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A B S T R A C T

In the event of damage to a structural system, ensuring the redistribution of loads becomes crucial to
mitigate the risk of progressive collapse. By providing alternative load paths, structures can accommodate load
redistribution, adapting to progressive changes in structural conditions over time, reducing the probability of
failure and demonstrating increased robustness. In conventional redundant structures, say frames, the main
behavior is expected to be parallel-like, with individual load paths within the structure capable of interacting
and redistributing loads in response to localized changes. The alteration of the stiffness of one element due
to damage may cause a change of the overall behavior. In this paper it is shown that the evolution of a
random damage on the structure, in particular when the arrangement of the element is non-trivial, highlights
a transition between the overall behavior of the system. Specifically, as damage progresses, the system may shift
from parallel-like to series-like, typical in non-redundant structures, with consequent dramatic and potentially
non-robust situations. Examples on simple structures are provided to highlight the difference in the behaviors.
1. Introduction

Systems working in series and in parallel are commonly used in
many disciplines and application areas for analysis and design pur-
poses (Tavakkoli-Moghaddam et al., 2008). The theories of series and
parallel systems find extensive practical application in technical and
nontechnical fields, serving as key components for enhancing effi-
ciency and resilience. In electrical power systems, parallel configura-
tions ensure continuity of service by providing alternative pathways for
electricity, thereby mitigating the impact of failures in single compo-
nents (Ouiddir et al., 2004). Similarly, transportation systems leverage
parallel routing to optimize traffic flow and reduce congestion, en-
hancing throughput and system responsiveness (Levitin and Lisnianski,
2001; Hagen and Tvedt, 1991). In telecommunications, redundancy
provided by parallel pathways is crucial for maintaining uninterrupted
communication in the event of network failures or overloads (Khabbaz
et al., 2011; Lyu et al., 2002). Beyond these applications, parallel and
series systems play vital roles in hydraulic engineering, contributing
to efficient water distribution and flood management (Roberson et al.,
1998). Similarly, computing networks rely on redundant data pathways
to enhance reliability and speed, which is crucial for maintaining data
integrity in high-performance environments (Chen et al., 1994; Zissis
and Lekkas, 2012; Song and Der Kiureghian, 2003; Mahmood et al.,
2015). Moreover, the principles of serial and parallel configurations
are instrumental in safety-critical systems in aerospace engineering,
where system redundancy can be a matter of life and death (Pathan,
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2017; Chen, 2018). The principles of these configurations extend into
cybersecurity, where multiple layers of security controls (defense in
depth) are employed to protect data and prevent unauthorized ac-
cess (Mughal, 2018). Network engineering utilizes parallel pathways to
ensure consistent and reliable data transmission, critical in maintaining
high availability and performance across global networks (Akyildiz
et al., 2014; Sterbenz et al., 2010). Beyond technology, in biomedical
engineering, parallel processing techniques in imaging systems like
MRI and CT scans enhance the speed and accuracy of diagnostic
processes (Saxena et al., 2013) finding wide implementation also in
the field of materials engineering (Nelson and Dorfmann, 1995; Bažant
et al., 2004; Bazant and Prasannan, 1989; Bažant et al., 1996). The
concepts are also pivotal in manufacturing systems where parallel
assembly lines increase production rates and flexibility, allowing for
more robust responses to demand fluctuations and operational disrup-
tions (Majdzik, 2022). In environmental engineering, series and parallel
treatments in water purification systems enable more effective and
resilient management of water resources (Pillai, 2024).

Despite the extensive use of series and parallel configurations across
various engineering disciplines, their integration into civil structural
engineering, specifically regarding a formalized framework for load
transfer metrics and robust design methodologies, remains limited. This
gap is particularly significant in understanding progressive structural
collapse and during the design phase aimed at creating more robust
structures. However, in this regard, substantial contributions have been
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made in the field of design-for-reliability studies (Hohenbichler and
ackwitz, 1983; Yalaoui et al., 2005; Bier et al., 2005; Coit and Smith,

1996). Reliability engineering, a sub-discipline of systems engineering,
ocuses on enhancing the capability of systems to operate without
ailures (Zio, 2009). In civil engineering, this translates into strategies

for allocating redundancies effectively, a principle deeply explored
nder the ’design-for-reliability’ banner. Such strategies include the

deployment of alternative load paths, where redundancy in structural
elements allows for multiple pathways for load distribution, essential
for maintaining structural integrity when certain pathways are com-
promised (Starossek and Haberland, 2011; Starossek, 2009; Kiakojouri
t al., 2020). Although the ‘design for robustness’ (Taflanidis et al.,

2008; Knoll and Vogel, 2009; De Biagi and Chiaia, 2013; Kiakojouri
t al., 2023) has been addressed in existing literature, it lacks compre-
ensive models that effectively consolidate the understanding of load
ransmission behaviors in both series and parallel configurations within
tructural systems.

This study introduces a novel model that, first, addresses this gap
and, second, investigates the impact of element damage within the
system. Thanks to a specific metric, it analyzes how the load path is
altered and redistributed within the structure following damage. The
analysis of a mechanical system made by rods working in series and
parallel is herein proposed. The purpose of this study is to analyze
he effects of the propagation of damage within a series and parallel
ystem and investigate how the redistribution of load paths varies as

the evolution of damage propagation advances. The study is expanded
to more articulated systems, like a small truss structure, to highlight
the capabilities of the proposed metrics.

2. Problem statement

De Biagi and Chiaia (2016) have studied the behavior of parallel
ystems, demonstrating that such systems offer an optimal structural
obustness in all situations where load paths are equally distributed

among all elements. When removing a random element from a system
perating in parallel, the remaining elements compensate for its ab-

sence in the most optimal efficient manner. This phenomenon can be
attributed to the fact that, the contribution of each element is equal to
that of every other element within the system, ensuring that all operate
perfectly in parallel. This scenario is characterized by equally important
load paths for all elements, a condition achieved when the stiffnesses
are equal.

This concept finds its extreme opposite in series systems, where
he removal of one element leads to the complete crisis of the sys-
em. Nonetheless, intermediate scenarios, which more accurately re-
lect real-world conditions by incorporating both serial and parallel
omponents, constitute a largely unexplored domain. The present study

addresses this inadequately investigated area.
Two conceptual examples illustrating how the concept of mixed

series–parallel systems can be recognized and implemented in real-
world structures are presented below.

Example 1. Consider the image in Fig. 1, showing the components
of the pier structural element. The foundation piles of Fig. 1.(b) are
haracterized, each, by a stiffness 𝑘𝑝,𝑖 and they form a system working
n parallel expressed in Eq. (1) since the total stiffness of the foundation

is given by the sum of the stiffnesses of the individual foundation piles:

𝐾𝑓 = 𝑘𝑝,1 + 𝑘𝑝,2 + 𝑘𝑝,3 + 𝑘𝑝,4. (1)

Similarly, the bearing system of Fig. 1.(a) also represents a system
orking in parallel since the total stiffness is given by the sum of the

tiffnesses of the individual bearing devices 𝑘𝑏,𝑖:

𝐾𝑏 = 𝑘𝑏,1 + 𝑘𝑏,2 + 𝑘𝑏,3. (2)
a

2 
Consider instead the image in Fig. 1.(c), where the analysis shifts
rom the scale of the components to the scale of the structural element.
he total stiffness of the pier may be described as the result of a system
orking in series, i.e., foundation, shaft and bearing support system in

Fig. 1.(d), and therefore it will be given by:
1

𝐾𝑃 𝐼 𝐸 𝑅
= 1

𝐾𝑓
+ 1

𝐾𝑠
+ 1

𝐾𝑏
. (3)

Consequently, the total description of bridge substructure (Fig. 2) is
straightforward as:

𝐾𝑒𝑞 ,𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐 𝑡 = 𝐾𝑃 𝐼 𝐸 𝑅,1 +𝐾𝑃 𝐼 𝐸 𝑅,2 +𝐾𝑃 𝐼 𝐸 𝑅,3. (4)

To fully grasp the power of this concept, it is essential to explore
how it applies in a specific scenario. Therefore, consider the horizontal
braking force 𝐹 with action vector parallel to the longitudinal axis
of the bridge. The displacement 𝛿 at the head of the pier will be the
ame for each pier, assuming the deck is infinitely rigid. The total
isplacement 𝛿 expressed in Eq. (5) is the sum of three contributions:

the displacement due to the deformability of the foundations system
𝛿𝑓 , the displacement due to the deformability of the shaft 𝛿𝑠 and the
isplacement due to the deformability of the bearing support system 𝛿𝑏

as depicted in Fig. 2 (Manterola, 2015).
Assuming that everything takes place in the linear elastic field, the

total displacement can be thus calculated as follow:

𝛿 = 𝛿𝑓 + 𝛿𝑠 + 𝛿𝑏

= 𝐹
𝐾𝑓

+ 𝐹
𝐾𝑠

+ 𝐹
𝐾𝑏

= 𝐹
𝐾𝑃 𝐼 𝐸 𝑅

, (5)

hence, the total stiffness of the pier 𝐾PIER is detailed in Eq. (3).

Example 2. The structure shown in Fig. 3.(a) is a shear-type frame
subjected to horizontal loading 𝐹 . In accordance with the central
oncept, the structure can be simplified into a diagram of elements ar-

ranged in a non-trivial manner. Under the hypothesis of infinitely rigid
floors (Chopra, 2007; Prasad, 2020), the structure can be simplified to
the diagram depicted in Fig. 3.(b). However, under the hypothesis that
he vertical elements are far more rigid that the horizontal ones, the

simplification of the system changes, see Fig. 3.(c). While this may seem
like a minor modification, it leads to two distinctly different patterns
of load redistribution (Weng et al., 2020).

The main idea in this paper is to develop these concepts extending
the approach proposed by De Biagi and Chiaia (2016) on systems in
parallel to those in series and to systems with rods arranged in a non-
trivial manner. This method aims at simplifying the overall behavior
of structural systems into reduced diagrams representing the elements
and their mechanical properties, creating a unified theory capable of
comprehensively describing the global behaviors and the interaction
between elements.

3. Methodology

The proposed methodology entails simplifying complex structural
systems into structural schemes by representing them with rod-based
configurations. The mechanical characteristics of the rods are defined
by their elasticity, which is incorporated into their axial stiffness.

Following the previous studies (De Biagi and Chiaia, 2013; De Bi-
agi, 2016), the deformation work W in linear elastic systems was
employed as functional in investigating the problem and performing
he analysis. The damage propagation was conceptualized as a gradual
eduction of the element’s stiffness from its initial value to zero; in

this way the progressive removal of the element was effectively rep-
esented. Considering the arbitrary 𝑞th rod, which undamaged stiffness
s 𝑘𝑞 , the damage was mathematically included through the Lemaître

nd Chaboche formulation as a reduction of the axial stiffness 𝑘𝑞 ,𝜉
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Fig. 1. Example 1. Pier’s structural element layout comprising its individual components. (a) Bearing support system. The support system of the pier consists of the bearings
devices working in parallel with each other; (b) foundation system. The foundation system of the pier consists of the foundation piles working in parallel with each other; (c) the
structural components of the pier: bearing support system, shaft and foundation system work in series with each other; (d) schematization of the pile’s components working.
Fig. 2. Bridge superstructure with three piers.

as (Lemaitre and Chaboche, 1994):

𝑘𝑞 ,𝜉 = 𝑘𝑞 (1 − 𝜉) . (6)

The quantity 𝜉 is the damage variable ranging from 0 (undamaged
state) to 1 (totally removed element). Element damage presupposes a
negative variation of the stiffness with respect to damage increment.

The application of Clapeyron’s Theorem (Carpinteri, 1992) allows
to assess the deformation work experienced by a linear system under
the application of an external force F. The elastic work of deformation
of the system can be easily calculated as:

𝑊 = 1
2
𝐹 𝛿 = 1

2
𝐹 2

𝐾𝑒𝑞
, (7)

It is possible to determine the overall stiffness of the entire system,
denoted as equivalent stiffness 𝐾𝑒𝑞 , depending on the position of the
single elements. A perturbation in the stiffness of one rod implies a
variation in the system’s equivalent stiffness, thus, leading to a change
in the elastic work of deformation (Belluzzi, 1946; Carpinteri, 1992).

Differently from previous studies, the present study focused not
only on the first derivative of the deformation work (with respect to
the damage variable), but also on the trend of the increment, i.e., the
second derivative, as a potential information on load transfer mecha-
nisms that occur on the structure. In addition to De Biagi’s studies, this
analysis examined the trends in the variation of deformation work. The
variation of the elastic deformation work 𝜕 𝑊 due to a change in the
3 
stiffness of the qth rod, was computed by differentiating Eq. (7) with
respect to the 𝑘𝑞 :
𝜕 𝑊
𝜕 𝑘𝑞

= 𝐹 2

2
𝜕
𝜕 𝑘𝑞

(

1
𝐾𝑒𝑞

)

. (8)

The derivative of 𝑊 with respect to the damage variable was
obtained from the chain rule for differentiating composite functions:
𝜕 𝑊
𝜕 𝜉 = 𝜕 𝑊

𝜕 𝐾𝑒𝑞

𝜕 𝐾𝑒𝑞

𝜕 𝑘𝑞 ,𝜉
𝜕 𝑘𝑞 ,𝜉
𝜕 𝜉 . (9)

It is worth to note that the first two terms in the derivations chain
reported in Eq. (9) are the derivative of 𝑊 with respect to the change
of the stiffness of the 𝑞th rod, while the last term refers to the model
adopted to include the damage, i.e. Eq. (6). This presupposes that an
additional derivative, non dependent from the damage variable, can
describe the system:
𝜕 𝑊
𝜕 𝑘𝑞

= 𝜕 𝑊
𝜕 𝐾𝑒𝑞

𝜕 𝐾𝑒𝑞

𝜕 𝑘𝑞
. (10)

In the latest situation, the derivative reflects the actual state of
the system, independently from the evolution of the damage. Briefly,
one can obtain the same 𝑘𝑞 by having a large damage on a stiff
rod or, similarly, a small damage on a weak rod. The key idea is
that both scenarios (a stiff rod with large damage and a weak rod
with small damage) can result in the same stiffness (𝑘𝑞). This means
that despite their different conditions and histories of damage, these
structures exhibit similar behavior in terms of stiffness. Therefore, it
is possible to group them into a family of structures because the same
situation reflects similar structures. Structures in the same family share
the same value of stiffness; different families share the same step of
damage, but resulting in different values of the actual stiffness of the
damaged element as the initial conditions (undamaged stiffness) differs
family-by-family. This approach helps in understanding and analyzing
structures with varied damage but similar mechanical responses.

To summarize, the approach to the problem is twofold: by inducing
the damage to a single structure or by examining multiple similar
structures with varying levels of rod stiffness, thus forming a set of
families of structures, to simulate the damaging process.
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Fig. 3. (a) Shear-type frame subjected to horizontal loading 𝐹 ; (b) Shear-type frame schematization under the hypothesis of infinitely rigid floors; (c) Flexure-type frame
schematization under the hypothesis of infinitely rigid vertical elements.
Fig. 4. Systems of rods: (a) pure parallel system (PP); (b) pure series system (PS).
3.1. Analytical formulations

In the following paragraph the detailed method formulations for the
configuration of pure parallel (PP), pure series (PS) and mixed (MIX)
system, are introduced.

The static equilibrium of elastic systems is defined by the balance
between internal forces and externally applied forces, depending on the
arrangement of the elements. In the PP system, the 𝑛 rods are arranged
in parallel, Fig. 4.(a), in the PS system the 𝑛 rods are arranged in series,
Fig. 4.(b). A further arrangement considering that some parts are in
parallel and others in series is introduced.

3.1.1. Pure parallel system (PP)
In pure parallel (PP) case, the right-hand side end is connected to

a rigid body to which an external force F is applied, remaining equal
during the entire process; the left-hand side ends are constrained and
the displacements are prohibited. The rotational degree of freedom
and displacements along the vertical direction are not allowed. The
equivalent stiffness of the PP system is given by the direct sum of each
rod stiffness contribution:

𝐾𝑃 𝑃
𝑒𝑞 = 𝑘1 + 𝑘2 + 𝑘3 +⋯ + 𝑘𝑛 =

𝑛
∑

𝑖=1
𝑘𝑖. (11)

The rod perturbation is introduced and the damage condition on the
𝑞th rod is thus simulated. The equivalent stiffness is rewritten as:

𝐾𝑃 𝑃
𝑒𝑞 (𝑘𝑞) =

( 𝑛
∑

𝑖=1
𝑘𝑖 − 𝑘𝑞

)

+ 𝑘𝑞 . (12)

The elastic work of deformation of the system of rods, 𝑊 , is computed
through Clapeyron’s Theorem (Carpinteri, 1992) and is expressed as:

𝑊 = 1𝐹 𝛿 = 1 𝐹 2
(
∑𝑛 ) . (13)
2 2
𝑖=1 𝑘𝑖 − 𝑘𝑞 + 𝑘𝑞

4 
Considering that the 𝑞th rod can vary its stiffness during the damage
process according to the damage model reported in Eq. (6), Eq. (13) can
be rewritten as:

𝑊 = 1
2

𝐹 2
(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞 ,𝜉
. (14)

Hence, the variation of the elastic work of deformation, 𝜕 𝑊 , due
to a variation of the stiffness of the 𝑞th rod, 𝜕 𝑘𝑞 ,𝜉 , is computed by
differentiating Eq. (14) and is equal to:
𝜕 𝑊
𝜕 𝑘𝑞 ,𝜉

= −𝐹 2

2
1

[(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞 ,𝜉
]2
, (15)

showing that a decrease in stiffness always produces increments of the
work of deformation.

To examine the evolution of the elastic work of deformation, 𝜕 𝑊 ,
during the damage process, 𝜕 𝜉, Eq. (15) is differentiated with respect
to the damage variable 𝜉, obtaining:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2
𝑘𝑞

[(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞 (1 − 𝜉)
]2
, (16)

which is positive. The derivations of the formulae are further detailed
in Appendix A.

3.1.2. Pure series system (PS)
In the pure series (PS) case the right-hand side of last rod is

subjected to an external horizontal force F, that is kept fixed across the
whole analysis; the left-hand side end of first rod is constrained and its
displacements and rotations are prohibited. The equivalent stiffness of
the PS system is given by the inverse of the sum of the inverses of each
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stiffness element, as:

𝐾𝑃 𝑆
𝑒𝑞 =

[

1
𝑘1

+ 1
𝑘2

+⋯ + 1
𝑘𝑛

]−1
=

[ 𝑛
∑

𝑖=1

1
𝑘𝑖

]−1

. (17)

The rod perturbation is introduced and the damage condition on the
𝑞th rod is thus simulated. The equivalent stiffness is rewritten as:

𝐾𝑃 𝑆
𝑒𝑞 =

[( 𝑛
∑

𝑖=1

1
𝑘𝑖

− 1
𝑘𝑞

)

+ 1
𝑘𝑞

]−1

. (18)

The term in the curved brackets is considered as the inverse of the
equivalent stiffness of the system without the contribution of the 𝑞th
rod, i.e., 𝐾eq,−𝑞 :

1
𝐾eq,−𝑞

=
𝑛
∑

𝑖=1

1
𝑘𝑖

− 1
𝑘𝑞

. (19)

Rearranging the terms, the equivalent stiffness of the PS system is:

𝐾𝑃 𝑆
𝑒𝑞 =

(𝑘𝑞 +𝐾eq,−𝑞

𝑘𝑞𝐾eq,−𝑞

)−1

. (20)

The elastic work of deformation, computed through Clapeyron Theo-
rem, is:

𝑊 = 𝐹 2

2

(𝑘𝑞 +𝐾eq,−𝑞

𝑘𝑞 𝐾eq,−𝑞

)−1

, (21)

and the variation of the elastic work of deformation with respect to the
damage is:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

(

𝑘𝑞 ,𝜉 𝐾eq,−𝑞
)

−
(

𝐾eq,−𝑞 + 𝑘𝑞 ,𝜉
)

𝐾eq,−𝑞
(

𝐾eq,−𝑞 𝑘𝑞 ,𝜉
)2

𝑘𝑞 . (22)

The derivations of the formulae are further detailed in Appendix B.

3.1.3. Series–parallel system (MIX)
The structural complexity refers to structures made up by a large

number of parts that interact in a non-simple way (De Biagi, 2018).
In the case of statically determined structures, the load path is unam-
biguously identified and the problem of how the load redistribution
occurs within the structures does not arise. In statically indeterminate
structures, which are prevalent in many structural applications, the
redistribution of the load paths remains an uncertain factor. In such
situations, each element contributes differently to the functioning of the
overall system (Shokrollahi and Zayeri Baghlan Nejad, 2014). However,
the effective contribution of each element cannot be precisely deter-
mined. Following previous researches, when the participation of all
the load paths is equally effective, the structure reaches the maximum
complexity. On the contrary, if all the load paths except one are
effective, the structure is called as non-complex or ‘‘simple’’ (De Biagi
and Chiaia, 2013).

With the specific purpose to introduce the complexity in the system,
a configuration of interconnected rods arranged in both series and
parallel configurations is showcased in Fig. 5. In the following, the
Authors refer to the system as mixed system (MIX). The system is
statically indeterminate with an order of indeterminacy of 4.

In this case, the evaluation of the equivalent stiffness 𝐾𝑒𝑞 becomes
more complex compared to the straightforward cases of PP and PS
systems. When the configuration is not purely parallel or purely series,
a combination of these fundamental configurations within nested levels
is expected. In this case, the resulting equivalent stiffness for the MIX
system is expressed as:

𝐾𝑀 𝐼 𝑋
𝑒𝑞 =

𝑘1𝑘3 + 𝑘1𝑘4 + 𝑘2𝑘3 + 𝑘2𝑘4 + 𝑘3𝑘4
𝑘1 + 𝑘2 + 𝑘3

. (23)

The rod perturbation is introduced. As an example, we consider
that the damage progresses on Rod #1. As performed in the previous
paragraphs, the elastic work of deformation 𝑊 is derived with respect
5 
Fig. 5. In the series–parallel system, herein named as mixed system (MIX), the rods
are arranged in both series and parallel configurations. The system has an order of
indeterminacy of 4.

to the damage variable acting on Rod #1, resulting in:

𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

[

(−𝐴 + 𝐵 𝐶)𝑘𝑞
(𝐴 + 𝐵 𝑘𝑞 ,𝜉 )2

]

, (24)

with 𝐴 = 𝑘2𝑘3 + 𝑘2𝑘4 + 𝑘3𝑘4, 𝐵 = 𝑘3 + 𝑘4, and 𝐶 = 𝑘2 + 𝑘3. A similar
approach can be obtained if the damage is applied to the other rods.
In-depth details of the formulations can be found in the Appendix C.

4. Results

In this section, various results for the pure parallel (PP), mixed
(MIX), and pure series (PS) systems are presented. The results were
generated by considering the three systems PP, MIX and PS in which
rods #2, #3 and #4 have stiffnesses equal to 1, 2 and 1, respectively. It
is important to note that, for the purposes of the analyses, the values of
the stiffnesses are normalized to a reference value. Ten different initial
structures are simulated, with Rod #1 taking values between 0 and 5.
The numbering of the elements is the one reported in Figs. 4 and 5.
Fig. 6 reports the values of 𝜕 𝑊 ∕𝜕 𝜉 for the three systems (PP, PS and
Mixed) and for the 10 different initial configurations, i.e., the value of
𝑘1 with respect to the damage parameter 𝜉 in the range 0 to 1 for PP
and MIX systems, and in the range 0 to 0.9 for PS system. As mentioned,
the complete removal of Rod #1 (i.e. a damage variable equal to 1) is
not possible since the system becomes unconnected.

Interesting results are observed in Fig. 6. Starting by describing
the trends of the two extreme cases, for pure parallel (a) an increase
in the damage level 𝜉 results in an increase in the derivative of the
deformation energy. A similar trend occurs for the pure series system
(c). However, their distinction lies in the fact that as the stiffness of
the rod under damage decreases, in the case of pure parallel (a), the
variation of internal energy decreases (the curves trend downward),
whereas in the case of pure series (c), the variation of internal energy
increases (the curves trend upward). As a matter of fact, the dashed
violet curve representing the damaging process of a structure with
𝑘1 = 5, is the highest curve above all the set in the pure parallel system.
That means, for a given level of damage, the curves trend downward by
decreasing the rod stiffness. The same dashed violet curve representing
the damaging process of rod of a pure series system with 𝑘1 = 5 is the
lowest curve at the bottom of the set. That means, for a fixed level of
damage, by decreasing the rod stiffness the curves trend upward. In the
case of the mixed system (b) an increase in the damage level 𝜉 results
in an increase in the derivative of the deformation energy, as occurs
in the previous cases described above. However by decreasing the rod
stiffness, the curves trend is not constant: considering a large damage
level, e.g. 𝜉 ≈ 0.9, the values of 𝑑 𝑊 ∕𝑑 𝜉 increase for increasing 𝑘1. For
smaller damage levers, e.g. 𝜉 ≈ 0.1, the previous trend is not observed
anymore. It seems that the value of 𝑑 𝑊 ∕𝑑 𝜉 increases for 𝑘1 from 0 to
2.0, while it decreases for values of 𝑘1 larger than 2.0, with a maximum
at around 2.0. The plots of Fig. 6 were annotated to highlight these
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Fig. 6. Effects of the damage parameters 𝜉 on the value of 𝜕 𝑊 ∕𝜕 𝜉. The damage acts on the Rod #1 on a pure parallel system (a), mixed system (b) and pure series system (c).
For each system, different values of the initial stiffness of Rod #1 are considered. Note that the curve related to 𝑘1 = 0 does not exist in a pure series system (c).
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trends.
The analysis of the curves in the previous sections follows the stan-

dard approach for evaluating the effects of damage on a system, starting
rom the damage parameter value. However, a detailed examination
eveals an interesting property. According to Eq. (9), the derivative of

can be expressed as a product of various terms, including 𝜕 𝑘𝑞 ,𝜉∕𝜕 𝜉,
hich equals −𝑘𝑞 . This indicates that the curves represent the evolution
f a structure where the stiffness of the 𝑞th rod changes, yet retains a
emory of its initial stiffness.

To clarify, consider the following two scenarios:

1. A scheme (PP, MIX, or PS indifferently) where the 𝑞th rod has
an initial stiffness of 10, and the damage parameter 𝜉 reaches
0.5. The ‘‘damaged’’ stiffness is then 5.

2. A scheme where the 𝑞th rod has a stiffness of 5 with no damage
applied.

In both cases, the 𝑞th rod ends up with a stiffness of 5, but the resulting
derivative 𝜕 𝑊 ∕𝜕 𝜉 differs between the two scenarios.

Following this consideration, the same set of results can be analyzed
in a complementary way. The curves of Fig. 6 represent a family of
initial values of stiffness 𝑘𝑞 for the rod under damage. Each curve of
the three subplots represent a different initial structure, with Rod #1
having a different initial value. At any fixed point on the axis of the
abscissae (that is the damage axis), the variations among the curves
can be closely examined. Observing how the curves change upwards
and downwards allows to understand how the variation in the stiffness
of the rod influences the derivative of the deformation work, thereby
tracking the progression of damage. Consequently, the damage process
an be interpreted as a function of the stiffness variation.

The results reveal interesting pattern in the curves. If the results
re analyzed with a focus on the individual curve, say for example the

curve related to 𝑘 = 5 in Fig. 6.(a), an increase in damage always
1 g

6 
corresponds to an increase of the increment of deformation work, in
all the three cases (parallel, series and mixed). On the other hand, if
the results are analyzed through the curves, across multiple stiffness
families at a fixed 𝜉-coordinate, the outcome is not always trivial. It
has been observed, in fact, that in systems where the rods are arranged
in pure parallel (PP), a decrease in the rod stiffness leads to a negative
change in deformation work (the curves exhibit a downward trend) as
shown in Fig. 6.(a); conversely, in systems with rods arranged in pure
series (PS), a decrease in the rod stiffness results in a positive change
in deformation work (the curves exhibit an upward trend) as depicted
in Fig. 6.(c). This outcome becomes particularly significant when the
parallel and series systems are combined (MIX system). From Fig. 6.(b)
t can be seen that, in fact, the curve trend is mixed. For certain stiffness

values of the rod under damage, the variation has positive value (it
increases), while for others, the variation is negative (it decreases).
Fig. 7 illustrates the concept highlighting the values of the derivative
of the deformation work at a null damage level. It is seen that the
purple curve, named in the following as 𝛺

(

𝑘1
)

is not monotonic, with
a maximum.

This finding is crucial because it indicates that for the same geo-
metric configuration, the whole system can operate in a series-regime
for certain stiffness values of the under damage rod, and in a parallel
egime for others, as reported in the following. This reveals that the
lements geometric arrangement alone does not necessarily predict

the behavior of the structure; instead, it is determined by the linear
stiffness combination of the rods. Thus, stating that the system’s rods
re arranged in parallel does not guarantee that the system is working
n parallel. This phenomenon can be better observed by switching to a
oordinate system where the variation in stiffness on a mixed system
s measured on the abscissa as in Fig. 8. For sake of clarity, we name

as 𝛺 the value of the variation of the deformation work with respect
o the damage variable, i.e. 𝜕 𝑊 ∕𝜕 𝜉, when the damage variable has a
iven value. In particular we consider the undamaged situation, where
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Fig. 7. Mixed system with Rod #1 having a stiffness in the range 0 to 5. The trend
of the variation of deformation work 𝑑 𝑊 ∕𝑑 𝜉 corresponding to a damage value 𝜉 = 0
is highlighted in purple.

Fig. 8. Mixed system with Rod #1 having a stiffness in the range 0 to 5. The value
of 𝛺

(

𝑘1
)

is plotted versus the value 𝑘1. The behavior results in a bell-shaped curve.
For certain stiffness values of the Rod #1, 𝑑 𝛺∕𝑑 𝑘𝑞 > 0, while for others, it decreases
𝜕 𝛺∕𝜕 𝑘𝑞 < 0.

𝜉 = 0, resulting in:

𝛺
(

𝑘𝑞
)

=
‖

‖

‖

‖

𝜕 𝑊
𝜕 𝜉

‖

‖

‖

‖𝜉=0
. (25)

Fig. 8 represents the trend of 𝛺 for 𝑘𝑞 , here the stiffness of Rod #1, in
the range 0 to 5. It can be observed that the variation of deformation
work presents a bell-shape trend, with a peak at 𝑘∗1. As detailed in the
following, this value corresponds to a transition between regimes on
the structure.

In Fig. 9, the results of stiffness variation in Rod #1, Rod #3 and
Rod #4 are compared. The three different values of 𝑘∗ and 𝜕 𝑊 peaks
are obtained. It is observed that modifying the stiffness or removing
Rod #3 induces a significantly larger change compared to acting on
Rod #4 and Rod #1. The discrepancy is of an order of magnitude.
When the stiffness of the rod under modification exceeds unit value,
the system operates in series, as it dominates the behavior. Conversely,
when the stiffness values drop to the unit value and below, the system
operates in parallel, indicating cooperative behavior among all the
rods.

To further stress the finding, another comparative example is pro-
posed. Consider three different distribution of initial stiffnesses in a
mixed system:

• Configuration (A) 𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 2, and 𝑘4 = 1;
• Configuration (B) 𝑘1 = 1, 𝑘2 = 2, 𝑘3 = 2, and 𝑘4 = 1;
• Configuration (C) 𝑘1 =

1
2 , 𝑘2 =

2
3 , 𝑘3 = 2, and 𝑘4 = 1.
7 
Table 1
Results of the analysis of the damage cases.

Parameter Rod #1 Rod #2 Rod #3 Rod #4

Case A
𝑘 1 1 2 1
𝑘∗𝑞 1.6552 1.6552 0.6897 0.125
𝛺
(

𝑘∗𝑞
)

0.0333 0.0333 0.0332 0.9796

Case B
𝑘 2 2 1 1
𝑘∗𝑞 2.6000 2.6000 0.7347 1.2245
𝛺
(

𝑘∗𝑞
)

0.0208 0.0208 0.8437 0.1042

Case C
𝑘 1/2 3/2 2 2
𝑘∗𝑞 1.3469 1.1110 0.5510 0.7347
𝛺
(

𝑘∗𝑞
)

0.0417 0.04759 0.0916 0.1696

Fig. 10 depicts the value of 𝛺
(

𝑘𝑞
)

for the three configurations
by varying the stiffness of the single rods in the range [0;3]. Each
plot contains the curves related to the Rods #1, 3 and 4. Rod #2
has the same curve as Rod #2. To explain how the curves have been
determined, the blue curve of Configuration A plot is obtained setting
𝑘1 = 𝑘2 = 1 and 𝑘4 = 1 and varying 𝑘3 in the range [0;3]. Briefly, the
rods that are not affected by the variation are set equal to the initial
stiffnesses previously listed for each configuration, further indicated in
Table 1. The red curve represents the variation of Rod #1, the blue
curve refers the variation of Rod #3, while the green curve represents
the variation of Rod #4.

Considering Configuration A, Fig. 10.(a), when Rod #1 is modified,
the critical stiffness 𝑘∗1 is 1.6552. For higher stiffness values, the system
operates in series, and thus the responding system is composed of Rods
#1-#2-#3. For lower stiffness values, the system operates in parallel,
and thus the responding system encompasses the entire system. This
is reasonable. Considering the SP-system under the horizontal load, it
consists of two subsystems: Subsystem 1 (SS1: #1, #2, and #3) and
Subsystem 2 (SS2: #4). These two subsystems operate in parallel with
each other. For 𝑘1 = 1.6552, the equivalent stiffness of SS1 is 1.14,
and that of SS2 is 1. Thus, it is evident that for values of rod stiffness
𝑘1 greater than 1.6552, Subsystem 1 dominates, resulting in the series
regime of rods #1-#2-#3.

Consider Configuration C, Fig. 10.(c), when Rod #4 is perturbed,
the critical stiffness, 𝑘∗4, is 0.7347. For higher values, the system oper-
ates in series, therefore the responding system consists solely of Rod #4.
For lower values, the system operates in parallel, thus including the
entire structure in the response. This result is in alignment with the
conducted analysis. At a stiffness value 𝑘4 = 0.7347, the Subsystem
1 (SS1: #1, #2, and #3) has an equivalent stiffness of 0.74, while
Subsystem 2 (SS2: #4) has a stiffness of 0.7347. Consequently, for
stiffness values of Rod #4 greater than 0.7347, Subsystem 2 prevails,
leading to a series mechanism dominated by the single Rod #4. Similar
reasoning can be applied to Case B, which results are reported in
Fig. 10.(b).

5. Discussion

The analytical results presented in this study highlight significant
findings concerning the behavior of complex systems under varying
conditions of damage or, similarly, under perturbation of the stiffness
of their components.

Analyzing individual curves reveals that increased damage con-
sistently corresponds to an increase in deformation work across all
configuration systems (parallel, series, and mixed). However, exam-
ining results across different stiffness families at a fixed 𝜉-coordinate
reveals non-trivial outcomes. Specifically, in a coordinate system where
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Fig. 9. Values of 𝛺
(

𝑘𝑞
)

on a mixed system for different values of the stiffnesses of rods #1, 3 or 4.

Fig. 10. Values of 𝛺
(

𝑘𝑞
)

on a mixed system. The bell-shaped red curve depicts the value of 𝛺
(

𝑘1
)

, i.e. the stiffness of Rod #1 changes, the blue curve refers to †, i.e. 𝛺
(

𝑘3
)

,
and the green curve refers to Rod #4, i.e. 𝛺

(

𝑘4
)

. The three Configurations (A, B, C) are considered.
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Fig. 11. Mixed systems: (a) Systems working in parallel regime (b) Systems working
in series regime.

damage progression is measured on the abscissa and internal energy
variation on the ordinates, pure parallel rod arrangements (PP) show
that a decrease in rod stiffness leads to negative changes in deforma-
tion work (evidenced by a downward trend in curves). Conversely,
in pure series rod arrangements (PS), decreasing rod stiffness results
in positive changes in deformation work (evidenced by an upward
trend in curves). To better understand this concept, a new variable
was introduced to represent the change in deformation work when
the damage variable has a fixed value, i.e. 𝜉 = 0. The variation of
deformation work across different stiffness values, plotted with stiffness
on the abscissa, results in a bell-shaped curve. Based on the distribution
of stiffness in the rods, for certain stiffness values of a rod under damage
it results 𝑑 𝛺∕𝑑 𝑘𝑞 > 0, indicating an increase in deformation work,
while for others, 𝑑 𝛺∕𝑑 𝑘𝑞 < 0, indicating a decrease in deformation
work.

This outcome becomes crucial in the case of mixed systems where
both series and parallel arrangements are combined. Depending on
the stiffness distribution in the rods, it is possible to find a critical
stiffness 𝑘∗𝑞 . For stiffness values greater than 𝑘∗𝑞 , the system will behave
as a series arrangement, while for values less than 𝑘∗𝑞 , the system
will behave as a parallel arrangement. The results evidence that the
same geometrical system can operate in both series and parallel regime
(Fig. 11), depending on the overall stiffness distribution within the
system. The geometric arrangement of elements alone do not predicts
the structural behavior of the system. The proposed analysis facilitate
the mapping of the load paths variation within the system in ongoing
damage scenario. This phenomenon is evident in the bell-shaped trend
of deformation work variation when the stiffness variation in plotted on
the abscissa. Lastly, comparing the effects of applying damage to rods
positioned in different places, the value of the variation in deformation
work, hence its magnitude, serves as an indicator of the impact of
removing one rod compared to another.

Finally, two important findings can be extracted.

• The parameter 𝛺(𝑘𝑞) allows for the identification of the critical
stiffness value 𝑘∗, at which the system behaves in series or in
𝑞

9 
Fig. 12. Case studies. Case (A) damage to element no. 5; Case (B) damage to element
no. 3; Case (C) damage to element no. 2; Case (D) damage to elements no. 1 and no.
5. Basic information on the geometry is provided on the right-hand side. There are 2
load cases: Load Case 1: vertical force 𝐹 applied at node 2; Load Case 2: vertical force
𝐹 applied at node 4.

parallel. This helps determine whether the element is part of the
preferential load path (series behavior) or not (parallel behavior)
for specific stiffness values, thus, the working regime.

• Mapping the parameter 𝜕 𝑊
𝜕 𝜉 allows for the visualization of the

variation in the load path during the damage of a random element
within the structure. Specifically, it identifies which elements are
loaded and which are unloaded.

6. Application to a basic truss structure

In the previous section, the attention focused on gaining a deeper
understanding of the parameter 𝛺

(

𝑘𝑞
)

as a metrics to understand if
there is a transition in the behavior of the system as a modification on
the stiffness of the components occurs, i.e. a transition in the behavior
of the system. In addition, the parameter serves to define, given a
set of elements’ stiffness, which elements are predominant in the load
path and which are negligible. In this section, the focus shifts to a
deeper understanding on the variation of the strain energy on the single
elements with respect to the damage parameter, to demonstrate the
dual significance and effectiveness of the method.

A simple 2D truss example made of a single-module is considered,
as sketched in Fig. 12. The structure consists of 4 nodes and 5 bar
elements: an upper and a lower chords, two members forming the
cross-bracing (St. Andrew’s cross), and a vertical member. The initial
cross-sectional area of the members is set at 0.05 m2, the Young’s
modulus 𝐸 = 210 × 109 Pa. Vertical and horizontal members are 1 meter
long, while the diagonal bracing members are 1.4142 meters long.

To determine the level of statically indeterminacy of the structure,
the following formula (Gere and Goodno, 2012) has been used:

𝐼 = 𝑚 + 𝑟 − 2𝑗 , (26)

where 𝐼 is the degree of static indeterminacy, 𝑚 is the number of mem-
bers (elements), 𝑟 is the number of external restraints (fixed degrees of
freedom), and 𝑗 is the number of joints (nodes). In this case: 𝑗 = 4,
𝑚 = 5; node 1 and 3 are fully fixed, each with 2 restraints (horizontal
and vertical), therefore 𝑟 = 4. It results: 𝐼 = 𝑚 + 𝑟 − 2𝑗 = 5 + 4 − 2 × 4 =
9 − 8 = 1. Thus, the structure is characterized by one level of static
indeterminacy.

Two load cases are considered: a force 𝐹 of 1 kN is vertically
applied at top right node (Node 2, Load Case 1) or alternatively at
bottom right node (Node 4, Load Case 2). The structure is subjected
to a damage consisting on the reduction of the cross-sectional area of
selected elements of about 10%. Four damage cases are studied: Case
(A) involves the progressive failure of the vertical member 5; Case
(B) involves the progressive failure of the bracing element 3; Case (C)
involves the progressive failure of the lower chord 2; Case (D) involves
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Fig. 13. Cases study results for Case (A), (B), (C), and (D). For each case, the left-hand side plot corresponds to Load Case 1, the right-hand side plot to Load Case 2. The graphs
present the result in the form of a color-map, which maps the variation in deformation work, indicating that negative variations (blue elements) correspond to elements being
loaded, while positive variations (red elements) correspond to elements being unloaded. The element under damage is indicated in gray. The dashed line represents the alternative
load path that originates as a consequence of the damage to a random element.
the simultaneous progressive failure of elements 1 and 5 (Fig. 12).
To analyze the effects within the system and investigate how the

redistribution of load paths varies as the evolution of damage propa-
gation advances, the term 𝜕 𝑊𝑖∕𝜕 𝑘𝑗 representing the variation of strain
energy on the 𝑖th rod due to the modification on the stiffness of the 𝑘th
rod was numerically computed rod-by-rod.

It is worth noting that a negative value of 𝜕 𝑊𝑖∕𝜕 𝑘𝑗 represents an
increase in internal energy on the element as the stiffness 𝑘𝑗 reduces to
simulate a damage. A positive derivative for a reducing 𝑘𝑗 represents
a decrease in the internal energy. These two conditions are depicted
in the color-maps in Fig. 13 and, in particular, the elements marked
in blue (characterized by negative derivative values) experience an
increase of the deformation work, while elements in red a decrease of
𝑊𝑖. Therefore, depending on the damage to the specific element of each
case, the blue color indicates that the element is being loaded, while the
red color represents a reduction of load in that element. In conclusion,
by mapping the variation in deformation work through color maps that
distinguish between positive and negative increments, the evolution of
load paths within the structure during the progressive damage of an
element can be immediately visualized. The alternative load path that
originates as a consequence of the damage to an element are shown in
Fig. 13 with dashed lines. The obtained results are in agreement with
the redistribution of forces in statically determined trusses.

7. Conclusions

Series and parallel component configurations are widely imple-
mented in various fields and engineering disciplines, nevertheless their
formal integration within mechanical and structural engineering, par-
ticularly in terms of a structured framework for metrics and theoretical
models describing load transmission, remains undeveloped.

In this study, the analysis of rod systems in the case of pure parallel
(PP), pure series (PS) and the mixed (MIX) elements arrangement have
been proposed. The damage procedure has been analyzed with two
different approaches of stiffness progressive reduction. The functional
is the variation of deformation work. Analyzing the variation of the de-
formation work of the system during a random element under damage,
10 
it is possible to identify the working regime behavior of the system.
Although formulated for linear elastic systems, the proposed approach
provides a theoretical model to analyze how damage distribution in rod
systems significantly influences load paths and the overall structural
response. The analysis highlighted that the location and extent of dam-
age can drastically alter the regime behavior of the rod systems. The
proposed metrics has been further applied to a more complex system to
show the capacity of the approach to highlight the load paths in non-
trivial structures. These insights contribute to a larger study focused
on optimizing sensor placement, using this method to monitor shifts in
load paths and identify when specific elements become integral to the
primary load-bearing path as damage progresses in random structural
elements. This approach has the potential to be a key strategy for
designing effective monitoring systems, with promising results already
emerging from ongoing research.
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Appendix A. Pure parallel system

The equivalent stiffness of a system of rods in parallel is provided
y:

𝐾𝑃 𝑃
𝑒𝑞 = 𝑘1 + 𝑘2 + 𝑘3 +⋯ + 𝑘𝑛 =

𝑛
∑

𝑖=1
𝑘𝑖. (A.1)

The total stiffness can be rewritten based on the 𝑞th element as:

𝐾𝑃 𝑃
𝑒𝑞 (𝑘𝑞) =

( 𝑛
∑

𝑖=1
𝑘𝑖 − 𝑘𝑞

)

+ 𝑘𝑞 . (A.2)

The total work of deformation, considering the linear elasticity, is:
𝑊 = 1

2
𝐹 𝛿 = 1

2
𝐹 2

𝐾𝑃 𝑃
eq (𝑘𝑞)

= 1
2

𝐹 2
(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞
. (A.3)

The Lemaître and Chaboche formulation for the stiffness of the 𝑞th rod
is:

𝑘𝑞 ,𝜉 = 𝑘𝑞 (1 − 𝜉) , (A.4)

where 𝑘𝑞 ,𝜉 is the reduced stiffness, 𝜉 is the damage parameter, and 𝑘𝑞
is the undamaged value of the stiffness of the 𝑞th rod.

Considering that the 𝑞th rod can vary its stiffness during the damage
process according to the damage model reported in Eq. (A.4), Eq. (A.3)
an be rewritten as:

𝑊 = 𝐹 2

2
1

(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞 ,𝜉
. (A.5)

Hence, the variation of the elastic work of deformation, 𝜕 𝑊 , due
to a variation of the stiffness of the 𝑞th rod, 𝜕 𝑘𝑞 ,𝜉 , is computed by
differentiating Eq. (A.5) and is equal to:
𝜕 𝑊
𝜕 𝑘𝑞 ,𝜉

= −𝐹 2

2
1

[(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞 ,𝜉
]2
. (A.6)

Considering the derivation rule of composite functions, i.e.,
𝜕 𝑊
𝜕 𝜉 = 𝜕 𝑊

𝜕 𝑘𝑞 ,𝜉
𝜕 𝑘𝑞 ,𝜉
𝜕 𝜉 , (A.7)

and recalling that the variation of 𝑘𝑞 ,𝜉 with respect to the damage
ariable is:
𝜕 𝑘𝑞 ,𝜉
𝜕 𝜉 = −𝑘𝑞 , (A.8)

the variation of the total work with respect to the damage parameter
results in:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2
𝑘𝑞

[(
∑𝑛

𝑖=1 𝑘𝑖 − 𝑘𝑞
)

+ 𝑘𝑞 (1 − 𝜉)
]2
. (A.9)

Appendix B. Pure series system

The equivalent stiffness of a system of rods in series is provided by:

𝐾𝑃 𝑆
𝑒𝑞 =

[

1
𝑘1

+ 1
𝑘2

+⋯ + 1
𝑘𝑛

]−1
=

[ 𝑛
∑

𝑖=1

1
𝑘𝑖

]−1

. (B.1)

The total stiffness can be rewritten based on the 𝑞th element as:

𝐾𝑃 𝑆
𝑒𝑞 (𝑘𝑞) =

[( 𝑛
∑

𝑖=1

1
𝑘𝑖

− 1
𝑘𝑞

)

+ 1
𝑘𝑞

]−1

=
(

1
𝐾eq,−𝑞

+ 1
𝑘𝑞

)−1

=
(𝑘𝑞 +𝐾eq,−𝑞

𝑘𝑞𝐾eq,−𝑞

)−1

, (B.2)

where 𝐾eq,−𝑞 is the equivalent stiffness of the system of rods in series
ithout the contribution of the 𝑞th rod. The total work of deformation,
11 
considering the linear elasticity, is:
𝑊 = 1

2
𝐹 𝛿 = 1

2
𝐹 2

𝐾𝑃 𝑆
eq (𝑘𝑞)

= 1
2
𝐹 2

𝑘𝑞 +𝐾eq,−𝑞

𝑘𝑞𝐾eq,−𝑞
. (B.3)

Including the Lemaître and Chaboche formulation proposed in Eq. (A.4)
for the stiffness of the 𝑞th rod, i.e. 𝑘𝑞 ,𝜉 , the total work of deformation
can be rewritten as:

𝑊 = 𝐹 2

2
𝑘𝑞 ,𝜉 +𝐾eq,−𝑞

𝑘𝑞 ,𝜉𝐾eq,−𝑞
. (B.4)

The variation of elastic work of deformation due to the variation of the
stiffness of 𝑘𝑞 ,𝜉 is:

𝜕 𝑊
𝜕 𝑘𝑞 ,𝜉

= 𝐹 2

2

(

𝑘𝑞 ,𝜉 𝐾eq,−𝑞
)

−
(

𝐾eq,−𝑞 + 𝑘𝑞 ,𝜉
)

𝐾eq,−𝑞
(

𝐾eq,−𝑞 𝑘𝑞 ,𝜉
)2

. (B.5)

Considering the derivation rule of composite functions reported in
Eq. (A.7), the variation of the elastic work with respect to the damage
ariable is:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

(

𝑘𝑞 ,𝜉 𝐾eq,−𝑞
)

−
(

𝐾eq,−𝑞 +𝐾𝑞 ,𝜉
)

𝐾eq,−𝑞
(

𝐾eq,−𝑞 𝑘𝑞 ,𝜉
)2

𝑘𝑞 . (B.6)

Appendix C. Mixed system

A general expression of the equivalent stiffness of a system of rods
n the configuration reported in Fig. 5 is provided by:

𝐾𝑀 𝐼 𝑋
𝑒𝑞 =

𝑘1𝑘3 + 𝑘1𝑘4 + 𝑘2𝑘3 + 𝑘2𝑘4 + 𝑘3𝑘4
𝑘1 + 𝑘2 + 𝑘3

. (C.1)

C.1. Damage acting on rod #1

Considering that the stiffness of rod #1 can varies, namely 𝑘1, the
equivalent stiffness can be rewritten as:

𝐾𝑀 𝐼 𝑋
𝑒𝑞 (𝑘1) =

𝑘1
(

𝑘3 + 𝑘4
)

+ 𝑘2
(

𝑘3 + 𝑘4
)

+ 𝑘3𝑘4
𝑘1 + 𝑘2 + 𝑘3

. (C.2)

The total work of deformation, considering a linear elastic behavior of
the system is:
𝑊 = 1

2
𝐹 𝛿 = 𝐹 2

2
1

𝐾𝑀 𝐼 𝑋
eq (𝑘1)

= 𝐹 2

2

[

𝑘1
(

𝑘3 + 𝑘4
)

+ 𝑘2
(

𝑘3 + 𝑘4
)

+ 𝑘3𝑘4
𝑘1 + 𝑘2 + 𝑘3

]−1

. (C.3)

Including the Lemaître and Chaboche formulation proposed in Eq. (A.4)
for the stiffness of the 1st rod, i.e. 𝑘1,𝜉 , the variation of elastic work of
deformation due to the variation of the stiffness of the first rod is:

𝜕 𝑊
𝜕 𝑘1,𝜉

= −𝐹 2

2

⎧

⎪

⎨

⎪

⎩

(

𝑘3 + 𝑘4
) (

𝑘1,𝜉 + 𝑘3 + 𝑘4
)

[

𝑘1,𝜉
(

𝑘3 + 𝑘4
)

+ 𝑘2
(

𝑘3 + 𝑘4
)

+ 𝑘3𝑘4
]2
+

− 1
𝑘1,𝜉

(

𝑘3 + 𝑘4
)

+ 𝑘2
(

𝑘3 + 𝑘4
)

+ 𝑘3𝑘4

}

, (C.4)

which can be rewritten as:

𝜕 𝑊
𝜕 𝑘1,𝜉

= −𝐹 2

2

[

−𝐴 + 𝐵 𝐶
(𝐴 + 𝐵 𝑘1,𝜉 )2

]

, (C.5)

with 𝐴 = 𝑘2𝑘3+𝑘2𝑘4+𝑘3𝑘4, 𝐵 = 𝑘3+𝑘4, and 𝐶 = 𝑘2+𝑘3. The variation
of 𝑘1,𝜉 with respect to the damage variable is:
𝜕 𝑘1,𝜉
𝜕 𝜉 = −𝑘1. (C.6)

Considering the derivation rule of composite functions reported in
Eq. (A.7), the variation of the elastic work with respect to the damage
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variable is:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

[

−𝐴 + 𝐵 𝐶
(𝐴 + 𝐵 𝑘1,𝜉 )2

]

𝑘1. (C.7)

C.2. Damage acting on rod #2

The damage on rod #2 can be detailed in the same way as per rod
#1 (as they are equal). It results that the variation of the elastic work

ith respect to the damage variable is:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

[

−𝐷 + 𝐵 𝐸
(𝐷 + 𝐵 𝑘2,𝜉 )2

]

𝑘2, (C.8)

with 𝐷 = 𝑘1𝑘3 + 𝑘1𝑘4 + 𝑘3𝑘4, 𝐵 = 𝑘3 + 𝑘4, and 𝐸 = 𝑘1 + 𝑘3.

C.3. Damage acting on rod #3

Considering that the stiffness of rod #3 can varies, namely 𝑘3, the
equivalent stiffness can be rewritten as:

𝐾𝑀 𝐼 𝑋
𝑒𝑞 (𝑘3) =

𝑘3(𝑘1 + 𝑘2 + 𝑘4) + 𝑘4(𝑘1 + 𝑘2)
𝑘1 + 𝑘2 + 𝑘3

. (C.9)

The total work of deformation, considering a linear elastic behavior of
he system is:

𝑊 = 1
2
𝐹 𝛿 = 𝐹 2

2

[

𝑘3(𝑘1 + 𝑘2 + 𝑘4) + 𝑘4(𝑘1 + 𝑘2)
𝑘1 + 𝑘2 + 𝑘3

]−1
. (C.10)

Including the Lemaître and Chaboche formulation proposed in Eq. (A.4)
or the stiffness of the 3rd rod, i.e. 𝑘3,𝜉 , the variation of elastic work of

deformation due to the variation of the stiffness of the third rod is:

𝜕 𝑊
𝜕 𝑘3,𝜉

= −𝐹 2

2

⎧

⎪

⎨

⎪

⎩

(

𝑘1 + 𝑘2 + 𝑘3,𝜉
) (

𝑘1 + 𝑘2 + 𝑘4
)

[(

𝑘1 + 𝑘2
) (

𝑘3,𝜉 + 𝑘4
)

+ 𝑘3,𝜉𝑘4
]2
+

− 1
(

𝑘1 + 𝑘2
) (

𝑘3,𝜉 + 𝑘4
)

+ 𝑘3,𝜉𝑘4

]

, (C.11)

which can be rewritten as:
𝜕 𝑊
𝜕 𝑘3,𝜉

= −𝐹 2

2

[

𝐺
𝐺 𝐻 + (𝐺 +𝐻)𝑘3,𝜉

]2
, (C.12)

with 𝐺 = 𝑘1 + 𝑘2, 𝐻 = 𝑘4. The variation of 𝑘3,𝜉 with respect to the
damage variable is:
𝜕 𝑘3,𝜉
𝜕 𝜉 = −𝑘3. (C.13)

Considering the derivation rule of composite functions reported in
q. (A.7), the variation of the elastic work with respect to the damage

variable is:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

[

𝐺
𝐺 𝐻 + (𝐺 +𝐻)𝑘3,𝜉

]2
𝑘3. (C.14)

C.4. Damage acting on rod #4

Considering that the stiffness of rod #4 can varies, namely 𝑘4, the
equivalent stiffness can be rewritten as:

𝐾𝑀 𝐼 𝑋
𝑒𝑞 (𝑘4) =

𝑘4
(

𝑘1 + 𝑘2 + 𝑘3
)

+ 𝑘3
(

𝑘1 + 𝑘2
)

𝑘1 + 𝑘2 + 𝑘3
. (C.15)

The total work of deformation, considering a linear elastic behavior of
he system is:

𝑊 = 1
2
𝐹 𝛿 = 𝐹 2

2

[

𝑘4
(

𝑘1 + 𝑘2 + 𝑘3
)

+ 𝑘3
(

𝑘1 + 𝑘2
)

𝑘1 + 𝑘2 + 𝑘3

]−1

. (C.16)

Including the Lemaître and Chaboche formulation proposed in Eq. (A.4)
or the stiffness of the 4th rod, i.e. 𝑘 , the variation of elastic work of
4,𝜉

12 
deformation due to the variation of the stiffness of the fourth rod is:
𝜕 𝑊
𝜕 𝑘4,𝜉

= −𝐹 2

2

[

𝑘1 + 𝑘2 + 𝑘3
𝑘3𝑘4,𝜉 +

(

𝑘1 + 𝑘2
) (

𝑘3 + 𝑘4,𝜉
)

]2

, (C.17)

which can be rewritten as:
𝜕 𝑊
𝜕 𝑘4,𝜉

= −𝐹 2

2

[

𝐺 + 𝐽
𝐺 𝐽 + (𝐺 + 𝐽 ) 𝑘4,𝜉

]2
, (C.18)

with 𝐺 = 𝑘1 + 𝑘2, 𝐽 = 𝑘3. The variation of 𝑘3,𝜉 with respect to the
damage variable is:
𝜕 𝑘3,𝜉
𝜕 𝜉 = −𝑘3. (C.19)

Considering the derivation rule of composite functions reported in
Eq. (A.7), the variation of the elastic work with respect to the damage
ariable is:
𝜕 𝑊
𝜕 𝜉 = 𝐹 2

2

[

𝐺 + 𝐽
𝐺 𝐽 + (𝐺 + 𝐽 ) 𝑘4,𝜉

]2
𝑘4. (C.20)

Data availability

Data will be made available on request.
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