ground
input data. Providing raw satellite imagery as input brings several
benefits; They are easily accessible and require very little processing.
Such properties overcome the challenging retrieval of specific inputs
inherent in empirical models.

In this work, rather than forecasting, we focus on solar radiation
punctual estimation, for a specific location and time. Specifically, the
roposed MLP model was trained with data from 16 locations in

Europe, Africa and South America (all included in the Meteosat full-disk
image), rather than a single target city. The dataset includes two years
of all twelve SEVIRI channels from the geostationary MSG satellite,
coupled with time series of clear-sky GHI. The GHI estimates are then
validated with ground GHI measurements from the same two years
retrieved from the BSRN.

Finally, the GHI estimates of the proposed ANN are compared with
hose obtained using the Heliosat-4 method to evaluate the efficiency of
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Table 1
The general information of the selected BSRN stations included in our study.
City Abbreviation Location Latitude [◦] Longitude [◦] Altitude [m]

Cabauw CAB Netherlands 51.9711 4.9267 0
Camborne CAM United Kingdom 50.2167 −5.3167 88.0
Carpentras CAR France 44.0830 5.0590 100.0
Cener CNR Spain, Navarra 42.8160 −1.6010 471.0
De Aar DAA South Africa −30.6667 23.9930 1287.0
Florianopolis FLO Brazil, South Atlantic Ocean 27.6047 −48.5227 11.0
Gobabeb GOB Namibia, Namib Desert −23.5614 15.0420 407.0
Izaña OZA Spain, Tenerife 28.3093 −16.4993 2372.9
Lindenberg LIN Germany 52.2100 14.1220 125.0
Palaiseau PAL France 48.7130 2.2080 156.0
Payerne PAY Switzerland 46.8123 6.9422 491.0
Petrolina PTR Brazil −9.0690 −40.3200 387.0
São Martinho da Serra SMS Brazil −29.4428 −53.8231 489.0
Sonnblick SON Austria 47.0540 12.9577 3108.9
Tamanrasset TAM Algeria 22.7903 5.5292 1385.0
Toravere TOR Estonia 58.2540 26.4620 70.0
Fig. 2. The geographical position of the selected BSRN stations used in our study to validate the GHI estimates.
artificial intelligence methods compared to physical empirical models.
The resulting model is a robust model capable of estimating GHI across
heterogeneous areas and of generalizing solar irradiance estimation
across unseen locations.

3. Dataset

The dataset employed to estimate solar radiation includes two years
of data relating to 2016 and 2017 and is characterized by a temporal
granularity of 15 min. All data is provided in UTC Universal Time. The
analysis is extended to 16 BSRN stations spread across Europe, Africa
and South America - areas all included in Meteosat’s nominal full-
disk images. Table 1 provides a characterization of the selected BSRN
stations that represent the test sites considered in our study. Instead,
Fig. 2 shows the geographic location of the selected test BSRN stations.
5

The dataset includes, for each test station, Meteosat 0 Degree multi-
spectral images, estimated GHI data in clear-sky conditions, GHI ground
measurements collected from weather stations located in the test areas,
and GHI estimates generated using the Heliosat-4 physical method. To
ensure the temporal consistency of all employed datasets, we collect all
GHI data that match the dissemination times of the Meteosat satellite
images. In this way, for each 15-min time step sample relative to 2016
and 2017, we obtain all the necessary information to implement our
methodology. The clear-sky and Heliosat-4 GHI time series are created
using information from the Copernicus Atmosphere Monitoring Service
(CAMS) (Copernicus, 2022). In particular, we use the CAMS radiation
service, which performs the calculation of the radiation on-the-fly at the
user’s desired location. The following sections provide a deeper insight
into the selected data, its source, and properties. In addition, Section 4
discusses the procedures for dealing with missing data and outliers and
preprocessing the satellite images.
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Fig. 3. A sample of five days, each representative of the mentioned variability categories, for the station of Tamanrasset (TAM).
3.1. GHI in clear-sky conditions

The clear-sky GHI values are generated by the McClear model
(Lefèvre et al., 2013; Gschwind et al., 2019), which provides irradiation
data observed in clear-sky conditions. The McClear model is a fast
clear-sky model that implements physical modeling exploiting aerosol
properties and total column content in water vapor, ozone and other
inputs. The selected clear-sky model provides time series of global solar
surface radiation at different temporal resolutions for any location in
the world and at every point in time, starting from the year 2004. The
McClear radiation model goes through a validation process in which
the estimated clear-sky data are compared with ground measurements
in clear-sky conditions. Such a comparison gives an RMSE of about 20–
30 W/m2 across different stations, proving the accuracy of the selected
clear-sky model (Lefèvre et al., 2013).

The McClear clear-sky data is provided by the CAMS Radiation
service and accessed via the Pvlib Python library (Holmgren et al., 2018,
2022), which provides open, reliable and benchmark implementations
of PV system models. For our use case, Pvlib provides functions for ac-
cessing data from the CAMS radiation service data through SoDa (SoDa,
2022), a broker for a list of services and web services that provides
access to a large amount of information about solar radiation. For each
location analyzed, i.e. the individual BSRN stations, the query includes
the geographical coordinates and altitude of the location, providing a
temporal resolution of 15 min corresponding to the granularity of the
input satellite images. The collected clear-sky GHI time series contain
average irradiance values expressed in W/m2, rather than integrated
values expressed in Wh/m2. In this way, for each BSRN station, we
collect a time series of clear-sky GHI for the entire years 2016 and 2017
with a granularity of 15 min.

3.2. Ground GHI data

The GHI ground measurements are used to validate the GHI esti-
mates generated by the proposed MLP model. The GHI measurements
are retrieved from the BSRN (WRMC-BSRN, 2022), which provides
high quality observations for short- and long-wave surface radiation
fluxes at a high sampling rate of 1 min. In addition, such data are well
suited to validating and evaluating satellite-based estimates of surface
radiative fluxes (McArthur, 2005). The BSRN data of interest belong
to the basic radiation and other radiation measurements datasets, which
include global, direct and diffuse radiation, air temperature, pressure
and relative humidity for each station and time of interest. For our
study, we only selected data on global solar radiation. The BSRN pro-
vides the measured GHI data in monthly datasets, each specific to the
year and station of interest. Table 2 lists the two-year datasets monthly
availability of the measured GHI data for all selected stations. Few
monthly datasets are unavailable for the Camborne and São Martinho
da Serra stations. Therefore, we exclude from our analysis all data
related to the timestamps of the missing GHI data, as we would not be
6

able to assess the performance of the MLP model for these timestamps.
The GHI measurements for the chosen stations, reported in Table 1,

are retrieved through the Pvlib Python library from the BSRN FTP
server (BSRN, 2022). Since the BSRN global radiation data are fur-
nished with a temporal resolution of 1 min, we select the measurements
relative to the dissemination times of the satellite images, performing
a subsetting of the GHI time series. In this way, we obtain a GHI
time series for each station with a temporal resolution of 15 min,
consistent with that of the input satellite images. This ensures the
temporal consistency of the data.

Furthermore, we classified the days included in the two-year dataset
into five different variability categories, following the criteria proposed
by Trueblood et al. (2013). Such a method relies on the calculation of
two indices, namely the daily clearness index and the daily variability
index, and uses only ground GHI measurements and GHI data in clear-
sky. The clearness index measures the atmosphere clearness, while the
variability index quantifies the variability of the measured irradiance.
The method distinguishes days into five variability conditions using a
set of thresholds for the clearness and variability indices: high vari-
ability, moderate variability, mild variability, clear, and overcast days.
In Fig. 3 we show a sample of five different days, each representa-
tive of the aforementioned variability categories, for the Tamanrasset
station. Furthermore, Fig. 4 shows the distribution of daily variability
conditions for each selected station. Such a variability condition is used
to further describe the MLP performances on days characterized by
different meteorological scenarios in Section 5.

3.3. Heliosat-4 GHI data

The GHI estimates provided by our proposed MLP model are com-
pared with those of the Heliosat-4 method (Qu et al., 2017; Schroedter-
Homscheidt et al., 2022) to evaluate the efficiency of artificial intel-
ligence approaches over a state-of-the-art physical model. The CAMS
radiation service provides the Heliosat-4’s GHI data, retrieved using
Pvlib via SoDa. Therefore, access to Heliosat-4’s GHI data is similar
to McClear’s data. For each BSRN station, the query includes the
geographical information of the site, specifying a temporal resolution
of 15 min and irradiance values expressed in W/m2. In this way, for
each location, we retrieve the GHI time series from Heliosat-4 for the
entire years 2016 and 2017, with a granularity of 15 min corresponding
to that of the input satellite images.

3.4. Meteosat satellite images

The input satellite images to our MLP model are disseminated by the
Meteosat 3 satellite, which belongs to the MSG family of geostationary
satellites (EUMETSAT, 2022d). The data is transmitted as high-rate
transmissions in 12 spectral channels covering a geographical area
included between −66◦ and 66◦ in latitudes and longitudes. The images
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October November December

s et al. 2016: Hodgetts et al.
(2022)
2017: –

2016: Hodgetts et al.
(2022)
2017: –

2016: Hodgetts et al.
(2022)
2017: –

ane

ane

2016: Ntsangwane
(2017j)
2017: Ntsangwane
(2017v)

2016: Ntsangwane
(2017k)
2017: Ntsangwane
(2017w)

2016: Ntsangwane
(2017l)
2017: Ntsangwane
(2018)

016h)
018a)

2016: Colle (2017b)
2017: Colle (2018b)

2016: Colle (2017c)
2017: Colle (2018c)

2016: Colle (2017d)
2017: Colle (2018d)

Agulló

Agulló

2016: Cuevas-Agulló
(2016i)
2017: Cuevas-Agulló
(2017k)

2016: Cuevas-Agulló
(2016j)
2017: Cuevas-Agulló
(2017l)

2016: Cuevas-Agulló
(2017a)
2017: Cuevas-Agulló
(2018a)

2016: Pereira
(2018s)
2017: Pereira (2018t)

2016: Pereira
(2018u)
2017: Pereira
(2018v)

2016: Pereira
(2018w)
2017: Pereira
(2018x)

2016: Pereira
(2018an)
2017: –

2016: Pereira
(2018ao)
2017: –

2016: Pereira
(2018ap)
2017: –

i

i

2016: Mimouni
(2016j)
2017: Mimouni
(2017k)

2016: Mimouni
(2016k)
2017: Baika and
Abdessadak (2017)

2016: Mimouni
(2017a)
2017: Baika and
Abdessadak (2018)
Table 2
The availability of the BSRN ground measured GHI monthly datasets for 2016 and 2017, and all selected stations.
Station January February March April May June July August September

Cabauw 2016, 2017: Knap (2022)

Camborne 2016, 2017: Hodgetts et al. (2022) 2016: Hodgetts et al.
(2022)
2017: –

2016: Hodgett
(2022)
2017: –

Carpentras 2016, 2017: Brunier et al. (2021)

Cener 2016, 2017: Olano (2021)

De Aar 2016: Ntsangwane
(2017a)
2017: Ntsangwane
(2017m)

2016: Ntsangwane
(2017b)
2017: Ntsangwane
(2017n)

2016: Ntsangwane
(2017c)
2017: Ntsangwane
(2017o)

2016: Ntsangwane
(2017d)
2017: Ntsangwane
(2017p)

2016: Ntsangwane
(2017e)
2017: Ntsangwane
(2017q)

2016: Ntsangwane
(2017f)
2017: Ntsangwane
(2017r)

2016: Ntsangwane
(2017g)
2017: Ntsangwane
(2017s)

2016: Ntsangwane
(2017h)
2017: Ntsangwane
(2017t)

2016: Ntsangw
(2017i)
2017: Ntsangw
(2017u)

Florianopolis 2016: Colle (2016a)
2017: Colle (2017e)

2016: Colle (2016b)
2017: Colle (2017f)

2016: Colle (2016c)
2017: Colle (2017g)

2016: Colle (2016d)
2017: Colle (2017h)

2016: Colle (2017a)
2017: Colle (2017i)

2016: Colle (2016e)
2017: Colle (2017j)

2016: Colle (2016f)
2017: Colle (2017k)

2016: Colle (2016g)
2017: Colle (2017l)

2016: Colle (2
2017: Colle (2

Gobabeb 2016, 2017: Al-Abbadi et al. (2017)

Izaña 2016: Cuevas-Agulló
(2016a)
2017: Cuevas-Agulló
(2017b)

2016: Cuevas-Agulló
(2016b)
2017: Cuevas-Agulló
(2017c)

2016: Cuevas-Agulló
(2016c)
2017: Cuevas-Agulló
(2017d)

2016: Cuevas-Agulló
(2016d)
2017: Cuevas-Agulló
(2017e)

2016: Cuevas-Agulló
(2018b)
2017: Cuevas-Agulló
(2017f)

2016: Cuevas-Agulló
(2016e)
2017: Cuevas-Agulló
(2017g)

2016: Cuevas-Agulló
(2016f)
2017: Cuevas-Agulló
(2017h)

2016: Cuevas-Agulló
(2016g)
2017: Cuevas-Agulló
(2017i)

2016: Cuevas-
(2016h)
2017: Cuevas-
(2017j)

Lindenberg 2016, 2017: Wacker and Behrens (2022)

Palaiseau 2016, 2017: Haeffelin (2022)

Payerne 2016, 2017: Vuilleumier and Heimo (2022)

Petrolina 2016: Pereira
(2018a)
2017: Pereira
(2018b)

2016: Pereira
(2018c)
2017: Pereira
(2018d)

2016: Pereira
(2018e)
2017: Pereira (2018f)

2016: Pereira
(2018g)
2017: Pereira
(2018h)

2016: Pereira
(2018i)
2017: Pereira (2018j)

2016: Pereira
(2018k)
2017: Pereira (2018l)

2016: Pereira
(2018m)
2017: Pereira
(2018n)

2016: Pereira
(2018o)
2017: Pereira
(2018p)

2016: Pereira
(2018q)
2017: Pereira
(2018r)

São Martinho
da Serra

2016: Pereira
(2018y)
2017: Pereira
(2018z)

2016: Pereira
(2018aa)
2017: Pereira
(2018ab)

2016: Pereira
(2018ac)
2017: Pereira
(2018ad)

2016: Pereira
(2018ae)
2017: Pereira
(2018af)

2016: Pereira
(2018ag)
2017: Pereira
(2018ah)

2016: Pereira
(2018ai)
2017: Pereira
(2018aj)

2016: Pereira
(2018ak)
2017: –

2016: Pereira
(2018al)
2017: –

2016: Pereira
(2018am)
2017: –

Sonnblick 2016, 2017: Olefs (2022)

Tamanrasset 2016: Mimouni
(2016a)
2017: Mimouni
(2017b)

2016: Mimouni
(2016b)
2017: Mimouni
(2017c)

2016: Mimouni
(2016c)
2017: Mimouni
(2017d)

2016: Mimouni
(2016d)
2017: Mimouni
(2017e)

2016: Mimouni
(2016e)
2017: Mimouni
(2017f)

2016: Mimouni
(2016f)
2017: Mimouni
(2017g)

2016: Mimouni
(2016g)
2017: Mimouni
(2017h)

2016: Mimouni
(2016h)
2017: Mimouni
(2017i)

2016: Mimoun
(2016i)
2017: Mimoun
(2017j)

Toravere 2016, 2017: Kallis (2022)
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Fig. 4. The distribution of the five variability conditions for each selected station (referred to by its abbreviation, as reported in Table 1).
Table 3
An overview of the 12 channels including central, minimum and maximum wavelength of the SEVIRI channels, their identifiers and their main
aim.
Channel identifiers Characteristics of spectral band [μm] Additional information

No. Name 𝜆𝑐 𝑒𝑛 𝜆𝑚𝑖𝑛 𝜆𝑚𝑎𝑥 Aim

1 VIS0.6 0.635 0.56 0.71 Cloud detection and tracking, land surface and vegetation monitoring
2 VIS0.8 0.81 0.74 0.88 Cloud detection and tracking, land surface and vegetation monitoring
3 NIR1.6 1.64 1.50 1.78 Discrimination between snow and cloud, ice and water clouds
4 IR3.9 3.90 3.48 4.36 Low cloud and fog detection
5 WV6.2 6.25 5.35 7.15 Water vapor, winds and semitransparent clouds
6 WV7.3 7.35 6.85 7.85 Water vapor, winds and semitransparent clouds
7 IR8.7 8.70 8.30 9.10 Thin cirrus clouds and discrimination between ice and water clouds
8 IR9.7 9.66 9.38 9.94 Ozone patterns tracking
9 IR10.8 10.80 9.80 11.80 Cirrus cloud and volcanic ash clouds detection
10 IR12.0 12.00 11.00 13.00 Cirrus cloud and volcanic ash clouds detection
11 IR13.4 13.40 12.40 14.40 Cirrus discrimination, cloud top pressure evaluation
12 HRV Broadband (about 0.4 – 1.1) Monitoring of convection in high resolution
,

are collected by the SEVIRI radiometer, the primary instrument on
board the MSG satellite. The SEVIRI radiometer provides images on
12 spectral wavelength channels, 8 of which belong to the thermal
infrared, 3 to the visible channels and 1 to the near-infrared chan-
nel. Table 3 provides a detailed characterization of the 12 channels
along with their major scope (Schmetz et al., 2002). Throughout the
manuscript, we refer to the channels by using the channel number
provided in Table 3.

The multispectral images acquired by the SEVIRI radiometer contain
the measured radiance for each pixel. The radiance corresponds to the
radiant flux leaving a given surface per unit projected area per unit
solid angle and is expressed as mWm−2sr−1(cm−1)−1. The pixel radiance
can be calibrated to either the bidirectional reflectance [%] for the solar
channels or to the brightness temperature [K] for infrared channels.
Pixel conversion allows better interpretation of the image information.
The images disseminated by the SEVIRI instrument are provided as a
pixel grid, the normalized geostationary projection that describes the
view from a virtual satellite to an idealized Earth (Combal and Noel,
2009). The nominal Earth full-disk image for channels 1–11 consists
of 3172 × 3172 pixels, while channel 12 (HRV) image has a size of
11136 × 5568 pixels. The different image sizes reflect the different
spatial resolutions that characterize channels 1–11 and channel 12. In
fact, at the sub-satellite point, the images for channels 1–11 have a
spatial resolution of 3 km per pixel. Instead, channel 12 has a spatial
resolution of 1 km per pixel, about three times higher than the other
11 channels. The full-disk Earth imagining is characterized by a repeat
cycle of 15 min, which allows observation of rapidly changing phe-
nomena on the Earth’s surface and the up-welling atmosphere (Schmetz
et al., 2002). Fig. 5 shows a sample one-hour sequence of channel 12
images over Gobabeb, dated February 16, 2017. In particular, Fig. 5
8

illustrates the rapidly changing evolution of the clouds, highlighting the
temporal variation in pixel intensity, where wither pixels are associated
with higher reflectance values, indicating the presence of clouds.

By providing each and all pixels of the multispectral images as
input, specific to each timestamp and location, the MLP model can
capture tiny variations within the observed scene, thus generating
specific and accurate GHI estimates.

The satellite images were downloaded using the Eumdac (EUMETSAT
2022) Python library, which allows users to interact with EUMETSAT’s
Data Store (EUMETSAT, 2022b) and Data Tailor (EUMETSAT, 2022c)
web services. The Data Store provides users with a central access point
to EUMETSAT’s meteorological, climatic and oceanic data. The Data
Tailor allows users to customize the products of interest.

Through the Data Tailor web service, the satellite images were
downloaded, selecting the High-Rate Information Transmission (HRIT)
format used by EUMETSAT to encode SEVIRI level 1.5 imagery data.
For each BSRN station, we extracted 6 × 6 and 16 × 16 pixels images
for channels 1–11 and 12, respectively, from the full-disk images, with
the BSRN station located in the central pixel. The different sizes of
the images reflect the different spatial resolution between channel
12 and the other 11 channels. By selecting these sizes, we consider
approximately the same geographical area for all channels, covering
approximately an area of 30 × 30 km at the subsatellite point.

For each test BSRN station, the satellite image dataset contains
70 139 multi-channel images of size (6, 6, 11) and 70 139 images of
size (16, 16) for channels 1–11 and 12, respectively. Each sample of
the available 70 139 refers to each 15-min timestamp for the years
2016 and 2017. The baseline dataset of satellite image would include
70 176 samples for the two selected years. However, 37 samples are not
available in the Data Store, and it is not possible to retrieve them, which
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Fig. 5. A sample one-hour sequence of channel 12 images, relative to the 16th of February 2017, representing the evolution of the clouds above Gobabeb. Each pixel of the
images includes the calibrated reflectance.
is why they are missing from the image dataset. The resulting satellite
image dataset includes 70 139 samples. In Section 4.2, the methods
used to further process the satellite images are discussed in detail.

4. Methodology

This work presents an artificial intelligence-based approach to ir-
radiance estimation using multispectral satellite imagery and clear-sky
GHI data. A time resolution of 15 min characterizes the inputs. There-
fore, instead of estimating hourly or daily solar radiation, the MLP
model provides GHI estimates for each 15-min timestamp, starting from
the inputs. In this way, it would be possible to infer solar radiation
over the target area based on inputs that are easily accessible to all
users. Fig. 1 shows the entire pipeline of the proposed methodology.
The following sections describe the processing procedures used for the
input data, the characteristics of the selected model, and the procedures
adopted for the training and testing phases.

4.1. Measured GHI data cleaning

The GHI time series generated by McClear and Heliosat-4 for the
selected years 2016 and 2017 do not contain erroneous or missing data,
as they were generated by physical models. Therefore, as shown in
Fig. 1, GHI data cleaning is applied only to the BSRN ground mea-
surements used to validate the estimation results. Before submission
to BSRN servers, quality checks and updates of ground measurements
are carried out to ensure high data quality (BSRN, 2022). Nevertheless,
BSRN personnel suggests to locally run quality checks to detect physi-
cally incorrect data. We used the BSRN Toolbox (Schmithüsen et al.,
2012) to perform the quality checks of the measured GHI data and
chose the Solpos algorithm without refraction. The measurements that
exceed the physically possible and extremely rare limits (conditions
marked with quality codes 2 and 8, respectively) were excluded from
the measured GHI dataset.

Moreover, the GHI data may have some missing or negative values
due to a temporary malfunction of the ground sensor. Such outliers
were replaced by two simple procedures: (I) negative solar radiation
values, which are physically incorrect, are set to zero; (II) The missing
data is filled using a linear regression method. However, if sequences
of missing data exceed one hour, the missing data will not be filled as
this would produce imprecise GHI values. Consequently, the decision
to discard physically incorrect measurements and long sequences of
missing data reduces the total number of GHI samples by approximately
1.79%. Table 4 describes the total measured GHI samples before and
after data cleaning. In addition, the table also reports the reduction of
GHI samples per station due to the violation of BSRN quality checks
and the exclusion of missing sequences lasting more than one hour.

4.2. Processing the Meteosat images

According to Fig. 1, the satellite images for our study are manipu-
lated using the Satpy Python library (Satpy, 2022), which provides a
comprehensive set of operations for processing meteorological remote
sensing data.
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The input HRIT files, which include the full-disk channel images,
are loaded into the Satpy scene, selecting the default calibration for
the different channels: brightness temperature and reflectance for in-
frared and visible channels respectively. No reprojection is performed;
Therefore, the images are manipulated using the baseline geostationary
projection. The full-disk images are georeferenced, meaning that each
image pixel is associated with a pair of geographic coordinates. Using
this information and exploiting Satpy’s capabilities, we searched for the
pixel, including the target BSRN station.

The image was cropped to have a size of 6 × 6 and 16 × 16
pixels for channels 1–11 and 12, respectively, with the station located
at the central pixel. Given the input HRIT files, relative to a 15-min
timestamp, the cropping process is repeated for each analyzed BSRN
station and all 12 channels. Fig. 6 shows the adopted cropping process
for the VIS 0.6 channel geographically only, just for readability reasons.
More in detail, Fig. 6 shows a sample image of Europe, a detail of
the full-disk image, before and after the cropping process. For each
location, the cropped images are then stored as multidimensional arrays
using the Python library NumPy (Harris et al., 2020). Such a library
performs vectorized operations that quickly perform mathematical op-
erations over a sequence of data, thus efficiently enabling possible
manipulations of the input channel images.

Given the 15-min granularity, there are 70 176 timestamps in the
two years 2016 and 2017. However, 37 timestamp data are unavailable
from the EUMETSAT Data Store. Therefore, after the image processing
phase, for each test BSRN station, we collect 70 139 multidimensional
arrays of size (16, 16, 11) for channels 1–11 and 70 139 arrays of size
(6, 6) for channel 12. The image data for the channels 1–11 and 12 are
saved separately due to the different sizes chosen. However, the down-
loaded and cropped satellite images may contain might include one or
more missing pixel values. We will not include incomplete images in
either the training and testing phases. Such a choice slightly reduces
the size of the satellite image datasets, as explained in Section 4.4.

4.3. Satellite images normalization

Normalization of the input satellite channel images is necessary
to give each feature the same magnitude and speed up the training
phase of the proposed estimation model. The satellite channel images
are extracted using Satpy and each pixel of the images reports either
reflectance or brightness temperature values for visible and infrared
channels, respectively. The images are normalized using a min–max
normalization defined by Eq. (1) so that every pixel value in the entire
image dataset falls within the range [0, 1]. Scanning all images for each
of the 12 channels, the absolute minimum and maximum channel pixel
values that are used for the normalization described in Eq. (1).

𝑋𝑛𝑜𝑟𝑚,𝑖 =
𝑋𝑖𝑛𝑝𝑢𝑡,𝑖 − 𝑚𝑖𝑛𝑖
𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖

(1)

where, 𝑖 refers to the channel number, 𝑋𝑖𝑛𝑝𝑢𝑡,𝑖 is the input channel 𝑖
satellite image, 𝑚𝑖𝑛𝑖 and 𝑚𝑎𝑥𝑖 are the absolute minimum and maximum
pixel values for the channel 𝑖, respectively. Finally, the normalized
channel image is 𝑋𝑛𝑜𝑟𝑚,𝑖. In this way, each pixel of the channel image is
normalized, producing a fully normalized image. The satellite channel
images were processed using the Numpy Python library (Harris et al.,
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Table 4
The number of measured GHI samples before and after the data cleaning procedure, divided by station.
Station Number of measured GHI samples

Before data cleaning After data cleaning Discarded missing values Discarded physically incorrect

Cabauw 70 176 69 896 279 (∼0.39%) 1 (∼0.001%)
Camborne 55 488 55 372 106 (∼0.19%) 10 (∼0.01%)
Carpentras 70 176 69 394 782 (∼1.11%) –
Cener 70 176 70 121 52 (∼0.07%) 3 (∼0.004%)
De Aar 70 176 69 083 1089 (∼1.55%) 4 (∼0.005%)
Florianopolis 70 176 67 628 2507 (∼3.57%) 41 (∼0.05%)
Gobabeb 70 176 69 127 1463 (∼2.08%) –
Izaña 70 176 69 785 391 (∼0.55%) –
Lindenberg 70 176 70 144 30 (∼0.04%) 2 (∼0.002%)
Palaiseau 70 176 69 784 392 (∼0.55%) –
Payerne 70 176 69 946 227 (∼0.32%) 3 (∼0.004%)
Petrolina 70 176 60 884 9292 (∼13.24%) –
São Martinho da Serra 50 932 48 877 2052 (∼4.02%) 3 (∼0.005%)
Sonnblick 70 176 69 489 590 (∼0.84%) 97 (∼0.13%)
Tamanrasset 70 176 69 632 542 (∼0.77%) 2 (∼0.002%)
Toravere 70 176 70 171 2 (∼0.002%) 3 (∼0.004%)

19 796 (∼1.81%) 169 (∼0.02%)

1088884 1069333 19551 (∼1.79%)
Fig. 6. The adopted cropping procedure depicted geographically. Figure (a) shows a sample image of Europe for channel VIS 0.6 and the relative position of the included BSRN
stations; instead, figure (b) shows the cropped images of size 16 × 16 pixels around the areas of interest.
2020), which allows the application of element-wise scalar operations.
Thus, the subtraction and division operations are applied to each pixel
value of the input channel images, achieving very efficient and fast
normalization.

4.4. Selection of the available data

The proposed MLP model estimates solar radiation for a given
timestamp and location from the inputs, which are images from all
12 Meteosat channels and the corresponding estimated clear-sky GHI
10
value. Furthermore, our methodology includes the use of measured
GHI data in addition to the estimated GHI data from Heliosat-4’s, to
verify the accuracy of the proposed MLP model during the perfor-
mance assessment phase. After cleaning the measured GHI data and
satellite image processing procedures, the number of available samples
inevitably decreases. With the inputs, the MLP model can estimate solar
radiation. Using the ground-measured GHI data, it will be possible
to evaluate the performance of the proposed model. Therefore, the
selection of samples used is strictly tied to the simultaneous availability
of satellite images and measured GHI data in order to be able to carry
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Table 5
The number of total available samples used during all phases of the proposed

ethodology, for each location.
Station Available samples

Cabauw 69 839
Camborne 55 231
Carpentras 69 340
Cener 70 068
De Aar 69 016
Florianopolis 67 567
Gobabeb 68 648
Izaña 69 732
Lindenberg 70 090
Palaiseau 69 729
Payerne 69 889
Petrolina 60 815
São Martinho da Serra 48 774
Sonnblick 69 432
Tamanrasset 69 577
Toravere 70 118

out all methodology’s steps. By combining the results of the processing
procedures, it is thus possible to precisely define the available data
to be used during the training, testing, and performance evaluation
hases. Such expedients ensure the consistency of all datasets employed

in our methodology. Table 5 lists the total available samples for each
tation. Each sample refers to a 15-min timestamp of the considered
ears 2016 and 2017, for which we have the 12-channel satellite
mages, the estimated GHI in clear-sky value, the measured GHI, and
he GHI value estimated by Heliosat-4, all data necessary to fulfill the

procedures of the methodology.

4.5. The MLP model

The ANN is a machine learning model inspired by the connection of
the neurons in our brain. The perceptron or neuron defines the simplest

NN architecture, a threshold logic unit that maps the vector of 𝑛 inputs
x to a single binary output value. Each input connection is labeled with
the weight 𝑤𝑖, and the perceptron calculates the weighted sum of the
inputs 𝑧 = 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛, which is then given as input to a step
function, or activation function, 𝑓 that outputs the result.

The training procedure for ANNs is based on the back-propagation
algorithm, which consists of two passes, the forward pass and backward
pass. In the forward pass, the inputs are provided to the input layer,
passing through the network to the output layer. The obtained output
values �̂�𝑖 are compared with the actual outputs 𝑦𝑖, and the error is
quantified using a loss function. The algorithm then calculates the
error contribution of each output connection, and the error is then
propagated back towards the input layer, measuring the error gradients
of the network with respect to each parameter of the model.

Finally, all network connection weights are updated by the gradient
descent algorithm. By stacking perceptrons, it is possible to define the
MLP. It is a class of ANNs characterized by an input layer with several
neurons matching the number of inputs, one or more hidden layers,
and a final output layer that provides the classification or regression
results.

We chose the MLP model to perform the solar radiation estimation,
sing Meteosat multispectral satellite images and the estimated GHI
alues in clear-sky conditions as inputs, relative to 16 different BSRN
tations. The goal is to build a machine learning model to generalize
stimates for different geographically dispersed locations based on the
elected inputs.

The MLP model has a fixed structure and to check the quality of the
proposed methodology, we perform K-fold cross-validation. Generally,
for K-fold cross validation the randomly shuffled dataset is split into K
groups that are independent of each other. One group is kept as test
set, while the other K-1 groups are used to train the model. In this
11

a

way, K training procedures are executed changing the composition of
test and training sets and imposing that each sample is used only once
s a test sample once and K-1 times to train the model. Typically, the
omposition of the K folds is randomly defined by simply dividing the
huffled dataset into K folds.

For the proposed methodology, the division into K groups is
ocation-based, meaning that for each fold, one out of the 16 available

stations defines the test set, while all other 15 stations populate the
raining set. In this way, it is possible to evaluate the model design and

determine its generalization capabilities in estimating solar radiation
over an unseen location. Fig. 8 shows all K combinations adopted for
the available stations. However, the K groups are not uniform in the
umber of samples, as shown in Table 5. Therefore, it is possible that

the performance of the model under different combinations may vary
slightly during the testing phase due to the small variations in the
composition of the sets.

The considered location-based K-fold cross validation not only
proves the effectiveness of the selected architecture, but also demon-
strates the precision of the MLP model in estimating solar radiation over
potentially every location included in the Meteosat full-disk images.
The limitation to the 16 selected sites is simply due to the availability of
ground-measured GHI data to assess the performances of the proposed
methodology.

To implement the MLP model, we used the Keras Python library
(Chollet, 2015), a high-level neural network API running atop Tensor-
Flow (Abadi et al., 2015). The structure of the proposed MLP model is
hown in Fig. 7. In the same Fig. 7, the model includes three input
ayers, one for each input, layer 1: 1–11 channel images, layer 2:
hannel 12 images, and layer 3: GHI values in clear-sky conditions.
he images of channel 12 are provided to a different input branch
ecause they are characterized by a different size, larger than those of
he other 11 channels. The satellite images are flattened before being
ed to the input layers. Each input layer consists of 16 neurons, or units
n Fig. 7, and a linear activation function. The output of each input

layer is concatenated into a single hidden layer, characterized by 1024
neurons and the ReLu activation function, which provides as output the
GHI estimate. The dropout was also included in the model to perform
regularization and increase the robustness of the model. Finally, the

aximum number of epochs is set to 100, a reasonably high value to
improve the generalization of the model.

For training the MLP model, we used the mean squared error as the
loss function and we chose the Adam optimizer due to its computational
efficiency and small memory requirement (Kingma and Ba, 2017).

We performed a grid search to test different models’ hyperparame-
ers values, as shown in Table 6, which helped us determine the most
ccurate MLP architecture through a trial-and-error approach. For each
LP configuration examined during the grid search, we performed the
hole location-based K-fold cross validation discussed previously and
e trained the model independently for each combination of stations

elected to populate the training and test sets, as shown in Fig. 8.
Once the grid search is complete, for each MLP configuration,

we put together the results obtained across the test stations in all
combinations to determine the overall optimal MLP configuration that
has the lowest error across all stations considered. The grid search’s
ecords are reported in Table 7 to ease the discussion of the results.

By changing the composition of training and test sets, following the
combinations given in Fig. 8, and training the MLP model from scratch,
an independent verification of the test station can be performed. In fact,
he test station for each combination completely independent of the
ther 15 training stations, ensuring the validation of the MLP model at

unseen locations.
We also included the Patience as an early stopping condition, which

specifies the number of epochs with no improvements, after which
the training phase is stopped. Patience is set to 20 epochs so that a
sufficient number of neuron combinations generated by the dropout can
be examined in the training phase. The tests were carried out with an
NVIDIA GeForce RTX 3070 Ti GPU. Depending on the available samples
nd batch size, each epoch takes approximately 60 s to complete.
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Fig. 7. The structure of the proposed MLP model.
Fig. 8. The possible combinations, across all available stations, used for the location-based K-fold cross validation to populate training and test sets.
Table 6
The hyperparameters investigated in the grid search.

Hyperparameters Tested values

Batch size 64, 128, 256
Learning rate 0.001, 0.01
Dropout 0.2, 0.5

5. Results

In this section, we present the estimation results of the proposed
MLP model. The performance metrics used to quantify the accuracy of
the estimates are described. We will unfold the results of the analyzed
12
MLP configurations during the grid search to also select the optimal
hyperparameters’ configuration for the proposed MLP model, which
achieves better results overall. Finally, we compare the estimation
results for each test location with those of the Heliosat-4 method to
evaluate the benefits of using our methodology.

5.1. Performance metrics

The performances of the proposed MLP model are evaluated using
the same metrics used in the literature to assess the accuracy of the
Heliosat-4 method, our benchmark method, to enable a fair compari-
son. The selected performance metrics are the Root Mean Square Error
(RMSE), the Relative Root Mean Square Error (rRMSE), Coefficient of
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Table 7
The description of the cases investigated in the grid search with Patience set to 200
epochs.

MLP configuration # Batch size Learning rate Dropout

1 64 0.001 0.2
2 128 0.001 0.2
3 256 0.001 0.2
4 64 0.001 0.5
5 128 0.001 0.5
6 256 0.001 0.5
7 64 0.01 0.2
8 128 0.01 0.2
9 256 0.01 0.2
10 64 0.01 0.5
11 128 0.01 0.5
12 256 0.01 0.5

determination (R2), and Bias (Botchkarev, 2019). The RMSE quantifies
the residuals’ standard deviation and prediction errors; the rRMSE
represents the variation of the RMSE; the R2 measures the variability in
the observed values that can be explained using the predicted values;
the Bias measures numerically the trueness between the average value
of the estimations and the average of the actual values. In this context,
the RMSE and Bias are expressed in terms of W/m2; the rRMSE is
expressed as a percentage, while R2 does not have unit and it ranges
etween 0 and 1. In the following, the mathematical formulation of
hese metrics is reported, where 𝑦𝑝𝑟𝑒𝑑 is the predicted value, 𝑦𝑡𝑒𝑠𝑡 is the

observed value, 𝑦𝑡𝑒𝑠𝑡 is the mean value of the observed values, and 𝑁
s the total number of predictions.

𝑅𝑀 𝑆 𝐸 =

√

∑𝑁
𝑛=1(𝑦𝑝𝑟𝑒𝑑 ,𝑛 − 𝑦𝑡𝑒𝑠𝑡,𝑛)2

𝑁
(2)

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

√

1
𝑁

∑𝑁
𝑛=1(𝑦𝑝𝑟𝑒𝑑 ,𝑛 − 𝑦𝑡𝑒𝑠𝑡,𝑛)2
∑𝑁

𝑛=1(𝑦𝑝𝑟𝑒𝑑 ,𝑛)2
× 100 (3)

𝑅2 = 1 −
∑𝑁

𝑛=1(𝑦𝑡𝑒𝑠𝑡,𝑛 − 𝑦𝑝𝑟𝑒𝑑 ,𝑛)2
∑𝑁

𝑛=1(𝑦𝑡𝑒𝑠𝑡,𝑛 − 𝑦𝑡𝑒𝑠𝑡)2
(4)

𝐵 𝑖𝑎𝑠 =
∑𝑁

𝑛=1 𝑦𝑝𝑟𝑒𝑑 ,𝑛 − 𝑦𝑡𝑒𝑠𝑡,𝑛
𝑁

(5)

5.2. Selection of the optimal MLP configuration

As explained previously, a grid search was performed over the
hyperparameters described in Table 6 to determine the optimal con-
figuration for the proposed MLP model. For each grid search MLP
onfiguration, described in Table 7, we performed a full location-based

K-fold cross validation, changing the contents of the training and test
sets according to the combinations indicated in Fig. 8. In this way, for
ll MLP configuration, we can assess the robustness and accuracy of the
odel in generalizing the GHI estimates for different locations.

We used the previously defined performance metrics to quantify the
erformance of the model. Once all training phases for a given MLP
onfiguration are completed, we calculate the total test errors across all

stations. Such a process was repeated for all MLP configurations; Then,
the combination of hyperparameters that minimizes such overall errors
is selected as the optimal configuration. Table 8 shows the overall

MSE, rRMSE, R2, and Bias between the measured GHI values and the
predicted ones across all test stations of the combinations described in
Fig. 8 and for each grid search MLP configuration.

The MLP configuration #4 offers the best performances in terms
f all metrics considered. In fact, it achieves an RMSE and R2 of

77.682 W/m2 and 0.929, respectively; It also achieves the lowest bias
of −0.033 W/m2 and an rRMSE of 23.059%. The MLP configuration
#4 is undoubtedly the best overall, although the errors’ deviation from
13

I

Table 8
The results of the case studies investigated in the grid search in terms of RMSE, rRMSE,
2, and Bias.
MLP configuration # RMSE [W/m2] rRMSE [%] R2 Bias [W/m2]

1 77.841 23.195 0.929 −1.224
2 78.386 23.374 0.928 −2.082
3 77.804 23.226 0.929 −1.747
4 77.682 23.059 0.929 −0.033
5 77.828 23.062 0.929 −1.007
6 78.043 23.081 0.929 −0.311
7 78.591 23.283 0.928 0.331
8 79.319 23.707 0.926 −0.674
9 77.887 23.282 0.929 −2.012
10 78.647 23.405 0.928 −0.932
11 78.558 23.336 0.928 0.125
12 79.032 23.312 0.927 1.054

the other configurations remains small. The performances of the MLP
for each individual test station, discussed in the following section, are
analyzed and compared solely by observing the results relative to the
est MLP configuration. The structure of such configuration is shown in

Fig. 7, matching the number of neurons in the input and hidden layers
nd relative activation functions, but with a dropout of 0.5. While for
he training phase, we selected a learning rate of 0.001 and a batch
ize of 64. The complete characterization of the grid search’s results is
eported in Table 9, Table 10, Table 11, and Table 12 in terms of RMSE,

rRMSE, R2, and Bias, respectively.

5.3. Estimation results and comparison with Heliosat-4

After determining the overall best hyperparameters’ configuration
for the proposed MLP model, we compare the obtained GHI estimates,
characterized by a temporal resolution of 15 min, with those generated
sing the Heliosat-4 method. Such a comparison is carried out station

by station to grasp the improvements locally achieved by the MLP
model. Table 13 shows the complete comparison between the MLP
stimates and those of Heliosat-4 for each test station considered in

our analysis.
Considering the results in Table 13, the proposed artificial intelli-

gence MLP model outperforms the Heliosat-4 method for most of the
tations. Indeed, the RMSE improvements range from 0.558 W/m2 to

10.813 W/m2 for Carpentras and Tamanrasset stations. The improve-
ments in R2 are less prominent than those of the RMSE, but they are
nevertheless consistent.

Likewise, the improvement in MLP accuracy compared to Heliosat-4
in terms of rRMSE ranges from 0.160% to 3.092% for the Palaiseau
nd Tamanrasset stations. While the maximum R2 improvement en-
ountered is 0.014 for the Toravere and São Martinho da Serra stations.
ence, the proposed model can accurately capture the temporal evolu-

ion of solar radiation throughout the year. As for the Bias, it is worth
noting that the spectral range of the pyranometer instruments used by
the BSRN network is between 285 and 2800 nm.

On the other hand, the spectral range in Heliosat-4 ranges between
240 and 4606 nm, following Kato et al. (1999). Such a difference
in the spectral range leads to a bias overestimation by Heliosat-4.
Therefore, the biases achieved with our methodology are generally
lower. Nevertheless, besides cases where the bias improvements are
pretty significant, the MLP model improves the accuracy of the GHI
estimates overall.

Our proposed methodology is outperformed by Heliosat only at
three stations, namely Cener, Izaña, and Lindenberg. Nevertheless,
the improvements for Cener and Lindenberg in terms of RMSE and
R2 are negligible with respect to our methodology. In fact, Heliosat
provides an RMSE improvement of 0.461 and 0.772 W/m2, and an
R2 enhancement of 0.001 and 0.003, respectively. For Izaña, Heliosat
gives an improvement of 0.008 with respect to R2, which is negligible.
nstead, the RMSE obtained by Heliosat for the same station reaches
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Table 9
Grid search results for all MLP configurations and stations in terms of RMSE, expressed in [W/m2].

Station MLP configuration #
1 2 3 4 5 6 7 8 9 10 11 12

Cabauw 72.825 69.113 68.545 68.540 69.747 68.988 70.100 69.200 69.490 70.383 70.247 69.380
Camborne 70.322 69.509 70.357 69.462 70.928 69.348 69.297 69.620 69.357 71.200 69.616 71.242
Carpentras 53.104 53.246 54.571 53.381 53.623 53.521 53.822 53.960 55.281 54.464 55.499 54.427
Cener 71.161 71.161 71.320 71.139 71.657 71.577 71.584 72.103 71.443 72.305 71.889 73.846
De Aar 71.395 74.137 72.628 72.198 71.570 71.808 72.094 71.545 71.727 72.439 72.261 71.905
Florianopolis 99.482 94.958 95.776 95.778 95.342 96.215 95.595 95.633 94.297 95.925 96.031 94.763
Gobabeb 40.817 47.919 41.845 40.628 43.100 41.546 41.889 64.266 43.931 42.382 43.174 42.197
Izaña 84.639 89.071 86.308 82.797 83.769 83.959 85.918 83.161 85.902 83.200 84.188 82.728
Lindenberg 69.234 69.213 68.798 69.339 69.386 70.299 71.681 69.725 69.899 72.734 73.216 69.922
Palaiseau 72.474 73.025 73.137 72.802 74.664 77.689 73.006 73.121 72.992 74.091 73.760 73.850
Payerne 65.698 64.925 65.362 66.841 65.321 65.125 71.955 65.995 65.337 66.211 66.043 66.253
Petrolina 103.767 105.514 103.792 104.152 104.221 104.72 104.166 111.144 103.703 103.494 105.925 111.758
São Martinho da Serra 89.698 89.040 88.590 89.990 88.199 88.477 88.704 88.840 87.941 90.292 89.106 89.281
Sonnblick 115.508 117.073 117.011 116.453 117.59 117.843 119.077 117.635 118.223 120.290 118.296 121.256
Tamanrasset 68.096 69.357 69.096 68.855 69.121 69.014 69.522 68.191 68.902 68.525 69.042 68.457
Toravere 69.838 71.430 70.891 73.751 70.659 70.555 71.439 73.105 71.497 73.311 72.016 73.404
Table 10
Grid search results for all MLP configurations and stations in terms of rRMSE, expressed as a percentage.

Station MLP configuration #
1 2 3 4 5 6 7 8 9 10 11 12

Cabauw 31.212 29.427 29.209 28.844 28.312 28.431 29.668 29.352 29.806 29.899 29.491 30.050
Camborne 29.378 28.243 30.466 29.169 28.129 28.748 28.590 28.401 28.855 28.401 29.306 27.841
Carpentras 16.164 16.302 16.446 16.494 16.677 16.240 16.531 16.501 17.798 16.747 17.806 16.781
Cener 22.853 23.103 22.859 22.695 23.412 23.332 23.321 23.151 22.748 23.191 23.134 24.527
De Aar 16.586 16.566 16.594 17.106 16.431 16.599 16.533 16.609 16.713 16.912 16.848 16.504
Florianopolis 33.909 29.676 30.137 28.829 29.531 30.351 30.688 30.846 29.404 30.286 30.334 29.742
Gobabeb 8.839 10.899 9.237 8.809 9.513 8.938 9.158 15.605 9.586 9.255 9.497 9.211
Izaña 19.288 19.943 19.541 17.919 18.328 17.900 18.577 18.134 18.966 18.033 18.443 18.205
Lindenberg 29.166 30.107 29.027 29.990 30.071 29.574 32.399 30.131 30.026 32.785 34.035 30.573
Palaiseau 28.605 29.796 30.106 29.361 31.684 34.411 29.141 29.346 29.411 30.412 28.783 28.699
Payerne 23.005 23.492 23.087 22.765 23.006 23.205 23.491 23.623 23.655 24.211 23.563 23.440
Petrolina 25.451 26.013 25.503 25.860 25.290 25.0610 25.388 25.426 25.393 25.493 24.956 25.196
São Martinho da Serra 25.031 25.481 25.568 27.018 25.154 25.554 25.496 25.257 24.988 25.159 25.225 25.365
Sonnblick 42.718 44.502 44.903 44.241 46.017 45.806 45.422 45.390 44.947 45.447 45.633 48.690
Tamanrasset 15.439 15.477 15.582 15.374 15.343 15.696 15.914 15.269 15.905 15.501 15.389 15.267
Toravere 32.489 34.720 35.040 38.075 33.493 32.902 34.226 36.652 34.169 36.496 33.571 36.659
Table 11
Grid search results for all MLP configurations and stations in terms of R2.

Station MLP configuration #
1 2 3 4 5 6 7 8 9 10 11 12

Cabauw 0.881 0.893 0.894 0.894 0.891 0.893 0.889 0.892 0.891 0.889 0.889 0.892
Camborne 0.894 0.896 0.894 0.896 0.892 0.897 0.897 0.896 0.897 0.891 0.896 0.891
Carpentras 0.962 0.962 0.960 0.962 0.961 0.961 0.961 0.961 0.959 0.960 0.959 0.960
Cener 0.930 0.930 0.929 0.93 0.929 0.929 0.929 0.928 0.929 0.928 0.928 0.924
De Aar 0.959 0.956 0.958 0.958 0.959 0.959 0.958 0.959 0.959 0.958 0.958 0.959
Florianopolis 0.879 0.890 0.888 0.888 0.889 0.887 0.889 0.889 0.892 0.888 0.888 0.891
Gobabeb 0.988 0.983 0.987 0.988 0.986 0.987 0.987 0.970 0.986 0.987 0.986 0.987
Izaña 0.949 0.943 0.947 0.951 0.950 0.949 0.947 0.950 0.947 0.950 0.949 0.951
Lindenberg 0.892 0.892 0.893 0.891 0.891 0.888 0.884 0.890 0.890 0.880 0.879 0.890
Palaiseau 0.897 0.895 0.895 0.896 0.890 0.881 0.895 0.895 0.895 0.892 0.893 0.893
Payerne 0.928 0.930 0.929 0.925 0.929 0.929 0.914 0.927 0.929 0.927 0.927 0.927
Petrolina 0.906 0.903 0.906 0.905 0.905 0.904 0.905 0.892 0.906 0.906 0.902 0.891
São Martinho da Serra 0.911 0.912 0.913 0.911 0.914 0.914 0.913 0.913 0.915 0.910 0.912 0.912
Sonnblick 0.778 0.772 0.773 0.775 0.770 0.769 0.764 0.770 0.768 0.760 0.768 0.756
Tamanrasset 0.965 0.964 0.964 0.964 0.964 0.964 0.963 0.965 0.964 0.964 0.964 0.965
Toravere 0.874 0.868 0.870 0.859 0.871 0.871 0.868 0.862 0.868 0.861 0.866 0.861
M

76.005 W/m2, compared to 82.797 W/m2 obtained by our MLP model.
Likewise, Heliosat achieves an rRMSE of 16.707% versus 17.919% of
the MLP.

Only in this case does Heliosat significantly outperform our method-
ology. Such an occurrence is likely due to an underestimation of
the clear-sky GHI values provided as input, which often exceed the
measured GHI. However, apart from this isolated case, the MLP model
can provide accurate GHI estimates for test sites with heterogeneous ge-
ographical characteristics. Therefore, the proposed methodology proves
14
to be robust in generalizing across different areas. Such a feature allows
the analysis to be extended to any location of interest included in the

eteosat full-disk image, provided the necessary inputs.
A graphical representation of the MLP estimation results can be

found in Fig. 9, which shows the scatterplot of the MLP and Heliosat-4
estimated and reference ground GHI values for the Gobabeb, Payerne,
and Tamanrasset stations. Fig. 9 also shows the absolute distance
between the estimates and the ground truth. Looking at the distribution
of points, the MLP’s GHI estimates for Gobabeb station are closest to the
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Table 12
Grid search results for all MLP configurations and stations in terms of Bias, expressed in [W/m2].

Station MLP configuration #
1 2 3 4 5 6 7 8 9 10 11 12

Cabauw −1.218 2.265 −0.568 7.429 2.766 6.188 8.265 4.254 0.283 7.592 1.902 −2.791
Camborne 0.181 4.083 −3.594 10.08 −1.205 1.231 0.915 5.391 1.788 10.389 0.916 13.057
Carpentras 3.161 −0.355 4.686 −0.146 0.746 4.948 2.995 2.188 −7.537 2.889 −8.031 1.597
Cener −0.243 −2.772 1.290 −2.095 2.858 −2.496 −1.350 6.066 4.983 2.243 2.438 4.917
De Aar −0.173 11.568 7.326 2.993 −5.483 0.428 4.434 −0.607 −2.005 −2.393 −1.500 2.349
Florianopolis −19.123 −4.066 −3.361 −0.279 4.680 −3.563 −9.957 −7.594 −2.368 −5.218 −1.546 −4.503
Gobabeb −0.621 −16.956 −6.126 −4.831 1.670 3.458 1.310 −31.762 −4.061 −3.325 −2.409 −1.585
Izaña −16.166 −7.275 −11.937 −3.961 −1.536 3.484 −2.907 −1.350 −6.274 −0.926 −2.259 −3.139
Lindenberg 2.786 −3.280 3.919 −0.639 −0.685 5.187 −3.476 −0.073 0.319 −5.632 −8.810 −1.517
Palaiseau 2.482 −2.073 −3.309 −7.764 −2.722 −16.425 −0.625 0.072 −0.715 −2.132 3.682 7.084
Payerne 6.583 −0.001 4.945 6.461 12.116 2.941 19.770 0.701 1.326 −1.119 4.210 5.074
Petrolina 3.789 1.576 1.612 5.038 −1.743 7.139 4.083 36.647 3.584 2.281 13.967 25.390
São Martinho da Serra 6.640 −1.407 −4.441 −0.011 −11.291 −1.270 1.138 1.324 0.268 4.860 2.343 −0.794
Sonnblick −4.665 −10.744 −12.886 −13.609 −8.754 −14.235 −11.509 −10.423 −9.519 −10.842 −11.019 −19.648
Tamanrasset −1.597 5.362 1.031 5.828 4.012 −1.237 −4.046 3.591 −5.008 0.190 5.992 4.049
Toravere 1.316 −7.417 −7.365 −2.362 −14.596 0.119 −3.217 −13.27 −5.213 −9.419 4.542 −7.857
Table 13
The performance comparison between the proposed MLP model and the Heliosat-4 for the analyzed test stations in terms of the selected metrics.

Stations MLP Heliosat-4

RMSE [W/m2] rRMSE [%] R2 Bias [W/m2] RMSE [W/m2] rRMSE [%] R2 Bias [W/m2]

Cabauw 68.540 28.844 0.894 2.766 70.585 29.825 0.888 −0.194
Camborne 69.462 29.169 0.896 −1.205 70.875 28.555 0.892 2.992
Carpentras 53.381 16.494 0.962 0.746 53.940 16.061 0.961 6.723
Cener 71.139 22.695 0.930 2.858 70.677 22.289 0.931 3.425
De Aar 72.198 17.106 0.958 −5.483 76.788 17.712 0.953 1.531
Florianopolis 95.778 28.829 0.888 4.680 98.832 29.067 0.881 3.255
Gobabeb 40.628 8.809 0.988 1.670 47.854 10.436 0.983 −2.753
Izaña 82.797 17.919 0.951 −1.536 76.005 16.707 0.959 −8.813
Lindenberg 69.339 29.990 0.891 −0.685 68.566 29.000 0.894 0.335
Palaiseau 72.802 29.361 0.896 −2.722 74.946 29.521 0.890 0.712
Payerne 66.841 22.765 0.925 12.116 69.131 23.998 0.920 5.947
Petrolina 104.152 25.860 0.905 −1.743 111.428 26.404 0.892 10.176
São Martinho da Serra 89.990 27.018 0.911 −11.291 96.505 27.539 0.897 −1.527
Sonnblick 116.453 44.241 0.775 −8.754 118.325 44.787 0.767 −15.582
Tamanrasset 68.855 15.374 0.964 4.012 79.668 18.466 0.952 −6.749
Toravere 73.751 38.075 0.859 −14.596 77.318 36.855 0.845 −3.955
c

o

h
e
b

target values as the points are closer to the perfect prediction line, as
also shown in Table 13. Furthermore, when analyzing the distribution
of GHI estimates for the Tamanrasset station, it is clear that Heliosat-4
ends to underestimate GHI, while the MLP’s predictions are closer to
he perfect prediction line. These graphical point distributions are all

consistent with the results reported in Table 13.
A clearer insight into the estimation results can be grasped by

bserving Fig. 10, which puts side-by-side the ground-measured GHI,
he MLP’s, and Heliosat-4’s GHI estimates, respectively.

Specifically, Fig. 10 shows the GHI evolution for five sample days,
ach belonging to the five daily variability conditions defined in Sec-

tion 3.2, for three test stations, namely Camborne, São Martinho da
erra, and Tamanrasset, belonging to different continents. In general,
vercast days are usually more challenging to handle due to the rapid
nd unpredictable movement of clouds above, which makes estimating
olar radiation quite difficult.

However, looking at Fig. 10, the GHI estimates generated by the
MLP model follow the target GHI and capture the temporal evolution of
olar radiation for distinct locations as well as for different and adverse
eteorological conditions. In fact, the MLP model’s GHI estimates for

ão Martinho da Serra closely follow the evolution of the measured GHI
cross all observed reference days and daily variability conditions. Over
amborne, the GHI estimates generated by the MLP model appear to
e more accurate and precise than Heliosat-4’s GHI estimates. Indeed,
he MLP model accurately detects solar irradiance peaks during the

reference days, especially on cloudy days, in contrast to Heliosat-4,
hich generates GHI estimates that have a larger deviation from the

arget measure. A similar trend can be observed in Tamanrasset.
15

e

Such results leave room for new solutions and prove the effi-
iency of the proposed artificial intelligence approach compared to a

state-of-the-art physical model.
Finally, for completeness, Fig. 11 compares the estimation errors

for the proposed MLP model and Heliosat-4, taking into account the
daily variability conditions introduced in Section 3. Fig. 11 shows the
deviation from the estimated GHI obtained from the MLP model and
Heliosat-4 and the ground-measured GHI with respect to all selected
metrics. Specifically, for each station and considering a specific daily
variability condition, we selected all estimated GHI values and the ref-
erence ground GHI corresponding to the days in the dataset matching
those specific conditions. The error between the estimated and actual
GHI is then calculated for each station and each variability condition,
which distribution is reported in Fig. 4.

Although we provide clear-sky GHI as input to the MLP model,
ne can see from Fig. 11 that our methodology also produces good

results under cloudy skies when the sky is mostly covered by clouds. For
example, considering Cambourne station, the RMSE calculated between
the MLP’s GHI estimates and the relative measured GHI is 16.311 W/m2

on clear days, while it reaches 19.758 W/m2 on overcast days. A similar
trend can be observed for most stations. It can thus be shown that the
input clear-sky GHI is mostly useful to relate the input satellite images
to a reference value of solar radiation. Nevertheless, except for a few
cases, the lowest RMSE errors occur on clear days. Conversely, the
ighest rRMSE errors can be observed on cloudy days. As we might
xpect, the days labeled with high variability are those characterized
y higher RMSE errors and lower R2. Indeed, it is difficult to accurately

stimate the GHI when meteorological conditions vary frequently.
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Fig. 9. The scatter plots including the MLP’s GHI estimations, relative to the best MLP configuration, and ground-measured GHI values for the Gobabeb, Payerne, and Tamanrasset
stations.
Furthermore, observing Fig. 11, it is possible to directly compare
the MLP’s GHI estimates with those of Heliosat-4 for the same daily
conditions. Indeed, it can be observed that Heliosat-4 also has the
lowest errors on clear days, and it struggles during highly variable
and cloudy meteorological conditions. However, we generally observe
higher accuracy of the MLP model when comparing the GHI estimates
under the same conditions and the same station.

For example, examining the Petrolina station, the estimates of MLP
under clear, mild, moderate, high and overcast conditions in terms
of RMSE are 20.571, 58.913, 94.953, 126.989, and 61.12 W/m2, re-
spectively. On the other hand, for the same station and conditions,
Heliosat-4 achieves RMSE values of 27.837, 65.600, 103.159, 134.520
and 69.799 W/m2. A similar trend can be observed for the rRMSE,
R2, and Bias. However, as already explained in Table 13, Heliosat-4
significantly outperforms the proposed MLP model for the Izaña station
alone. Indeed, for such a station, Heliosat-4 achieves an R2 of 0.988,
0.927, 0.879, 0.816, and 0.344 in clear, mild, moderate, high, and
overcast conditions, respectively. While our MLP model achieves an
R2 of 0.981, 0.933, 0.863, 0.772, and 0 under the same conditions.
However, apart from one such isolated case, the proposed MLP model
generally outperforms the Heliosat-4 benchmark model for the five
identified variability conditions and overall.

5.4. Results discussion

Heliosat-4 is a great method to produce solar irradiance estimates
and generalize them to any location of interest within the Meteosat
full-disk images. Nevertheless, as described in Section 2, the Heliosat-4
16
method requires aerosol properties, total column water vapor, ozone
content, and cloud properties to produce solar radiation estimates.
Cloud properties are derived from the Meteosat satellite images using
the APOLLO_NG cloud processing scheme, which is a probabilistic
interpretation of the original physical APOLLO method for detecting
clouds and cloud property (Klüser et al., 2015). Retrieving such in-
puts requires interacting with specific web services or implementing
complex methods.

An advantage of the proposed methodology lies in the selection of
inputs. Indeed, the proposed MLP model uses easily accessible inputs,
i.e., the Meteosat satellite images and GHI in clear-sky conditions,
which require very little processing. Furthermore, the previous analysis
of the results highlighted the accuracy of the MLP model over the
Heliosat- 4 benchmark method.

The estimates generated by the proposed methodology are generally
closer to the measured GHI target. Also, the model can identify solar
radiation peaks throughout the day under different meteorological con-
ditions. Such properties demonstrate the efficiency of the MLP model
at generalizing heterogeneous locations and conditions with a high
confidence level.

Moreover, as mentioned earlier, the acquisition of the required at-
mospheric inputs for the Heliosat-4 method is challenging and it entails
a two-day delay for the estimates’ retrieval. In contrast, the proposed
MLP model is solely bounded to the primary input, the satellite images,
available in near real-time thereby eliminating the Heliosat-4’s delay.
Therefore, with the proposed solution the analysis can be extended in a
near real-time scenario overcoming the structural delay of the selected
physic benchmark counterpart.
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Fig. 10. The MLP’s and Heliosat-4’s GHI estimates along with the ground-measured GHI for different sample days in UTC time, belonging to each daily variability condition, for
the Camborne, São Martinho da Serra, and Tamanrasset stations.
Combining the need for fewer and easily accessible inputs with the
accuracy of the results, the MLP model becomes a valuable and promis-
ing approach for estimating solar radiation over any area included in
the Meteosat full-disk images. Additionally, the model was trained on
two years of data, which leaves room for improvement by using larger
dataset, including additional years of data.

6. Conclusion

In this work, an MLP model for estimating solar radiation in terms
of GHI is presented using Meteosat’s multispectral satellite images with
GHI values under clear skies conditions. The results showed that the
proposed methodology could accurately detect GHI patterns over time
for different testing locations scattered over Europe, Africa, and South
America.Indeed, through a location-based K-fold cross-validation, the
MLP model demonstrated good generalization abilities over unseen
locations, suggesting that the model is capable of producing reliable
GHI estimates potentially for any location of interest included in the
Meteosat images.

To evaluate the efficiency of artificial intelligence models against a
physical counterpart, we also compared the estimation results of the
MLP with those generated by the state-of-the-art Heliosat-4 model. The
proposed methodology significantly outperformed the physical model
for most selected test stations for all performance metrics consid-
ered and for distinct meteorological conditions. In this way, we have
collectively demonstrated the strength of the developed MLP model
in generalizing across different locations and its accuracy compared
to a complex, reliable physical model. Nevertheless, the MLP model
presented was trained with two years of data and temporally extending
17
the dataset would provide even more precise results. For future works,
it would be interesting to reproduce the methodology at a zonal level,
i.e. to define an MLP model for different climate zones, rather than a
global estimation model. Additionally, we would test different input
clear-sky models and extend the analysis to forecasting. In fact, the
MLP model could be used to estimate the GHI from future satellite
images created using optical flow methods, thus achieving reliable
and accurate forecast results over potentially any location of interest
covered by the Meteosat images.
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Fig. 11. The performance comparison between the proposed MLP model and the Heliosat-4 for the analyzed test stations (referred to by their abbreviations, as reported in Table 1)
in terms of RMSE for the five daily variability conditions.
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