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Recent advancements in Additive Manufacturing technology have enabled the creation of components with 
innovative shapes, surpassing the limitations of conventional manufacturing methods. Lattice materials, also 
known as metamaterials, are a noteworthy example due to the possibility for effective control over mechanical 
and physical properties through the tuning of geometric parameters. One of the biggest limitations in the 
mechanical design and optimization of lattice-based structures is represented by the high computational time 
required in all the phases of numerical analyses due to their geometric complexity and the large number of 
repeated cells. The homogenization-based multiscale analysis is a computationally efficient numerical approach, 
able to extrapolate the macroscopic behavior of the lattice material from microscopic analyses. While the validity 
of homogenization to capture the displacement field has been proven in numerous studies, a comprehensive and 
operational procedure for the mechanical design of lattice metamaterials is absent in literature. Thus, the present 
paper introduces a methodology that couples micro and macroscale analyses to provide the essential mechanical 
data for design evaluation. Moreover, the proposed framework is rigorously validated on test cases through 
the comparison between the numerical data obtained from the homogenized component and its high-fidelity 
counterpart.

1. Introduction

In recent years, Additive Manufacturing (AM) has emerged as a rev-
olutionizing technology enabling the production of complex shapes, 
that were once deemed impossible to be manufactured through tra-
ditional processes. Among these groundbreaking developments, lattice 
structures have gained significant attention for their unparalleled com-
bination of strength, low weight, and highly customizable geometries 
[1,2]. Typical application of those revolutionary metamaterials includes 
lightweight structures, thanks to their high specific stiffness and strength 
[3–5], heat exchangers due to the large surface area, [6–9], energy ab-
sorbers due to the ability to sustain great deformation at a relatively low 
stress level [10–15], acoustic insulators [16,17] and biomedical appli-
cations [18–20].

Although Finite Elements Method (FEM) and Topology Optimiza-
tion (TO) are well-established and powerful tools for the mechanical 
design of lattice metamaterials, numerical computations are often un-
feasible due to the high computational time required to simulate even 
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small components accurately, given the large number of mesh elements 
needed to model their complex geometry [5,21–23]. In this context, the 
multiscale approach has emerged as a promising method to speed simu-
lations up. It is based on homogenization, a numerical procedure able to 
retrieve the mechanical properties in the microscale of the smallest do-
main able to represent the behavior of the whole metamaterial, that is 
called Representative Volume Element (RVE). The equivalent mechan-
ical properties can be used to model and simulate the whole lattice in 
the macroscale as a bulk material, allowing the generation of lighter 
meshes and, therefore, leading to a huge saving in computation time 
[24,25]. Homogenization was originally introduced to perform faster 
simulations of composite materials and several procedures have been 
developed since the end of the 20th century, ranging from analytical to 
numerical approaches. A comprehensive overview of homogenization 
algorithms can be found in Hassani et al. [25], Yan et al. [26], Barbero 
[27] and Somnic et al. [28].

Homogenization procedures based on numerical FE simulation are 
founded on the satisfaction of Hill-Mandel’s theorem, that ensures the 

https://doi.org/10.1016/j.matdes.2025.113614
Received 13 November 2024; Received in revised form 3 January 2025; Accepted 13 January 2025 

Materials & Design 251 (2025) 113614 

Available online 23 January 2025 
0264-1275/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/matdes
http://orcid.org/0000-0001-7695-5469
http://orcid.org/0000-0001-6863-6724
mailto:luca.cibrario@polito.it
mailto:chiara.gastaldi@polito.it
mailto:cristiana.delprete@polito.it
mailto:ivan_flaminio.cozza@dumarey.com
https://doi.org/10.1016/j.matdes.2025.113614
https://doi.org/10.1016/j.matdes.2025.113614
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Cibrario, C. Gastaldi, C. Delprete et al. 

energetic consistency between the microscale real and homogenized 
models. From this requirement, three types of boundary conditions 
(BCs) can be employed to retrieve the equivalent mechanical proper-
ties: uniform boundary conditions (UBC) [29] either in form of traction 
or displacements, periodic boundary conditions (PBC) and enforced pe-
riodic boundary conditions (e-PBC), that are a combination of UBCs and 
PBCs [30]. Several algorithms, originally developed for the homogeniza-
tion of composite materials, employing UBCs [31,32], PBCs [33–38] and 
e-PBCs [27], can be found in literature. Moreover, investigations on the 
effects of the different types of BCs and dimensions of RVEs on the out-
comes of homogenization have been conducted. For example, Wang et 
al. [39] found that effective mechanical properties can be computed 
with high fidelity only through PBCs, while UBCs lead to window size 
and unit cell type-dependent results and, therefore, only apparent prop-
erties can be computed. However, effective and apparent mechanical 
properties tend to coincide as the dimensions of the RVE are big enough 
to minimize the effects of BCs.

Recently, homogenization has also been applied to lattice metama-
terials to both evaluate their mechanical properties and develop fast 
performing TO frameworks. UBCs were employed in the investigation 
of strut-based lattice structures by Xu et al. [40], who found that the 
anisotropy of the structure is highly dependent on the spatial arrange-
ment and dimensions of rods, and by Lohmuller et al. [41], that system-
atically estimated and compared stiffness constants and anisotropy of a 
large panel made of different unit cells, and for a large range of relative 
densities to find the best trade-off between stiffness and relative density. 
Al-Ketan et al. [42] investigated the architecture-property relationship 
associated with the possible configurations of a Triply Periodic Mini-
mal Surface (TPMS) I-graph and wrapped package-graph (IWP) skeletal 
and sheet based lattice structure, and Lohmuller et al. [43] performed 
an extensive research on the mechanical properties of strut-based and 
TPMS lattice structures for the assessment of relationship between me-
chanical properties and relative density. However, recently PBCs have 
become the most used algorithm for the homogenization of lattice struc-
tures and examples of their use can be found in Bonatti et al. [44], 
who investigated the anisotropic elasticity, yield strength and specific 
energy absorption of strut-based and TPMS lattice structures as a func-
tion of the relative density, Chatzigeorgiou et al. [45], who compared 
various TPMS-based and strut-based lattices with respect to elastic prop-
erties, stiffness, anisotropy, and local stress distribution for biomedical 
implants, and Pais et al. [46], that concentrated on the evaluation of 
the mechanical properties of TMPS lattice structures and on the defini-
tion of a scaling law for Young’s modulus and yield strength, to design 
optimized functionally graded structures for structural applications or 
reduced stress shielding in bio-applications.

Moreover, many TO-related papers, which employed homogeniza-
tion to speed up numerical computations can be found in literature. In 
TO frameworks, homogenization is performed before the optimization 
cycle to create a map of the mechanical properties of unit cells, depend-
ing on relative density. After that, the optimization algorithm tries to 
find the optimal density in each point of the design volume and finally 
the lattice structure is generated. Li et al. [47] presented a TO framework 
constrained by manufacturability limits for the design of lattice com-
ponents based on gyroids, Imediegwu et al. [48,49] presented a robust 
multiscale algorithm for the thermal and thermo-structural optimization 
of printable structures using lattice-based micro-architectures, Fernan-
des et al. [50] developed an experimentally-validated framework used 
to perform topology optimization of lattice structures subject to stress 
constraints, and Stromberg et al. [51] reported that optimization frame-
works, which allow the creation of functionally graded lattice, lead to 
significantly stiffer solutions with respect to the corresponding optimal 
designs, made by using constant lattice densities.

Generally, in optimization workflows the fulfillment of mechanical 
design constraints, like yield or ultimate strength, is performed through 
the Finite Element Analysis (FEA) of the final optimized component. 
However, this implies a direct modeling and simulation of the full 

macroscale lattice component, that, as it has been said previously, is 
computationally demanding and often unfeasible. Few studies, like Zh-
maylo et al. [52], have proven the validity of the homogenized model 
to accurately simulate the real macroscale displacement of the full-scale 
model. However the development of a procedure, able to detect the crit-
ical zones within the homogenized lattice domain and compute the real 
stress field, would make the evaluation of each design within the op-
timization cycle more complete, as the design constraint on admissible 
stresses would be evaluated at each iteration.

Montoya-Zapata [53,54] presented a methodology that combines 
material homogenization and Design of Experiments (DoE) to estimate 
the stress–strain response in large lattice domains for lesser compu-
tational demands in comparison to FEA. DoE allows to estimate the 
stress–strain responses in large lattice domains and produces simple 
mathematical formulations to express the stresses in the lattice as func-
tions of the displacements obtained through homogenization. The re-
sults on stress were reported to be not accurate enough, being the error 
in the order of 50-100%, and, therefore, that procedure should be used 
only for pre-evaluation designs. More recently, Coluccia et al. [55] pre-
sented an homogenization-based framework to estimate the fatigue life 
of strut-based lattice structures. It consists in the following steps: ho-
mogenization of the mechanical properties of the RVE, simulation of the 
full-scale homogenized model, identification of the most critical element 
through the evaluation of the homogenized strain field, and simula-
tion of the critical cell to retrieve the maximum stress within the whole 
lattice domain. However, the procedure was not validated through com-
parison with a full-scale real model of the lattice component.

Taking inspiration from the above-mentioned procedure, this work 
not only builds upon it, but also expands the approach to include a rig-
orous selection of the homogenization procedure among those present 
in the literature. Additionally, the work involves a stringent validation 
against high-fidelity numerical benchmarks and highlights criticalities, 
that can only be identified when comparing the findings with high-
fidelity numerical data. This comprehensive, unified, and validated op-
erational multiscale homogenization-based workflow aims to provide 
fast and reliable FE simulations of lattice structures, delivering all the 
essential data necessary for the evaluation of component designs.

In Section 2, this work provides basic theoretical notions on the 
homogenization-based multiscale approach. In Section 3, the procedure 
for fast simulations of lattice structures is described. Section 4 is ded-
icated to comparing the performance of the homogenization schemes 
presented earlier in terms of computation time, convergence rate, and 
overall convenience to identify the most suitable algorithm. In Section 5, 
the fast multiscale procedure is applied to two case studies, and the 
results are compared to those obtained through full-scale Direct Numer-
ical Simulation (DNS). Potential critical issues are highlighted, along 
with strategies to overcome them. Moreover in the appendixes, a more 
complete explanation of the mathematical equations behind the differ-
ent homogenization approaches and their detailed implementation in 
FE codes are presented.

2. Homogenization-based multiscale modeling: an introduction

In this section few key theoretical notions about the multiscale ap-
proach, homogenization theory and algorithms are presented.

2.1. Multiscale modeling fundamentals

Multiscale modeling refers to an approach in which the mechanical 
response of the material is studied at one length scale, but the outcomes 
of the analysis are referent to several properties at another one [46]. Ho-
mogenization is a technique for evaluating the equivalent microscopic 
properties of a complex metamaterial with a periodic structure and it 
can be either performed through experiments or virtual tests based on 
numerical simulations. Being the FEA of entire lattice structures high de-
manding and often unfeasible due to the high number of mesh elements, 
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Table 1
Overview of the homogenization algorithms investigated in this work.

Algorithm BCs Notes References 

PBC Abs PBC 
⊕ Absolute node coupling to RPs 
⊖ Periodic mesh 
⊖ Pre-process for node coupling 

[58,27]

PBC Rel PBC 
⊖ Periodic mesh 
⊖ Relative node coupling to RPs 
⊖ Pre-process for node coupling 

[58,34]

PBC Interp PBC 
⊕ Generic mesh 
⊖ Complex pre-process for node coupling 
⊖ Requires finer mesh 

[36,59]

Steven UBC ⊕ Generic mesh 
⊕ Easy implementation [31] 

numerical homogenization techniques have been developed and proven 
to lead huge time saving in the simulation of complex lattice structures 
composed of hundreds or even thousands of repeated unit cells [56].

The homogenization approach was born to model composites mate-
rials [36], but can be effectively used also for lattices: the dual fiber-
matrix phase composition of composites is replaced with the solid and 
void phases in lattices. The final goal of the procedure is to transform a 
porous periodic lattice structure into an equivalent solid material with 
homogenized properties, that make it behave as if it were a true lattice 
domain [44]. A fundamental problem that has to be solved to effectively 
homogenize a lattice material is the definition of the minimum sufficient 
representative volume, so that the BCs effects are minimized. To address 
this issue the concept of RVE was introduced [57]. The RVE is a region 
much smaller than the entire lattice structure, it has the same mechan-
ical characteristics and behavior as the lattice and its properties do not 
depend on BCs.

2.2. Homogenization: algorithms overview

In the literature, many different approaches for the homogenization 
of RVEs can be found. However, a thorough comparison of the perfor-
mance of these algorithms on the same test case is lacking. In this work, 
the most commonly used methods have been implemented and tested 
to identify the best-performing one. In this section, four approaches 
employing UBCs and PBCs are presented. Additionally, a comparative 
overview is provided in Table 1, detailing the boundary conditions, pros 
and cons, and references for each algorithm.

PBCs with either relative or absolute coupling of nodes on opposite 
faces to reference points (RPs), which are used to apply the displace-
ment BCs to the RVE, require periodic meshes. Those are special kind 
of meshes that have the nodes on opposite faces of the RVE in the 
same location. Creating periodic meshes is not always simple, because a 
dedicated meshing algorithm is required, especially in automated frame-
works. Therefore, the formulation of PBCs with interpolation overcomes 
this issue by using a generic mesh and by interpolating the displacement 
of the virtual node on the opposite face from the surrounding ones, 
since it not guaranteed that two nodes located on two opposite faces 
of the RVE are in the same location. All the algorithms with PBCs re-
quire a pre-processing phase for the node coupling, that can be quite 
time consuming especially for larger meshes. Steven’s algorithm relies 
on a reformulation of the classic implementation with UBCs to mimic 
the behavior of PBCs, and is a very simple and straightforward homog-
enization algorithm.

For deeper insights into the homogenization theory, algorithms and 
their detailed implementation the reader is referred to the appendixes.

3. The fast multiscale homogenization-based procedure

This section presents the complete workflow aimed at the simula-
tion of lattice components composed of a high number of unit cells 

repeated periodically throughout the domain space. The procedure pre-
sented in this work not only leads to a dramatic reduction in the overall 
computation time, but also provides detailed and accurate information 
about global displacement of the macroscopic component and micro-
scopic stresses of the most loaded portions, allowing the designer to 
check the fulfillment of the mechanical integrity constraints. Moreover, 
the procedure is so efficient that makes the design of mechanical compo-
nents with lattice domains feasible even on common laptops, available 
to researchers and engineers. For this study all the numerical computa-
tions were performed on a mobile workstation with 14 physical CPUs 
and 32 GB of RAM. A scheme of the workflow is depicted in Fig. 1.

The workflow relies on the homogenization-based multiscale ap-
proach, which allows the user not to model the entire lattice structure, 
but only few unit cells, that are used to retrieve all the needed infor-
mation about the whole macroscopic model. As it will be presented in 
this section, the main phases are aimed at the retrieval of the behavior 
of the lattice through the homogenization of its RVE, the computation 
of the macroscopic displacements of the whole lattice structures using 
an equivalent bulk model, and finally the calculation of microscopic 
stresses in the most loaded zone through the FEA of critical cells.

Works like De Pasquale et al. [60], Moeini et al. [61], Stroemberg et 
al. [51] and Zhymalo et al. [52], proposed a partial multiscale workflow 
to retrieve the homogenized properties of the lattice RVE and compared 
the displacement results to those of numerical and experimental test on 
macroscopic lattice structures. On the contrary, this work was not only 
aimed at checking the validity of homogenization, but also at providing 
a complete and validated operational workflow to simulate efficiently 
and accurately large and complex lattice domains.

3.1. Phase 1: homogenization

The first phase of the workflow is in the microscale and consists in the 
computation of the equivalent properties of the lattice structure through 
homogenization. A convergence study on the RVE dimensions and those 
of the mesh element should be performed to get the effective homoge-
nized elasticity tensor. It is convenient to start the convergence study 
from the smallest RVE composed of a single unit cell and a relatively 
coarse mesh. Then at each iteration the mesh element size should be 
reduced as long as the convergence on mesh size is achieved. Once the 
optimal mesh size is identified, the convergence study can be performed 
on the dimensions of the RVE. Thus, the first stage of the proposed work-
flow is a loop that consists in three different phases: modeling of the 
RVE through CAD tool, generation of the FE mesh using a proper mesh-
ing tool and application of the homogenization algorithm. The outcome 
of the first stage is the elasticity tensor of the homogenized lattice struc-
ture. From this moment on, the lattice domain can be replaced with an 
equivalent bulk material, that mechanically behaves like the original 
lattice structure.
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Fig. 1. Schematic layout of the multiscale procedure for the fast FEA of lattice structures. 

3.2. Phase 2: FEA of the homogenized macroscopic component

In the second stage, the FE simulation of the macroscopic compo-
nent is performed. The lattice domain is replaced by an equivalent bulk 
material to compute the real displacements. In the material assignment 
phase, the original constituent material has to be applied to all the bulk 
parts, while the homogenized equivalent material properties have to be 
applied to the lattice domain. Then the prescribed BCs in form of loads 
and displacements should be applied to the model and the simulation 
can be performed.

Once the numerical computation is completed, the macroscopic dis-
placement field is available and corresponds to the real behavior of 
mechanical component under test, even in the lattice region. On the 
contrary, it is not possible to retrieve the real stress field for the lattice 
domain. Only a “mean” stress can be computed, because the equivalent 
bulk lattice domain does not present the original stress concentration 
areas. Therefore, at this stage it is still not possible to evaluate the ful-
fillment of the mechanical design constraints on stresses. However, even 
if the values of stress of the homogenized lattice and those of the real 
one do not match, the spatial distribution of the strain field is the same, 
i.e. the most stressed areas are the same.

3.3. Phase 3: identification of critical cells

The third stage of the workflow is aimed at the individuation of the 
most stressed cells of the lattice. Firstly, the geometrical topology of the 

lattice domain has to be created. Cells are then divided into two cate-
gories: boundary cells and inner cells. The former group is composed 
of the cells that have at least one boundary face that is either free, i.e. 
not attached to any other cells or to the bulk material of the compo-
nent. The latter group includes all the cells that are fully surrounded by 
other cells. This distinction is useful to analyze both the most stressed 
cells of the inner domain of the lattice and those that are at the in-
terface with the bulk material, where high stresses are usually present 
due to the abrupt transition from solid to lattice. Then the homogenized 
strain at each integration point of the lattice domain, taken from the 
FEA of the homogenized component, is assigned to the cell to which 
the point under consideration belongs. Once all integration points have 
been processed, for each unit cell the mean and maximum Von Mises 
stress values are computed. Fig. 2 shows an insight on the steps related 
to the methodology presented in this section.

This allows to identify the most critical cells of each group, because 
the strain field is the measure of how large the deformation in a specific 
point is with respect to the undeformed state. Since the strain field is 
directly computed from the displacement field, that in the macroscopic 
homogenized simulation corresponds to the true displacement field of 
the real mechanical component, it represents the true “averaged” defor-
mation of the real lattice. Therefore, the areas that are more deformed in 
the homogenized components are those that undergo the biggest defor-
mations also in the real lattice domain and it is highly probable that will 
show the largest stresses in the final de-homogenization stage, where 
microscopic stresses are computed.
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Fig. 2. Flowchart of the steps for the identification of the critical cells. 

Fig. 3. Flowchart of the steps for the de-homogenization of the critical cells. 

3.4. Phase 4: de-homogenization

The final stage of the workflow is dedicated to the de-homogenization 
and the retrieval of the microscopic stress field of the critical cells (see 
Fig. 3). The domain of each critical cell is modeled using CAD tools 
and meshed. The nodes that lie on each of the six boundary faces of 
the control volume are identified and their coordinates recorded. Then, 
the displacements along the three principal direction of each boundary 
node are computed through linear interpolation from the displacement 
field of the homogenized component and applied as displacement BCs. 
Once all boundary nodes have been processed, the microscopic stress 
field can be computed through FEA.

At this point, the workflow is concluded and all the relevant data 
for the check of the design have been computed. This procedure, as it 
can be seen from its description, allows the designer to avoid modeling 
and simulating the entire real component: the lattice domain is replaced 
with a solid one and just few cells are modeled and simulated. However 
the macro-displacement can be obtained as well as the real stresses of 
the most loaded zones. Moreover, they correspond to those that can be 
retrieved from a DNS of the full-scale component, but saving computa-
tion time.

4. Convergence study of homogenization algorithms on a 
strut-based lattice RVE

As presented in Section 2.1, multiscale FEA allows the simulation 
of large lattice domains exploiting information coming from the me-
chanical behavior in the microscale. Since periodic lattice structures are 
created through the repetition in space of the same unit cell, the first fun-
damental control volume that could be chosen to study the microscale 
mechanical properties should be the unit cell itself. However, homoge-
nization on a single cell may suffer from boundary effects or may not 
represent the typical overall behavior of the whole lattice. Therefore, 
to get the true homogenized mechanical properties of the structure, a 
convergence study on the dimensions of the RVE must be performed: 
the algorithm is applied to RVEs composed of an increasing number of 

unit cells along the three principal directions, as long as the entries of 
the elasticity tensor do not vary significantly anymore. Moreover, it is 
advisable to also conduct converge study on the dimensions of mesh 
elements.

In this section a comparison between the performances, the optimal 
RVE size and mesh dimensions for the four homogenization algorithms 
defined in Sections 2.2, is presented. The goal was the evaluation of 
the best trade-off between the accuracy of results and the computation 
time to retrieve the effective components of homogenized elasticity ten-
sor. The study was conducted on a lattice composed of strut-based tetra 
cells, which are obtained by combining standard cubic and BCC unit 
cells, with side length 𝐿 = 6 mm and beam thickness 𝑡 = 0.75 mm. The 
base material of the lattice was the aluminum alloy AlSi10Mg, modeled 
as an isotropic material with the following properties 𝐸 = 70 GPa and 
𝜈 = 0.33. The design of the RVE was performed using a totally open-
source tool developed by the authors in Python. The RVE was then 
meshed with quadratic tetrahedral elements, using the free software 
Gmsh [62]. The setup of the FE model as well as the post processing 
activities for each iteration of the homogenization procedure were per-
formed using self-developed Python scripts able to create the input file 
for the FE open-source software CalculiX and analyze its output [63]. For 
convenience sake, only two out of the six simulation were performed on 
each RVE (tension load along 𝑥 and shear load in 𝑥𝑦 plane). In fact the 
tetra cell behavior can be modeled as an orthotropic material, that can 
be characterized using only the three variables 𝐶11, 𝐶12 and 𝐶44, as 
explained in Appendix A.2.1.

Figs. 4a, 4b and 4c report the results of the convergence study on 
the components of the homogenized elasticity for an increasing number 
of elements per cell and for RVE composed of 1, 8 and 27 cells. As it 
can be clearly seen, Steven’s homogenization and PBCs show almost flat 
trend in dependence of the increasing number of mesh elements and 
RVE dimensions, being the parameters of the homogenized elasticity 
tensors almost constant. The results about PBCs with interpolation are 
not reported in the plot, because they showed the worst behavior and 
needed more than 200000 elements per unit cell to converge to the re-
sults of the other algorithms. Fig. 4d reports the mean computation time 
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Fig. 4. Results of the convergence study on the 𝐶11 (a), 𝐶21 (b), 𝐶44 (c) components of the homogenized elasticity tensor, and overall computation time (d). 

per iteration. It can be seen that Steven’s homogenization algorithm is 
faster than PBCs, considering that in this comparison the pre-processing 
time to setup MPCs between coupled nodes is not considered. The al-
gorithm with PBCs and interpolation takes even longer pre-processing 
time, making it computationally unfeasible.

Since Steven’s algorithm provided the same results as PBCs, while 
saving little computation time, it was selected as the best performing 
homogenization algorithm, being also very simple and straightforward 
to be implemented. Moreover, for the implementation of PBCs it is al-
ways required a periodic conformal mesh, that in many cases it is not 
easy to obtain: some CAE software like Simulia Abaqus and Altair Op-
tistruct have some dedicated functions, but they can only be performed 
manually, preventing the inclusion of the homogenization algorithm in 
automated procedures.

From the whole convergence study, it was noticed that for the tetra 
cell the variation on elasticity tensor parameters in dependence of RVE 
and mesh size was under 1% in almost all the investigated cases. On 
the contrary, the increase in mean computation time per simulation, 
which has to be multiplied for the number of FEA employed in the whole 
homogenization algorithm to get the total computation time, was not 
negligible. In most of cases a one-cell RVE with at least 30000 mesh el-
ements could be enough to get the precise homogenized behavior of the 
lattice structure. Further refinement on both RVE and mesh size would 
only have increased the computation time, without getting significant 
improvements on outcomes.

5. Results and discussion

This section presents the application of the complete procedure for 
the efficient and fast FEA of lattice structures, presented in Section 3, to 
two sample case studies of interest for our industrial partners, denoted as 
Case A and Case B. The aim of the study was the numerical computation 
of the macroscopic displacements and stresses of the most critical zones 
of the lattice under static loading, that represent the most important data 
for the mechanical design of components. Results were also compared to 
the outcomes of the DNS of real lattice components to prove the validity 
of the presented method. Through the presented analyses, the work aims 
to provide hints and recommendations to save as much computation 
time as possible, while getting reliable results. In fact there are particular 
situations in which special care is needed.

5.1. Case A: cantilever beam with reinforcing lattice domain

The mechanical component under study is a beam made of AlSi10Mg 
aluminum alloy with a reinforcing prismatic lattice domain composed 
of tetra cells. The two specimens analyzed in this research are depicted 
in Fig. 5 and their geometrical parameters are summarized in Table 2. 
The beam has got dimensions 100 × 24 × 12.5 mm, while the back plate 
has got side dimensions 50× 40 mm and its thickness is 5 mm. Defining 
the major the cathetus of the lattice domain directed along the length of 
the beam as 𝑥 and the other one as 𝑘, the lattice volume can be defined 
solving the system of equations:
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Fig. 5. CAD model of Beam A (left) and Beam B (right). 

Table 2
Geometric parameters of the lattice beams.

Parameter Beam A Beam B 
Cell Type Tetra Tetra 
Cell dimensions (𝐿) 6 mm 4 mm 
Beam thickness (𝑡) 0.75 mm 1.25 mm 
Skin 0 mm Top 20 mm 
𝑥∕𝑘 1.6 2.0 

Table 3
Mechanical and simulation data of the optimal RVE for cubic cell.

Homo parameters Beam A Beam B 
Homogenization algorithm Steven Steven 
RVE size 2 × 2 × 2 cells 2 × 2 × 2 cells 
Mesh size 0.2 - 0.3 mm 0.25 - 0.35 mm 
𝐶11 1.81 GPa 17.2 GPa 
𝐶12 0.811 GPa 6.80 GPa 
𝐶44 0.731 GPa 6.15 GPa 

{
𝑥 ⋅ 𝑘 = 1250 mm2

𝑥∕𝑘 = 𝑎
(1)

where 𝑎 is defined in Table 2.
The mechanical component is restrained on the back plate and a 

force of 500 N is applied on the tip of the beam. The base constituent 
aluminum alloy was modeled as an isotropic elastic material with the 
following mechanical properties 𝐸 = 70 GPa, 𝜈 = 0.33.

5.1.1. Homogenization

In Appendix A.2.1 strut-based cells like the tetra cell can be mod-
eled as orthotropic materials with cubic symmetry. Thus, the elastic 
constitutive law of the material can be described using only the three 
independent parameters: the in-plane elastic constant 𝐶11, out-of-plane 
elastic constant 𝐶12 and shear component 𝐶44. This allows the full char-
acterization of the homogenized material by performing only two out of 
the six simulations.

Once the homogenization algorithm has been selected, a conver-
gence study on both mesh size and RVE dimensions was conducted to 
compute the effective mechanical properties of the lattice. Data on the 
homogenized mechanical properties of the lattice structures under test, 
the selected homogenization algorithm, as long as the size of the best 
trade-off mesh size and RVE dimensions are summarized in Table 3.

5.1.2. FEA of macroscopic component and computation of real 
displacement field

This section is dedicated to the FEA of the macroscopic mechani-
cal component under test. Both the real and homogenized beams were 
simulated to compare results and prove the validity of homogenized sim-
ulations. FE model setup and numerical computations were performed 
using the open source software PrePoMax, that contains pre- and post-
processing functionalities for the open source solver CalculiX.

Fig. 6. FE model of Beam B. 

Fig. 6 depicts the FE model setup of the homogenized Beam B. The 
boundary conditions applied to all the models were the same: a 500 N 
load on the tip of the beam and a fixed displacement boundary condi-
tion applied to the back of the plate and the four holes. The boundary 
conditions that were applied to both the homogenized models, where 
the lattice domain was replaced by the equivalent bulk material, and 
the full-scale model, meant to be solved through DNS, consisted in a 
concentrated load of 500 N on the nodes at the tip of the beam pointing 
downwards in the direction orthogonal to the axes of the beam itself, 
producing a bending effect. In addiction, a fixed boundary condition 
constraint, locking all the translational and rotational degrees of free-
dom, was applied to all the nodes of the back face of the plate and those 
belonging to the four holes.

The lattice and bulk domains of full-scale components were modeled 
through a single solid FE model and the mechanical properties of the 
AlSi10Mg aluminum alloy were assigned to it (𝐸 = 70 GPa, 𝜈 = 0.33). On 
the contrary, the FE model of the homogenized components consisted of 
two solid models, the former related to the external bulk frame made of 
AlSi10Mg and the latter belonging to the homogenized lattice domain. 
The two solid domains were linked together through a tie constraint to 
make them behave as a unique component. The homogenized bulk mate-
rial of the lattice domain was modeled as an orthotropic material, that 
requires the definition of the nine components of its elasticity tensor. 
As already said, the RVEs studied in this work showed an orthotropic 
behavior with cubic symmetry, meaning that only three constants are 
required to be fully characterized. Therefore for the definition of all 
the mechanical constants required by the FE software, we remind that 
𝐶11 = 𝐶22 = 𝐶33, 𝐶12 = 𝐶23 = 𝐶13, 𝐶44 = 𝐶55 = 𝐶66.

The comparison between the displacement field of the real and ho-
mogenized beams for Beam A and Beam B is reported in Figs. 7 and 8, 
respectively, while Table 4 reports the displacement values at their tip, 
that was selected as a control point.

The comparison between the real and homogenized displacement 
confirms that the displacement field of the homogenized beam reflects 
the true deformation of the real one. However, as already said, the stress 
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Fig. 7. FEA displacement results of the real (left) and homogenized beams (right) of Beam A. 

Fig. 8. FEA displacement results of the real (left) and homogenized beams (right) of Beam B. 

Table 4
Comparison between real and homogenized displacement and stress data for Beam A and 
Beam B beams.

Displacement data 
Beam A Beam B 
Real Homo Difference [%] Real Homo Difference [%] 

Max disp. [mm] 0.59 0.59 0.0 0.33 0.33 0.0 
Disp. at tip [mm] 0.59 0.59 0.0 0.33 0.33 0.0 
Max stress [MPa] 268 3.78 −98 118 10.3 −91

Computation time 2.5 hrs 20 s −99.9 3 hrs 35 s −99.7

field of the homogenized model does not reflect the true behavior of the 
lattice domain, because the equivalent bulk material does not present 
any stress concentration area. Therefore, a de-homogenization on the 
most critical cells of the lattice is required.

5.1.3. Identification of critical cells and computation of real stress field

As it can be seen in Fig. 9, from the analysis of the homogenized 
strain field the most critical zones of the real lattice component can be 
effectively identified. The strain values at each integration point were 
stored and assigned to the cell the integration point belonged to, and the 
most critical cells were identified as those with the highest maximum 
strain. In this study it was decided to rely on Von Mises strain, which is 
an equivalent value of all the strain components. It is defined as follows:

𝜀𝑉𝑀= 2
3

1 √
2

√
(𝜀𝑥 − 𝜀𝑦)2 + (𝜀𝑦 − 𝜀𝑧)2 + (𝜀𝑧 − 𝜀𝑥)2 + 6𝜀2

𝑦𝑧
+ 6𝜀2

𝑧𝑥
+ 6𝜀2

𝑥𝑦

(2)

Fig. 10 shows the Von Mises strain field of the homogenized lat-
tice domains in Beam A and Beam B. The red zones represent the most 

stressed areas and it is likely that the most critical cells fall into those 
regions.

Once the critical cells had been identified, they could be simulated 
to compute the real stress field. In both cases, the critical cells were lo-
cated in the red zones depicted in Fig. 10. Two different approaches were 
followed for the FEA microscale model: the former consisted in the simu-
lation of the critical cell only, while the latter involved the simulation of 
a control volume centered in the Center of Gravity (CoG) of the critical 
cell but with larger side dimension. That was done to reduce the bound-
ary effects induced by the application of displacement BCs. Each control 
volume, centered in the CoG of the critical cells, was modeled, meshed 
and a FE model was setup. The same material of the real lattice compo-
nent, AlSi10Mg, was assigned to the model. As presented in Section 3, 
displacement BCs were applied to each node of the control volume lying 
on the boundary surfaces. Displacement values along the three principal 
directions were retrieved from the homogenized simulation results and 
the displacement values at each boundary node of the control volume 
model were computed through linear interpolation. Then, they were 
applied to the FE model through single point displacement constraints. 
Finally, simulation was performed and data of the stress field within the 
critical cell were stored. Tables 5 and 6 report the comparison between 
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Fig. 9. Real stress field (left) and homogenized strain (right) field of Beam A. 

Fig. 10. Strain field of the homogenized lattice domain in Beam A (left) and Beam B (right). 

Table 5
Comparison between real and homogenized stress data of Beam A.

Stress data - Beam A 
Control volume side length 1 cell 1.5 cells 3 cells 

Real Homo Err [%] Homo Err [%] Homo Err [%] 
Max stress [MPa] 268 320 19 294 10 278 4 
Mean stress [MPa] 29.0 66.4 129 46.5 60 30.4 5 
SD [MPa] 25.3 50.3 99 44.0 74 25.9 2 

the maximum, mean and standard deviation (SD) stress values within 
the most critical cell.

The de-homogenization algorithms correctly identified the critical 
cells in both cases as those with the maximum value of the homoge-
nized Von Mises strain. In Case A the most critical point was located 
in the central portion of the upper free surface of the lattice domain. 
On the contrary, in Case B the corner at the interface between the bulk 
plate, upper skin and lattice domain was the weakest. As it can be seen 
from Table 5 reporting microstress data for Beam A, the figures obtained 
through de-homogenization get closer to real ones, as the control vol-
ume becomes bigger. In fact, this reduces the effects of the displacement 
BCs applied to its boundary and the behavior of the microscale lattice is 
closer to that obtained through DNS. Moreover, the mean stress and its 
standard deviation become even more precise. A slightly different trend 
was observed in Beam B, whose de-homogenization results are reported 
in Table 6. In this case, a too big control volume led to an increasing er-
ror on the maximum stress and to an underestimation of the mean stress 
field.

The previously presented numerical data were also validated exper-
imentally. A beam with the same geometric characteristics as Beam 

A was designed and produced through AM technology, using the alu-
minum alloy employed in the numerical simulations (AlSi10Mg). Three 
different specimens were realized and tested under a bending load ap-
plied to the tip of the beam. The BCs used in the numerical analyses 
were replicated in the experimental tests: the beam was fastened to the 
testing machine with screws through the holes in the base and an in-
creasing load was applied to its tip until the complete failure of the 
specimen. The load cells and displacement sensors located at the tip of 
the beam were used to record force and displacement data. Through the 
analysis of experimental results, stress data obtained through the mul-
tiscale procedure were validated with maximum error within 5%.

Further investigations on the de-homogenization of internal non-
critical cells revealed that the results were really close to the real one 
even with smaller control volumes. In fact, as it was reported by Yan et 
al. [26], in the homogenization process the RVE is subjected to uniform 
or periodic BCs. Thus, the homogenized model is generally not suitable 
for RVE subjected to high stress gradient on the boundary: rapid changes 
of the stress states could compromise the procedure of volume averag-
ing from which the effective moduli are derived. However, high stress 
gradient usually decays rapidly from the stress riser, such as the stress 

Materials & Design 251 (2025) 113614 

9 



L. Cibrario, C. Gastaldi, C. Delprete et al. 

Table 6
Comparison between real and homogenized stress data of Beam B.

Stress data - Beam B 
Control volume side length 1 cell 1.5 cells 3 cells 

Real Homo Err [%] Homo Err [%] Homo Err [%] 
Max stress [MPa] 118 118 0 125 5.9 130 11 
Mean stress [MPa] 13.3 10 −25 10.6 −20 7.9 −41
SD [MPa] 10 9.9 −1 9 −10 7.9 −21

concentration areas at the strut joints or at the bulk-lattice interface. 
Moreover, the following guidelines were proposed:

• The boundary of the selected region of interest should be suffi-
ciently away from the high stress gradient zone, and the macro 
stresses on the region’s boundary can vary only mildly;

• The center element in which the micro fields remain exact must be 
placed well within the region’s boundary.

The former point is motivated by the fact that homogenization is a 
material characterization technique, which imposes a deformation state 
in the unit cell under test, that mimic its behavior when it is immersed 
in an infinitely big lattice. Therefore, the homogenized properties are 
not suitable for the simulation of models with very high deformation 
and stress conditions only located in small portions of the model: the 
higher the extension of the high stress or displacement gradient areas, 
the worse the results of the homogenized simulation could be, especially 
in those regions. As already said, an example of a high stress gradi-
ent zone could be the interface between the bulk and lattice domains. 
Moreover, contact zones between the lattice and another part of the 
mechanical component could be critical areas, where the homogenized 
model could not perfectly reflect the behavior of the real one.

The reason behind the former point was highlighted by the analysis 
of results presented previously: the imposition of displacement bound-
ary conditions at each node, lying on the boundaries of the control 
volume, introduces some boundary effects, which induce high stresses 
near those areas. However, those non-physical values rapidly decay and 
here the need for control volumes bigger than one unit cell arises.

The two points raised by Yan at al. are a good explanation of the 
need for bigger control volumes to get good results and for the better 
behavior in the inner portions of the lattice domains. By simulating con-
trol volumes with side length of about 2 cells, sufficiently good results 
can be obtained with a small computation effort. Moreover, the results 
of the de-homogenization of Beam B seem to have a different trend with 
respect to Beam A, because the critical cell, which is located at the up-
per corner of the lattice and at the interface with the skin and the back 
plate, corresponds to a fraction and not to a complete cell. Therefore, the 
homogenization cannot be precise in those cases and strange behavior 
may rise.

It should also be pointed out, that the microstress values computed 
through de-homogenization were reported to be always higher that the 
real ones, making this procedure safe-oriented. The presented approach 
can be effectively employed in optimization algorithms, were a fast eval-
uation of a high number of designs is required. In fact, optimization 
frameworks for lattice structures without a valid method to speed up 
simulations are addressed as almost unfeasible, or at least really expen-
sive. As a rule of thumb, to get reliable results with errors lower than 
10%, that could be compensated with a safety factor, it is advisable to 
simulate control volume with side length of at least 1.5 cells.

5.2. Case B: lattice plate

The second specimen under test consisted in a lattice plate com-
posed of 8× 8× 3 cubic cells with side dimension 𝐿 = 50 mm and beam 
thickness 𝑡 = 10 mm, surrounded by a bulk frame. The material is the 
AlSi10Mg aluminum alloy with the same mechanical properties as in 

Fig. 11. FE model of the lattice plate with traction load along the 𝑥 axis. 

Case A (see Section 5.1). A fixed BC was applied to all the nodes of the 
back face of the frame (along x direction), locking all their degrees of 
freedom. In Plate A a uniform surface load of 500 kN along the x axis 
was applied to the opposite face of the frame, while in Plate B a to-
tal bending force of 50 kN was applied to the same face, but pointing 
downwards along the y direction. The model is depicted in Fig. 11.

First the cubic unit cell was homogenized using the Steven’s algo-
rithm. Also in this case the cubic cell behavior can be modeled through 
an orthotropic material with cubic symmetry. After the convergence 
study on mesh and RVE size the equivalent material properties were 
identified as 𝐶11 = 2350 MPa, 𝐶12 = 137 MPa, and 𝐶44 = 45.4 MPa.

At this point, the FEA of the macroscopic real and homogenized 
plates could be performed, following the procedure explained in the 
previous sections. The comparison between the results obtained through 
DNS and those of the homogenized model is presented in Fig. 12 for the 
traction Plate A and in Fig. 13 for the bending Plate B.

Finally the de-homogenization phase was done in order to find the 
most loaded cells and retrieve the highest stress values. Fig. 14 depicts 
the Von Mises stress field for the plate in Plate A and Plate B. The most 
critical cells were identified in correspondence of the red zones in both 
cases. Again it was verified that the interface between the lattice and the 
bulk frame is the weakest area due to the stress concentration effects.

The trend on the results of the de-homogenization phase was nearly 
the same as the previous test case presented in Section 5.1. Again a 
control volume with side length of about 2 cells was identified as the 
best solution to get a maximum error on the maximum stress lower than 
10%. As already said, in both Plate A and Plate B, the critical cells are 
not in the central area of the lattice domain, but at the interface with the 
bulk. Therefore, the results suffer from boundary effects, and the perfect 
adherence between real and de-homogenized stress cannot be achieved.

This test case was presented to point out two operational concepts, 
that have to be taken into account when one want to use the procedure 
presented in this work.
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Fig. 12. Comparison between the displacement results of the real (left) and homogenized (right) lattice plate in the traction loading case. 

Fig. 13. Comparison between the displacement results of the real (left) and homogenized (right) lattice plate in the traction loading case. 

Fig. 14. Homogenized Von Mises strain field for Plate A (left) and Plate B (right). 
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Fig. 15. Highlight of the true maximum stress point in Plate A with traction load. 

• Identification of critical cells: in Plate A, the most critical cell 
was identified as that centered in the upper red zone, because it 
showed the maximum absolute and mean value of homogenized 
strain within its domain (see Fig. 14). However, the maximum real 
stress was located inside the adjacent cell, located in the upper cor-
ner of the lattice domain (see Fig. 15). Its maximum absolute and 
mean homogenized strains were very close to those of the true criti-
cal cell, however, the double interface with the bulk external frame 
caused a stronger stress concentration zone and, thus the rise of the 
highest stress values within the whole lattice. Therefore, it is ad-
visable to simulate the cells that have multiple interfaces with bulk 
portions, when the maximum homogenized strain area is close to 
them. In this way, one is sure to have found the true maximum 
microstress of the lattice.

• Homogenization-related issues: as it can be seen from Fig. 13, the 
results on the macroscopic displacement field, obtained through the 
homogenized model, are farther to those of the DNS with respect 
to all other cases presented in this work. In this case the error on 
the maximum macroscopic displacement is around 5%. This dis-
crepancy is related to the way in which cells are deformed by the 
imposed load in the macroscopic simulation and the deformation 
modes allowed by the homogenization procedure. In fact, in the 
standard homogenization, the RVE is subjected to two main load-
ing conditions: pure traction/compression stretch and pure shear 
deformation. For that reason, the results on macroscopic displace-
ment of Plate A (see Fig. 12), where a pure traction load is imposed 
are almost perfect. Also in both the test cases presented in Sec-
tion 5.1, homogenized macroscopic displacement matched the true 
ones, even if a bending load was imposed. This could be linked to 
the way the cells are deformed. In fact, due to the orientation of the 
cells of the lattices with respect to the direction of deformation of 
the whole mechanical components, the deformation mode of each 
cell was very close to a pure traction. On the other hand, in Plate 
B presented in this section, cells are deformed in a way that is not 
provided by homogenization.
Two solutions are proposed to overcome this issue e further reduce 
the error on macroscopic displacement.
– Bigger lattices: the BCs imposed to the RVE during homogeniza-

tion simulate its behavior as if there were an infinite repetition 
of the control volume in each direction. Thus as the lattice do-
main becomes bigger, the unit cells tend to be deformed in a 
way more similar to that simulated during the homogenization 
procedure. As a consequence, the results of the FEA on the ho-
mogenized macroscopic component get more accurate. Plate B 
with bending load had only 8 cells along the main directions of 

deformation, so a higher number of cells would have led to better 
results.

– Second-order homogenization: several loading conditions, such 
as pure bending or torsion, especially when applied to lattices 
composed of quite small number of cells, induce states of defor-
mations also dependent to higher-order effects at smaller scales, 
that cannot be captured by the standard homogenization proce-
dure. Second-order computational homogenization schemes offer 
a more complete description of the behavior of lattice meta-
materials at the cost of higher computational time and a dedi-
cated FE framework (the so-called FE2 architecture), that is gen-
erally not implemented in standard FEA software. In fact, the 
accuracy of the model is enhanced by incorporating the sec-
ond gradient elasticity model, that requires the handling of the 
strain gradient and second order stresses both in the micro and 
macroscale model. Basic theoretic notions on second-order elas-
ticity can be found in Mindlin’s works [64,65], while more in-
formation on this topic along with the formulation of the mi-
croscale homogenization model and way to handle the macro-
scopic simulations can be found in Kouznetsova et al. [66,67], 
Weeger [68], Rodrigues Lopes et al. [69] and Dos Santos et al. 
[70].

6. Conclusions

Lattice structures offer significant potential due to their exceptional 
mechanical properties, lightweight nature, and the ability to finely tune 
their behavior for specific applications. However, their numerical design 
and optimization have been strongly constrained by the extensive com-
putation time required at every phase of Direct Numerical Simulation 
(DNS). To address this challenge, this research work aimed to develop 
an operational procedure, that significantly reduces the overall compu-
tation time, while still providing all the necessary data for evaluating 
the mechanical designs.

In this study, a multiscale framework based on homogenization was 
presented and tested on specific case studies, allowing a thorough com-
parison between the results obtained through homogenization and those 
from DNS. The use of homogenized properties enabled a reduction in 
simulation time for mechanical components with lattice domains by 
over 99%, while the macroscopic displacement field closely matched 
that of DNS. However, because the stress field did not accurately re-
flect the true behavior of the lattice, a de-homogenization process was 
necessary. The critical cells within the lattice domain were identified 
by analyzing the homogenized strain field, and these cells were then 
simulated by applying the homogenized displacement to the boundary 
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nodes. It was observed that the error in maximum stress between the 
de-homogenized critical cell and DNS decreases as the control volume 
involved in submodeling increases, minimizing boundary effects.

As demonstrated by the results presented in this section, the mul-
tiscale framework, introduced in this work, enables the integration of 
simulations across different length scales, leveraging the strengths and 
extracting maximum information from each scale. The process begins 
at the microscale, which, while computationally efficient, provides in-
sights only into the characteristic mechanical behavior of the lattice 
cells, independent of the specific loading and boundary conditions of 
the analyzed component. Subsequently, the macroscale is addressed, in-
corporating the homogenized information obtained from the microscale 
to evaluate the overall mechanical response of the studied component 
under its actual boundary conditions. Finally, the analysis returns to the 
microscale to focus on the critical cells, that are those subjected to the 
highest stresses, allowing for the determination of peak stress values.

This approach avoids the need for full-scale, high-fidelity simula-
tions of the entire component, but provides all the data necessary for 
a comprehensive mechanical evaluation of the design. It delivers the 
macroscopic displacement field, which has implications for interactions 
with neighboring components, and the critical stress values, essential 
for assessing whether the maximum yield or failure loads have been ex-
ceeded.

Two families of critical cells were evaluated: those located near the 
bulk-lattice interface and those in the lattice core. For each family, cells 
experiencing both the average and maximum homogenized deforma-
tion were analyzed. This enables the investigation of various critical 
scenarios where the true maximum internal lattice stress might occur. 
It is well known that regions near the bulk-lattice interface are prone to 
high stress due to abrupt geometric transitions. Furthermore, the frame-
work addresses cases where the deformation is either highly localized 
or more uniformly distributed across the entire cell.

This research contributes uniquely by providing, to the best of the 
authors’ knowledge, the only complete comparison between different 
homogenization algorithms, evaluated both in terms of methodology 
and performance on a specific test case. Additionally, a rigorous vali-
dation of the multiscale framework against a high-fidelity simulation is 
presented, a contribution missing from previous literature works. The 
proposed procedure has proven to be reliable and effective in reducing 
computation time, making it suitable for integration into optimization 
frameworks, where it can evaluate each design in just a few seconds. 
Future research will focus on extending this procedure to study the dy-
namic response of mechanical components with lattice domains.
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Appendix A. Notes on homogenization

In this appendix some deeper insights into the homogenization the-
ory and the derivation of the mathematical equations, which allow the 
computation of the effective homogenized properties, are presented.

A.1. Hill-Mandel principle

Sub-scale modeling is energetically consistent, only if the deforma-
tion energy at the macroscopic level is equal to the volume average of 
the microscale stress work: at any equilibrium state of the RVE, charac-
terized by the stress field 𝜎 and the strain field 𝜀, the following equation 
must be satisfied [59]:

�̄�𝑖𝑗 �̄�𝑖𝑗 =
1 

𝑉𝑅𝑉 𝐸
∫
𝑉

𝜎𝑖𝑗𝜀𝑖𝑗 d𝑉 (A.1)

where �̄� and �̄� are the average stress and strain tensors, 𝑉𝑅𝑉 𝐸 is the total 
volume of the RVE and the indexes 𝑖, 𝑗 represent the principal directions.

The average stress and strain tensors are defined as [71]:

�̄�𝑖𝑗 =
1 
𝑉 ∫

𝑉

𝜎𝑖𝑗 𝑑𝑉

�̄�𝑖𝑗 =
1 
𝑉 ∫

𝑉

𝜀𝑖𝑗 𝑑𝑉 .

(A.2)

In absence of body forces, using the averaging theory Eq. (A.2) and 
the equilibrium condition of the RVE, i.e. ∇ ⋅ 𝜎 = 0, the Hill-Mandel 
principle Eq. (A.1) can be rewritten in the more convenient form:

∮
𝛿𝑉

(𝑡𝑖 − �̄�𝑖𝑗𝑛𝑗 )(𝑢𝑖 − �̄�𝑖𝑘𝑥𝑘) d𝑆 = 0 (A.3)

where 𝑡 and 𝑢 are the traction and displacement at the boundary of the 
RVE, 𝑥 and 𝑛 are the coordinate and the normal of the surface d𝑆 where 
the integral is currently evaluated.

The Hill condition Eq. (A.3) guarantees that the effective modulus of 
the RVE, calculated by energy and direct approaches, is the same. It is 
satisfied by four different types of BCs:

• Dirichlet or kinematic (displacement controlled)

𝑢𝑖 = 𝜀0
𝑖𝑗
𝑥𝑗 (A.4)

• Neumann or natural (traction controlled)

𝑡𝑖 = 𝜎0
𝑖𝑗
𝑛𝑗 (A.5)

• Mixed, obtained through the combination of Eqs. (A.5) and (A.4)

(𝑡𝑖 − 𝜎0
𝑖𝑗
𝑛𝑗 )(𝑢𝑖 − 𝜀0

𝑖𝑗
𝑥𝑗 ) = 0 (A.6)

• Periodic boundary conditions (PBCs)

𝑢𝑖(𝑥+𝐿) = 𝑢𝑖(𝑥) + 𝜀0𝐿 (A.7)

𝑡𝑖(𝑥+𝐿) = −𝑡𝑖(𝑥) (A.8)

where 𝜎0
𝑖𝑗

and 𝜀0
𝑖𝑗

are the uniform applied stress and strain, respectively, 
and 𝐿 is the dimension of the RVE in the 𝑖-th direction. In Eq. (A.6) only 
one component of 𝑡𝑖 or 𝑢𝑖 is specified at a time on a given surface. It has 
to be pointed out that Dirichlet and Neumann BCs are both kinds of 
UBCs.

Applying the average stress theorem under traction boundary con-
ditions (Eq. (A.5)), the average stress �̄�𝑖𝑗 is equal to the applied stress 
𝜎0
𝑖𝑗

�̄�𝑖𝑗 = 𝜎0
𝑖𝑗

(A.9)
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while applying the average stress theorem under displacement bound-
ary conditions (Eq. (A.4)), the average strain �̄�𝑖𝑗 is equal to the applied 
(uniform) strain 𝜀0

𝑖𝑗

�̄�𝑖𝑗 = 𝜀0
𝑖𝑗

(A.10)

The strain energies predicted by the different boundary conditions 
must satisfy the following inequality, if the average strain 𝜀0

𝑖𝑗
for each 

case is assumed to be the same:

𝑈Σ ≤𝑈𝑃 ≤𝐸𝐸 (A.11)

where 𝑈Σ,𝑈𝑃 ,𝐸𝐸 are the strain energy predicted by homogeneous 
traction boundary conditions, periodic boundary conditions, and homo-
geneous displacement boundary conditions, respectively.

It is clear that the homogeneous displacement boundary conditions 
overestimate the effective moduli whereas the homogeneous traction 
boundary conditions underestimate them. It should also be pointed out 
that the application of the homogeneous displacement boundary con-
ditions generally would not guarantee to produce a periodic boundary 
traction. Similarly, the application of the homogeneous traction bound-
ary conditions would not guarantee the displacement periodicity at the 
boundaries.

A.2. Computation of the homogenized elasticity tensor

The determination of the effective mechanical properties of the lat-
tice metamaterial is performed through an iterative a procedure that 
requires the application of six independent loading conditions to the 
RVE. This study focused on the study of UBCs and PBCs both in term 
of displacement constraints. Thus, each loading condition consists in a 
specific displacement field with all but one null entries of the strain ten-
sor.

Recalling the Hooke’s law in matrix form

{𝜎} = [𝐸]{𝜀} (A.12)

where {𝜎} and {𝜀} are the stress and strain tensors, respectively, and 
[𝐸] is the stiffness matrix of the material, the goal of homogenization 
is the computation of the 21 unknown independent constants, thanks to 
the symmetry of the off-diagonal entries, of the homogenized stiffness 
tensor:

[�̄�] =

⎡⎢⎢⎢⎢⎢⎢⎣

�̄�11 �̄�12 �̄�13 �̄�14 �̄�15 �̄�16
�̄�21 �̄�22 �̄�23 �̄�24 �̄�25 �̄�26
�̄�31 �̄�32 �̄�33 �̄�34 �̄�35 �̄�36
�̄�41 �̄�42 �̄�43 �̄�44 �̄�45 �̄�46
�̄�51 �̄�52 �̄�53 �̄�54 �̄�55 �̄�56
�̄�61 �̄�62 �̄�63 �̄�64 �̄�65 �̄�66

⎤⎥⎥⎥⎥⎥⎥⎦
(A.13)

Taking for example the first iteration of the procedure, whose homoge-
nized deformation state is

{�̄�} = {�̄�11, 0, 0, 0, 0, 0}𝑇 , (A.14)

plugging it into Eq. (A.12), it is possible to compute one column of the 
homogenized elasticity tensor at a time:

{�̄�11, �̄�22, �̄�33, �̄�12, �̄�23, �̄�31}𝑇 = �̄�11 {�̄�11, �̄�22, �̄�33, �̄�12, �̄�23, �̄�31}𝑇

(A.15)

Repeating the analysis five more times will produce all the required 
terms of the homogenized elasticity matrix. Following this procedure, 
diagonal terms are calculated twice, but such redundancy can be used to 
provide a crude but useful indicator of the accuracy of the simulations.

After the simulation of each loading case, the output data are used 
to compute the homogenized mechanical properties of the lattice ma-
terial. It is assumed that the average mechanical properties of the RVE 
are equal to those of the real component as a consequence of Mendel-
Hill theorem. By manipulating the Hill-Mandel theorem (Eq. (A.1)) and 

assuming the only non-zero component of the imposed strain field of 
each iteration �̄�𝑖𝑗 = 1, three main approaches can be followed for the 
post-processing of the simulation of each loading case, to compute the 
entries of the homogenized elasticity tensor.

• Reaction forces: stresses �̄�𝑖𝑗 are computed from the reaction forces 
at the boundaries at the RVE

�̄�𝑖𝑗 =
𝐹𝑖𝑗

𝑆𝑖

= �̄�𝑖𝑗 (A.16)

where 𝐹𝑖𝑗 is the total reaction force on the RVE face 𝑆𝑖 with normal 
in the 𝑖-direction and along the 𝑗-direction.

• Stresses: the average stresses are directly computed from the mi-
croscale stresses within the RVE

�̄�𝑖𝑗 =
1 

𝑉𝑅𝑉 𝐸

𝑛𝑒∑
𝑒=1 

𝑛𝑖𝑛𝑡∑
𝐼=1

𝜎𝑖𝑗 (𝐫𝐼 )𝑤(𝐫𝐼 )𝐽 (𝐫𝐼 ) = �̄�𝑖𝑗 (A.17)

where 𝑛𝑒 is the number of element of the mesh, 𝑛𝐼 is the number 
of integration points of each element, 𝑤, 𝐽 and 𝐫 are the weight, 
determinant of the jacobian and position of the integration point 
𝐼 , respectively, and 𝑉𝑅𝑉 𝐸 is the total volume of the bounding box 
containing the RVE.

• Energy: the entries of the elasticity tensor are directly computed 
from the sum of the microscale energy stored inside the RVE

�̄�𝑖𝑗 =
2 𝑈
𝑉𝑅𝑉 𝐸

(A.18)

where 𝑈 can be computed through one of these three equivalent 
equations:

𝑈 =
𝑛𝑒∑
𝑒=1 

𝑈𝑒𝑉𝑒

𝑈 = 1
2

𝑛𝑒∑
𝑒=1 

𝑛𝑖𝑛𝑡∑
𝐼=1

𝜎𝑇 (𝐫𝐼 ) 𝜀(𝐫𝐼 ) 𝑤(𝐫𝐼 ) 𝐽 (𝐫𝐼 )

𝑈 = 1
2

𝑛𝑒∑
𝑒=1 

𝑛𝑖𝑛𝑡∑
𝐼=1

𝜀𝑇 (𝐫𝐼 ) 𝐶 𝜀(𝐫𝐼 ) 𝑤(𝐫𝐼 ) 𝐽 (𝐫𝐼 )

(A.19)

where 𝑈𝑒 is the element energy density and 𝑉𝑒 is the volume of the 
mesh element.

A.2.1. Effective mechanical properties of the homogenized unit cell
Strut-based and TPMS-based can be modeled as orthotropic materials 

with cubic symmetry. Thus, the elastic constitutive law of the material 
can be described using only the three independent parameters 𝐶11, 𝐶12
and 𝐶44. The stiffness matrix is the following form:

[�̄�] =

⎡⎢⎢⎢⎢⎢⎢⎣

�̄�11 �̄�12 �̄�12 0 0 0
�̄�12 �̄�22 �̄�12 0 0 0
�̄�12 �̄�12 �̄�33 0 0 0
0 0 0 �̄�44 0 0
0 0 0 0 �̄�44 0
0 0 0 0 0 �̄�44

⎤⎥⎥⎥⎥⎥⎥⎦
(A.20)

Components �̄�11 and �̄�12 are related to the tensile/compressive be-
havior of the lattice material, while �̄�44 is responsible for the shear 
behavior. Sometimes, it is useful to relate the mechanical behavior of 
the homogenized lattice material to the following engineering constants 
[43,45]:

𝐸∗ =
�̄�2
11 + �̄�11�̄�12 − 2 �̄�2

12

�̄�11 + �̄�12
(A.21)

𝜈∗ =
�̄�12

�̄�11 + �̄�12
(A.22)

𝐺∗ = �̄�44 (A.23)
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Table B.7

Nodal displacement BCs for the six load cases.

Displacement boundary conditions 
Node coordinates Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
𝑥 = −𝐿𝑥∕2 𝜀𝑥 = 0 𝜀𝑥 = 0 𝜀𝑥 = 0 𝜀𝑦 = 0 𝜀𝑥 = 0 𝜀𝑧 = 0
𝑥 =𝐿𝑥∕2 𝜀𝑥 = 1 𝜀𝑥 = 0 𝜀𝑥 = 0 𝜀𝑦 = 0.5 𝜀𝑥 = 0 𝜀𝑧 = 0.5
𝑦 = −𝐿𝑦∕2 𝜀𝑦 = 0 𝜀𝑦 = 0 𝜀𝑦 = 0 𝜀𝑥 = 0 𝜀𝑧 = 0 𝜀𝑦 = 0
𝑦 =𝐿𝑦∕2 𝜀𝑦 = 0 𝜀𝑦 = 1 𝜀𝑦 = 0 𝜀𝑥 = 0.5 𝜀𝑧 = 0.5 𝜀𝑦 = 0
𝑧 = −𝐿𝑧∕2 𝜀𝑧 = 0 𝜀𝑧 = 0 𝜀𝑧 = 0 𝜀𝑧 = 0 𝜀𝑦 = 0 𝜀𝑥 = 0
𝑧 =𝐿𝑧∕2 𝜀𝑧 = 0 𝜀𝑧 = 0 𝜀𝑧 = 1 𝜀𝑧 = 0 𝜀𝑦 = 0.5 𝜀𝑥 = 0.5

where 𝐸∗, 𝐺∗ and 𝜈∗ are the effective Young’s modulus, shear modulus 
and Poisson’s ratio, respectively.

The degree of anisotropy of the unit cell can be evaluated through 
the Zener ratio 𝑍 , that is defined as [41,72]:

𝑍 =
2 �̄�44

�̄�11 − �̄�12
(A.24)

When 𝑍 = 1 the unit cell has an isotropic behavior, 𝑍 > 1 means that 
the predominant contribution of the �̄�44 component makes the structure 
suitable for shear, while 𝑍 < 1 means that the structures possesses a 
predominant tensile/compression behavior [73].

Appendix B. Homogenization: algorithms and implementation

In this appendix the detailed explanation of each homogenization 
algorithm described in Table 1 as long as the way to implement them in 
FE codes is presented.

B.1. Steven’s homogenization algorithm

Steven [32,31] presented an easy and straightforward procedure to 
compute the effective elastic properties of composite materials, that can 
also be used for lattice metamaterials [40,43,41,53,54,52]. This algo-
rithm relies on a reformulation of UBCs to mimic PBCs in symmetric 
RVEs and uses reaction forces to compute the entries of the elasticity 
tensor.

Table B.7 resumes the nodal displacement BCs regarding the transla-
tional Degrees of Freedom (DoFs) that have to be applied to the RVE in 
the six simulation cases. In addition, all the rotational DoFs are always 
locked. 

In the first case, the BCs are defined as follows:

Δ𝑙𝑥|𝑥=𝐿𝑥∕2 = �̄�11 𝐿𝑥

Δ𝑙𝑥|𝑥=−𝐿𝑥∕2 = Δ𝑙𝑦|𝑦=−𝐿𝑦∕2 = Δ𝑙𝑦|𝑦=𝐿𝑦∕2 = Δ𝑙𝑧|𝑧=−𝐿𝑧∕2 = Δ𝑙𝑧|𝑧=𝐿𝑧∕2 = 0

(B.1)

where Δ𝑙 is the deformation between the initial and final position.
Even though in the original algorithm proposed by Steven, the en-

tries of the homogenized elasticity tensor are computed through the 
reaction forces at the boundary of the RVE, however any of the ap-
proaches presented in Appendix A.2 can be used.

B.2. Homogenization with periodic boundary conditions

The other approach for the homogenization of the RVE, which satis-
fies the Hill-Mendel principle, consists in the imposition of PBCs. There 
are some researches in literature reporting that it can predict better 
equivalent mechanical properties with respect to UBCs [74,75,39,37, 
36].

Considering a periodic RVE with volume 𝑉 , its boundaries 𝛿𝑉 can 
be decomposed into two opposing parts 𝛿𝑉 + and 𝛿𝑉 − such that, 𝛿𝑉 =
𝛿𝑉 + ⋃

𝛿𝑉 − and 𝛿𝑉 + ⋂
𝛿𝑉 − = ∅. If kinematic PBCs are applied to the 

RVE, the displacements on a pair of nodes located on opposite boundary 
faces of 𝛿𝑉 are:

𝑢
𝑗+
𝑖

= �̄�𝑖𝑘 𝑥
𝑗+
𝑘

+ 𝑢∗
𝑖

(B.2)

𝑢
𝑗−
𝑖

= �̄�𝑖𝑘 𝑥
𝑗−
𝑘

+ 𝑢∗
𝑖

(B.3)

where 𝑢𝑗+
𝑖

is the displacement of node 𝑛 on one surface of the RVE, 
𝑢
𝑗−
𝑖

is the displacement of the corresponding node on the opposite side 
of the RVE (if the RVE is centered in the origin, the index “j + ” means 
along the positive direction of 𝑋𝑗 axis, whereas “j-” means along the 
negative direction of 𝑋𝑗 axis), �̄�𝑖𝑘 is the average strain of the RVE, 𝑥𝑘 is 
the 𝑥 coordinate of node 𝑘 within the RVE, 𝑢∗

𝑖
is the periodic part of the 

displacement components on the boundary surfaces and is dependent 
on the global loads applied.

The difference between Eqs. (B.2) and (B.3) is

𝑢
𝑗+
𝑖

− 𝑢
𝑗−
𝑖

= �̄�𝑖𝑘(𝑥
𝑗+
𝑘

− 𝑥
𝑗−
𝑘
) = �̄�𝑖𝑘Δ𝑥𝑘 (B.4)

where Δ𝑥𝑗
𝑘

represents the dimensions of the RVE along direction 𝑘.
For a parallel RVE model, such as the cubic unit cell, Δ𝑥𝑘 is constant 

for each pair of the nodes located on the parallel boundary surfaces, 
edges and corner vertices. Therefore, Eq. (B.4) can be easily imple-
mented in the finite element analysis as a nodal displacement constraint 
and the following BCs are obtained:

𝑢
𝑗+
𝑖
(𝑥, 𝑦, 𝑧) − 𝑢

𝑗−
𝑖
(𝑥, 𝑦, 𝑧) = 𝑐

𝑗

𝑖
𝑖, 𝑗 = 1,2,3 (B.5)

where 𝑐11 , 𝑐
2
2 , 𝑐

3
3 represent the average stretch or contraction of the RVE 

due to the action of the three normal traction component, while 𝑐21 =
𝑐12 , 𝑐

3
1 = 𝑐13 , 𝑐

3
2 = 𝑐23 correspond to the shear deformations due to the three 

shear traction components.
It can be seen from Eq. (B.5) that, although the difference of the dis-

placements for the corresponding points on the two opposite boundary 
surfaces is specified, the individual displacement component is still a 
function of the coordinates, i.e. a plane does not necessarily remain a 
plane after the deformation.

When Eq. (B.5) is applied, the continuity of the displacement field is 
guaranteed, while the traction continuity can be imposed through:

𝑡+
𝑖
= −𝑡−

𝑖
with 𝑡𝑖 = �̄�𝑖𝑘𝑛𝑘 (B.6)

therefore the PBCs on the boundary 𝛿𝑉 of a RVE can be summarized as 
follows:

𝑢+
𝑖
− 𝑢−

𝑖
= 𝜀𝑖𝑘(𝑥+𝑘 − 𝑥−

𝑘
) = Δ𝑢𝑖 and 𝑡+

𝑖
= 𝑡−

𝑗
(B.7)

The application of the former of Eq. (B.7) guarantees the uniqueness of 
the solution, making unnecessary the latter to be explicitly applied in the 
analysis [33,76]. It has to be pointed out, that, since the displacement 
BCs are not prescribed for any point, the translational rigid body motions 
of the RVE are allowed. Moreover, special care has to be taken to avoid 
over constraints on the edges and corner nodes of the RVE.

As it is performed in the homogenization algorithm with UBCs, six 
different simulations are required to compute all the entries of the ho-
mogenized elasticity tensor. For each of those, a loading condition con-
sisting in a uniform strain with all null components except one is applied 
to the RVE. Once the numerical computation has been carried out, the 
components of the elasticity tensor can be retrieved using one of the 
methods presented in Appendix A.2.
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Many numerical studies showed that periodic BCs represent the most 
efficient choice of BCs in terms of the convergence of the effective mate-
rial properties with respect to the RVE size. They can be exploited even 
in case of non-periodic arrangements of the micro-structure. Therefore, 
periodic BCs are widely used to estimate the effective properties of het-
erogeneous materials.

In the context of FE method, two types of meshes can be used for 
PBCs [59]:

• Periodic mesh: it is characterized by the same distribution of the 
nodes on opposite boundaries of the RVE (i.e. the positive and neg-
ative parts). In case of a periodic mesh the imposition of PBCs be-
comes trivial, since opposite nodes can be easily coupled together. 
Examples of the implementation of the homogenization procedure 
with PBCs can be found in [37,34,36,35,33,38];

• Non-periodic mesh: in more general cases, the same distribution of 
nodes on opposite parts of the RVE boundary does not hold. There-
fore, for a node on a boundary there is not always a conforming 
node on the opposite side. In this case, a suitable method based on 
interpolation should be implemented to effectively couple bound-
ary nodes. Different procedures to implement the homogenization 
algorithm with interpolation-based PBCs on arbitrary mesh are re-
ported in [59,77–79,36].

B.2.1. PBCs on periodic mesh and relative coupling

As previously pointed out, periodic meshes have the same configura-
tion of nodes and element faces on each periodic surface pair of the RVE 
boundaries. In this case the application of PBCs is easier, because each 
node on a surface has got exactly only one pairing node on the opposite 
boundary face. PBCs can be applied in FEA through linear multi-point 
constraints (MPCs), that are defined as a linear combination of nodal 
displacements equal to zero [35,34]:

𝜂1𝑢
𝑃
𝑖
+ 𝜂2𝑢

𝑄

𝑖
+ ...+ 𝜂𝑛𝑢

𝑁
𝑖
= 0 (B.8)

where 𝑢𝑃
𝑖

is the nodal displacement at the DoF 𝑖 of the node 𝑃 and 𝜂𝑛
are the coefficients that define the relative motion of the nodes.

The displacement constraint in Eq. (B.7) is introduced into the sys-
tem of linear MPC equations through a Reference Point (RP), that does 
not correspond to a physical part of the RVE, but provides the neces-
sary DoF to control its mechanical response. The general form of the 
equation used to set MPCs is

𝑢𝑘+
𝑖

− 𝑢𝑘−
𝑖

= 𝑢𝑅𝑃
𝑖

(B.9)

where 𝑘+ and 𝑘− represent the node sets of two opposite faces and 𝑢𝑅𝑃
𝑖

is the displacements perturbation carried by the RP.
This constraint equation is applied to all the nodes located on the 

parallel boundary surfaces of the RVE. It should be noticed that if a 
DoF of a node is used in a constraint equation, it cannot be involved 
in another MPC, because that DoF has been eliminated by the existing 
constraint equation. Thus, particular attention should be used in the 
formulation of MPC equation of nodes on the edges and vertices of the 
RVE to avoid over-constraint.

The first step for the application of MPCs consists in the classification 
into sets of the nodes located on the boundaries of the RVE. There are 
three main categories of node sets:

• Inner face: nodes on a boundary face of the RVE that are not located 
either on the edges or corners;

• Inner edge: nodes on an edge of the RVE, excluding the end nodes 
on corners;

• Corner: a vertex of the RVE.

Table B.8 summarizes and classifies all the node sets required for the 
implementation of the MPC equations.

Table B.8

Node sets required for MPCs.

Inner faces 𝑋𝑚, 𝑋𝑝, 
𝑌𝑚, 𝑌𝑝, 
𝑍𝑚, 𝑍𝑝

Inner edges 𝑋𝑚𝑌𝑚, 𝑋𝑚𝑌𝑝, 𝑋𝑚𝑍𝑚, 𝑋𝑚𝑍𝑝, 
𝑋𝑝𝑌𝑚, 𝑋𝑝𝑌𝑝, 𝑋𝑝𝑍𝑚, 𝑋𝑝𝑍𝑝, 
𝑌𝑚𝑍𝑚, 𝑌𝑚𝑍𝑝, 𝑌𝑝𝑍𝑚, 𝑌𝑝𝑍𝑝

Corners 𝑋𝑚𝑌𝑚𝑍𝑚, 𝑋𝑚𝑌𝑚𝑍𝑝, 
𝑋𝑚𝑌𝑝𝑍𝑚, 𝑋𝑚𝑌𝑝𝑍𝑝, 
𝑋𝑝𝑌𝑚𝑍𝑚, 𝑋𝑝𝑌𝑚𝑍𝑝, 
𝑋𝑝𝑌𝑝𝑍𝑚, 𝑋𝑝𝑌𝑝𝑍𝑝, 

Table B.9

MPC equations implementation for all the involved node 
sets.

MPC with relative coupling 
Inner Face u𝑋𝑝 − u𝑋𝑚 = u𝑅𝑃1

u𝑌 𝑝 − u𝑌 𝑚 = u𝑅𝑃2

u𝑍𝑝 − u𝑍𝑚 = u𝑅𝑃3

Inner Edge u𝑋𝑝𝑍𝑝 − u𝑋𝑚𝑍𝑝 = u𝑅𝑃1

u𝑋𝑝𝑍𝑚 − u𝑋𝑚𝑍𝑚 = u𝑅𝑃1

u𝑋𝑝𝑌 𝑚 − u𝑋𝑚𝑌𝑚 = u𝑅𝑃1

u𝑋𝑚𝑌 𝑝 − u𝑋𝑚𝑌𝑚 = u𝑅𝑃2

u𝑌 𝑝𝑍𝑚 − u𝑌 𝑚𝑍𝑚 = u𝑅𝑃2

u𝑋𝑝𝑌 𝑝 − u𝑋𝑝𝑌 𝑚 = u𝑅𝑃2

u𝑋𝑚𝑍𝑝 − u𝑋𝑚𝑍𝑚 = u𝑅𝑃3

u𝑌 𝑝𝑍𝑝 − u𝑌 𝑝𝑍𝑚 = u𝑅𝑃3

u𝑌 𝑚𝑍𝑝 − u𝑌 𝑚𝑍𝑚 = u𝑅𝑃3

Corner u𝑋𝑝𝑌 𝑝𝑍𝑝 − u𝑋𝑚𝑌 𝑝𝑍𝑝 = u𝑅𝑃1

u𝑋𝑝𝑌 𝑝𝑍𝑚 − u𝑋𝑚𝑌 𝑝𝑍𝑚 = u𝑅𝑃1

u𝑋𝑝𝑌 𝑚𝑍𝑝 − u𝑋𝑚𝑌𝑚𝑍𝑝 = u𝑅𝑃1

u𝑋𝑝𝑌 𝑚𝑍𝑚 − u𝑋𝑚𝑌𝑚𝑍𝑚 = u𝑅𝑃1

u𝑋𝑚𝑌 𝑝𝑍𝑚 − u𝑋𝑚𝑌𝑚𝑍𝑚 = u𝑅𝑃2

u𝑋𝑚𝑌 𝑝𝑍𝑝 − u𝑋𝑚𝑌 𝑝𝑍𝑚 = u𝑅𝑃3

u𝑋𝑚𝑌𝑚𝑍𝑝 − u𝑋𝑚𝑌𝑚𝑍𝑚 = u𝑅𝑃3

In Table B.8 the subscript 𝑚 and 𝑝 stand for minus and plus, respec-
tively, and they are referred to negative and positive boundary faces.

The above mentioned node sets can be used to facilitate the cou-
pling of opposite nodes and the linking of nodal degrees of freedom 
to implement PBCs. As it has already been explained in Appendix B.2, 
the determination of the effective elastic properties for lattice structures 
implies a homogenization procedure that requires the application of six 
independent loading conditions on the RVE. They are summarized as 
follows:

𝜀𝑖𝑖 = �̄�𝑖𝑖 and 𝜀𝑗𝑘 = 0 for tensile deformation,

𝜀𝑖𝑖 = 0 and 𝜀𝑗𝑘 = �̄�𝑗𝑘 for shear deformation
(B.10)

As it can be seen from Eq. (B.10), each loading case consists of the 
specifying displacement fields, that render null all but one of the six 
independent components of the strain tensor. The detailed implementa-
tion of the MPC equations for each node set is presented in Table B.9, 
while the six loading cases, necessary to compute all the entries of the 
homogenized elasticity tensor, are presented in Table B.10. u𝑅𝑃 1, u𝑅𝑃 2

and u𝑅𝑃 3 are displacement vectors of the RPs (RP1, RP2 and RP3), that 
are introduced into the model to impose the nodal displacement differ-
ence related to the macroscopic tension and shear strain �̄�1𝑖 (𝑖 = 1,2,3) 
in direction 𝑋1, �̄�2𝑖 (𝑖 = 1,2,3) in direction 𝑋2 and �̄�3𝑖 (𝑖 = 1,2,3) in 
direction 𝑋3, respectively, making each MPC equation easy to be im-
plemented.

In this version of the homogenization algorithm with PBC the cou-
pling of node is done through relative coupling, which is the opposite 
to absolute coupling that will be explained in the next section. This dis-
tinction only takes places in the coupling of edges and vertices [80]. 
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Table B.10

Load cases for the PBCs with MPCs.

Homogenization Loading Cases 
Case 1 u𝑅𝑃1 = (𝐿𝑥�̄�11,0,0)
(tensile loading along 𝑥) u𝑅𝑃2 = (0,0,0)

u𝑅𝑃3 = (0,0,0)

Case 2 u𝑅𝑃1 = (0,0,0)
(tensile loading along 𝑦) u𝑅𝑃2 = (0,𝐿𝑦�̄�22,0)

u𝑅𝑃3 = (0,0,0)

Case 3 u𝑅𝑃1 = (0,0,0)
(tensile loading along 𝑧) u𝑅𝑃2 = (0,0,0)

u𝑅𝑃3 = (0,0,𝐿𝑧�̄�33)

Case 4 u𝑅𝑃1 = (0,𝐿𝑦�̄�12∕2,0)
(shear loading along 𝑥𝑦 and 𝑦𝑥) u𝑅𝑃2 = (𝐿𝑥�̄�21∕2,0,0)

u𝑅𝑃3 = (0,0,0)

Case 5 u𝑅𝑃1 = (0,0,0)
(shear loading along 𝑦𝑧 and 𝑧𝑦) u𝑅𝑃2 = (0,0,𝐿𝑧�̄�23∕2)

u𝑅𝑃3 = (0,𝐿𝑦�̄�32∕2,0)

Case 6 u𝑅𝑃1 = (0,0,𝐿𝑧�̄�13∕2)
(shear loading along 𝑧𝑥 and 𝑥𝑧) u𝑅𝑃2 = (0,0,0)

u𝑅𝑃3 = (𝐿𝑥�̄�31∕2),0,0)

Taking for example the equations that link the vertices of the negative 
face along 𝑥:

u𝑋𝑝𝑌 𝑚𝑍𝑚 − u𝑋𝑚𝑌𝑚𝑍𝑚 = u𝑅𝑃 1

u𝑋𝑚𝑌 𝑝𝑍𝑚 − u𝑋𝑚𝑌𝑚𝑍𝑚 = u𝑅𝑃 2

u𝑋𝑝𝑌 𝑝𝑍𝑚 − u𝑋𝑚𝑌 𝑝𝑍𝑚 = u𝑅𝑃 1 or u𝑋𝑝𝑌 𝑝𝑍𝑚 − u𝑋𝑝𝑌 𝑚𝑍𝑚 = u𝑅𝑃 2,

(B.11)

only one of the last two equations is needed. It can be noticed that 
the displacement of the node 𝑋𝑝𝑌 𝑝𝑍𝑚 is linked to that of the nodes 
𝑋𝑝𝑌 𝑚𝑍𝑚 and 𝑋𝑚𝑌 𝑝𝑍𝑚. The same holds for node 𝑋𝑚𝑌𝑚𝑍𝑚. Thus, 
the set of Eq. (B.11) give the relative formulation of the PBCs.

Once each simulation is completed nodal reaction forces on faces 𝑋𝑝, 
𝑌 𝑝 and 𝑍𝑝, including nodes on edges and corners, are retrieved. Then 
stresses and coefficients of the elastic tensor are computed following the 
same procedure presented in Appendix B.1.

B.2.2. PBCs on periodic mesh and absolute coupling

In this section a variation on the most commonly used homogeniza-
tion algorithm with PBC on a periodic mesh presented in Coluccia and 
De Pasquale [60,55]. It is based on the original formulation of PBC from 
Barbero [27], developed for the homogenization of composites. Again, 
six static simulations are necessary to compute all the components of 
the stiffness matrix [𝐸], each with the imposition of only one of the six 
unitary average strain vector {�̄�}:

�̄�𝑖 =
1 
𝑉 ∫

𝑉

𝜀𝑖 𝑑𝑉 = 𝜀0
𝑖

(B.12)

𝐶𝛼𝛽 = �̄�𝛼 = ∫
𝑉

𝜎𝛼(𝑥1, 𝑥2, 𝑥3) 𝑑𝑉 where 𝜀0
𝛽
= 1

for 𝛼, 𝛽 = 1, ... ,6 (B.13)

In each simulation a set of PBC linking nodes on opposite sides of 
the RVE and specific displacement boundary conditions have to be im-
posed to achieve an overall unitary strain. While applied displacement 
boundary conditions for each case are the same as those presented in Ta-
ble B.10, the formulation of PBCs for boundary face, edges and vertices 
are summarized in Table B.11. The presented algorithm relies on the ab-
solute formulation of PBCs. One vertex and three edges of the unit cell 
are selected as the local coordinate system and the displacements of the 
nodes on the other edges and vertices are linked to those located on this 
local coordinate system. In synthesis, the resulting MPC equations are a 

Table B.11

MPC equations implementation for all the involved node sets.

MPC with absolute coupling 
Inner Face u𝑋𝑝 − u𝑋𝑚 = u𝑅𝑃1

u𝑌 𝑝 − u𝑌 𝑚 = u𝑅𝑃2

u𝑍𝑝 − u𝑍𝑚 = u𝑅𝑃3

Inner Edge u𝑋𝑝𝑌 𝑝 − u𝑋𝑚𝑌𝑚 = u𝑅𝑃1 + u𝑅𝑃2

u𝑋𝑝𝑌 𝑚 − u𝑋𝑚𝑌 𝑝 = u𝑅𝑃1 − u𝑅𝑃2

u𝑋𝑝𝑍𝑝 − u𝑋𝑚𝑍𝑚 = u𝑅𝑃1 + u𝑅𝑃3

u𝑋𝑝𝑍𝑚 − u𝑋𝑚𝑍𝑝 = u𝑅𝑃1 − u𝑅𝑃3

u𝑌 𝑝𝑍𝑝 − u𝑌 𝑚𝑍𝑚 = u𝑅𝑃2 + u𝑅𝑃3

u𝑌 𝑝𝑍𝑚 − u𝑌 𝑚𝑍𝑝 = u𝑅𝑃2 − u𝑅𝑃3

Corner u𝑋𝑝𝑌 𝑝𝑍𝑝 − u𝑋𝑚𝑌𝑚𝑍𝑚 = u𝑅𝑃1 + u𝑅𝑃2 + u𝑅𝑃3

u𝑋𝑝𝑌 𝑝𝑍𝑚 − u𝑋𝑚𝑌𝑚𝑍𝑝 = u𝑅𝑃1 + u𝑅𝑃2 − u𝑅𝑃3

u𝑋𝑚𝑌 𝑝𝑍𝑝 − u𝑋𝑝𝑌 𝑚𝑍𝑚 = −u𝑅𝑃1 + u𝑅𝑃2 + u𝑅𝑃3

u𝑋𝑝𝑌 𝑚𝑍𝑝 − u𝑋𝑚𝑌 𝑝𝑍𝑚 = u𝑅𝑃1 − u𝑅𝑃2 + u𝑅𝑃3

linear combination of those used in the relative formulation. Therefore, 
two macro-strains and dimensions are needed for the coupling of edges 
and three for vertices. 

B.2.3. PBCs on a generic mesh

Generally, the conformity of mesh nodes cannot be always guaran-
teed, leading to a non-periodic mesh. This is usually the outcome of a 
more flexible and cheaper meshing algorithm. Thus, it is necessary to 
find an alternative method to couple nodes on opposite boundary faces 
and write MPC equations. In literature, several ways to couple nodes on 
opposite surfaces can be found:

• Nguyen et al. [59] introduced a method based on Lagrange inter-
polation using the Lagrange shape functions and the cubic spline 
interpolation using the Hermite shape;

• Ouchetto et al. [78,79] proposed a method that couples a node on a 
face to the corresponding triangle of the mesh on the opposite face. 
Then it introduces the MPC equation linking the matching nodes 
through coefficients, computed using geometric shape functions;

• Wippler et al. [81] implemented the PBCs in an approximate setting 
using a projection algorithm;

• Reis et al. [77] proposed a Mortar Decomposition Method to enforce 
PBCs on complex micro-structures with non-conformal meshes.

In this work, the procedure presented by Tian et al. [35,36], that con-
sists in an interpolation algorithm based on geometric shape functions of 
the element of the non-conformal mesh, is presented. The formulation 
of the PBCs imposed on the RVE with non-conformal meshes is given 
through the following modified displacement-difference constraint:

u𝑘+ − u𝑑 = u𝑘+ −
𝑁∑
𝑖=1 

𝐴𝑖 u
𝑖 =Δū on 𝛿𝑉 (B.14)

where u𝑑 is the interpolated displacement vector of the dummy node, 
which is the projection on 𝛿𝑉 − of the node located on 𝛿𝑉 +, and u𝑖

is the displacement of the nodes of the element containing the dummy 
node. The number of interpolation nodes 𝑁 depends on the type of mesh 
element: 𝑁 = 3 for the 4-node linear tetrahedral element and 𝑁 = 6
for the 10-node quadratic tetrahedron. The shape functions 𝐴𝑖 of the 
plane triangular face of an element have the expressions summarized 
in Table B.12, where 𝑆1, 𝑆2, 𝑆3 and 𝑆 are the areas of the triangles 
d-2-3, d-1-3, d-1-2 and 1-2-3, respectively, and 𝑆 = 𝑆1 + 𝑆2 + 𝑆3 (see 
Fig. B.16). 

In case of non-conformal meshes the nodal displacement-difference 
constraint of the PBCs is implemented as follows:
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Fig. B.16. (a) A tetrahedron element, (b) the linear tetrahedron element’s nodes and (c) the quadratic tetrahedron element’s nodes located on the boundaries of the 
RVE [36].

Table B.12

Shape functions for linear and quadratic 
tetrahedral elements.

Shape functions 

Linear tetrahedron 𝐴1 =
𝑆1
𝑆

𝐴2 =
𝑆2
𝑆

𝐴3 =
𝑆3
𝑆

Quadratic tetrahedron 𝐴1 =
(

2𝑆1
𝑆

− 1
)

𝑆1
𝑆

𝐴2 =
(

2𝑆2
𝑆

− 1
)

𝑆2
𝑆

𝐴3 =
(

2𝑆3
𝑆

− 1
)

𝑆3
𝑆

𝐴4 =
4𝑆1
𝑆

𝑆2
𝑆

𝐴5 =
4𝑆1
𝑆

𝑆3
𝑆

𝐴6 =
4𝑆2
𝑆

𝑆3
𝑆

Table B.13

Definition of 𝑋𝑝𝑆, 𝑌 𝑝𝑆 and 𝑍𝑝𝑆 node sets.

Node sets for the implementation of PBCs 
𝑋𝑝𝑆 𝑋𝑝, 

𝑋𝑝𝑌 𝑚, 𝑋𝑝𝑍𝑚, 𝑋𝑝𝑍𝑝, 
𝑋𝑝𝑌 𝑚𝑍𝑚, 𝑋𝑝𝑌 𝑚𝑍𝑝, 𝑋𝑝𝑌 𝑝𝑍𝑚, 𝑋𝑝𝑌 𝑝𝑍𝑝

𝑌 𝑝𝑆 𝑌 𝑝, 
𝑋𝑚𝑌 𝑝, 𝑋𝑚𝑍𝑚, 𝑌 𝑝𝑍𝑚, 
𝑋𝑚𝑌 𝑝𝑍𝑚

𝑍𝑝𝑆 𝑍𝑝, 
𝑋𝑚𝑍𝑝, 𝑌 𝑚𝑍𝑝, 𝑌 𝑝𝑍𝑝, 
𝑋𝑚𝑌𝑚𝑍𝑝, 𝑋𝑚𝑌 𝑝𝑍𝑝

u𝑋𝑝𝑆 −
𝑁∑
𝑖=1 

𝐴𝑖 u
𝑋𝑚𝑆 = u𝑅𝑃 1

u𝑌 𝑝𝑆 −
𝑁∑
𝑖=1 

𝐴𝑖 u
𝑌 𝑚𝑆 = u𝑅𝑃 2

u𝑍𝑝𝑆 −
𝑁∑
𝑖=1 

𝐴𝑖 u
𝑍𝑚𝑆 = u𝑅𝑃 3

(B.15)

where 𝑋𝑝𝑆, 𝑌 𝑝𝑆 and 𝑍𝑝𝑆 node sets are obtained from the ones pre-
sented in Table B.8 and their definition can be found in Table B.13. 
𝑋𝑚𝑆, 𝑌 𝑚𝑆 and 𝑍𝑚𝑆 are the node sets composed of all the nodes on 
the surfaces with the minimum 𝑥, 𝑦 and 𝑧 coordinate, respectively.

Once the MPC equation has been set, the homogenization algorithm 
follows the same path as that used with periodic conformal meshes: six 
loading cases are simulated using the BCs presented in Table B.10. After 
each simulation, reaction forces are retrieved and the coefficient of the 
elastic tensor is computed, as presented in Appendix B.1.

Table B.14

Strategies for calculation of homogenized properties with the energy method.

Expressions for effective properties Boundary conditions 

�̄�11 =𝑈∕
(
0.5 �̄�211𝑉𝑅𝑉 𝐸

)
�̄�11 ≠ 0, �̄�22 = �̄�33 = �̄�23 = �̄�13 = �̄�12 = 0

�̄�22 =𝑈∕
(
0.5 �̄�222𝑉𝑅𝑉 𝐸

)
�̄�22 ≠ 0, �̄�11 = �̄�33 = �̄�23 = �̄�13 = �̄�12 = 0

�̄�33 =𝑈∕
(
0.5 �̄�233𝑉𝑅𝑉 𝐸

)
�̄�33 ≠ 0, �̄�11 = �̄�22 = �̄�23 = �̄�13 = �̄�12 = 0

�̄�44 =𝑈∕
(
0.5 �̄�223𝑉𝑅𝑉 𝐸

)
�̄�23 ≠ 0, �̄�11 = �̄�22 = �̄�33 = �̄�13 = �̄�12 = 0

�̄�55 =𝑈∕
(
0.5 �̄�213𝑉𝑅𝑉 𝐸

)
�̄�13 ≠ 0, �̄�11 = �̄�22 = �̄�33 = �̄�23 = �̄�12 = 0

�̄�66 =𝑈∕
(
0.5 �̄�212𝑉𝑅𝑉 𝐸

)
�̄�12 ≠ 0, �̄�11 = �̄�22 = �̄�33 = �̄�23 = �̄�13 = 0

�̄�12 = �̄�21 =𝑈 12∕�̄�11 �̄�22 �̄�11 ≠ 0, �̄�22 ≠ 0, 
𝑈 12 =𝑈∕𝑉𝑅𝑉 𝐸 −

(
0.5 �̄�11 �̄�

2
11

)
−
(
0.5 �̄�22 �̄�

2
22

)
, �̄�33 = �̄�23 = �̄�13 = �̄�12 = 0,

�̄�23 = �̄�32 =𝑈 23∕�̄�22 �̄�33 �̄�22 ≠ 0, �̄�33 ≠ 0, 
𝑈 23 =𝑈∕𝑉𝑅𝑉 𝐸 −

(
0.5 �̄�22 �̄�

2
22

)
−
(
0.5 �̄�33 �̄�

2
33

)
, �̄�23 = �̄�13 = �̄�12 = �̄�11 = 0,

�̄�13 = �̄�31 =𝑈 13∕�̄�11 �̄�33 �̄�11 ≠ 0, �̄�33 ≠ 0, 
𝑈 13 =𝑈∕𝑉𝑅𝑉 𝐸 −

(
0.5 �̄�11 �̄�

2
11

)
−
(
0.5 �̄�33 �̄�

2
33

)
, �̄�22 = �̄�23 = �̄�13 = �̄�12 = 0, 

B.3. Numerical implementation of the energy method

The homogenization algorithms, which have been previously pre-
sented, are specifically designed for the computation of the entries of 
the homogenized elasticity tensor through nodal reaction forces or stress 
values. However, for the application of the energy method, presented in 
Appendix A.2, three additional load cases are required for the computa-
tion of the off-diagonal entries. The complete set of BCs for each loading 
case and the equations to retrieve the entries of the elasticity tensor are 
reported in Table B.14 [82]. The coupling of the nodes on opposite faces 
of the RVE is performed in the same way as presented in Appendix B.2.1, 
as well as the imposition of BCs through RPs.

After the FEA of each loading cases the microscale energies are re-
trieved and the total deformation energy can be computed through one 
of the relations in Eq. (A.19). Finally the entries �̄�𝑖𝑗 of the homogenized 
elasticity tensor can be computed through the equations in Table B.14
for the corresponding loading case.

Data availability

Data will be made available on request.
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