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Abstract

The article examines the potential of utilizing existing standard codes,

although originally designed for Portland cement, in the flexural design of geo-

polymer (GP) concrete beams. In particular, the article collects experimental

data from the literature on the cracking and ultimate moment of reinforced

GP concrete beams, with and without steel fibers (SFs). The experimental

moments are compared with those calculated using different standard codes

for Portland cement (2nd generation EC2, ACI318, ACI363, AS3600) and GP

concrete (SATS199). The purpose of this comparison is to evaluate the model

error obtained with the different codes. The same procedure is applied on

experimental data from RC beams made with Portland cement. To study the

model error, the results obtained with different precursor materials (granu-

lated blast furnace slag or fly ash), concrete compressive strengths, and rein-

forcement percentages are analyzed. The different codes have different levels

of conservatism, resulting in different average model errors. However, within

the same code, the average model errors for GP and Portland concretes are

similar. Therefore, the existing codes can be used to calculate the cracking

moment and ultimate moment of GP concrete beams. However, some uncer-

tainty remains for the ultimate moment of over-reinforced beams, for which

the number of experimental data is still limited.

KEYWORD S

ACI318, ACI363, alkali-activated concrete, AS3600, beam, bending, cracking, design,
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1 | INTRODUCTION

This study investigates the feasibility of using existing
standard codes for ordinary concrete (OC) in Portland
cement for the flexural design of geopolymer concrete
(GPC) beams.

Abbreviations: GBFS, Granulated blast furnace slag; FA, Fly ash;
AAB, Alkali-activated binder; GP, Geopolymer; GPC, Geopolymer
concrete; OC, Ordinary concrete.
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Portland cement is the most widely used material in
civil engineering and is responsible for a significant
amount of carbon dioxide emissions worldwide. To be
precise, at least 8% of the world's annual human-made
CO2 emissions are attributed to its production.1 For every
1000 kg of cement, the production process generates
approximately 850 kg of carbon dioxide, which is released
both as a by-product of chemical reactions and from the
fossil fuels used by the kilns.1 Replacing Portland cement
with alternative binders such as alkali-activated binders
(AABs) is one of the effective strategies to achieve the net
zero carbon dioxide emission target.2,3

AABs are prepared using a precursor and an alkaline
activator.4 The most commonly used precursors include
granulated blast furnace vitreous slags (GBFS), fly ash
(FA) from coal combustion, and thermally activated
metakaolin (MK).5 Alkali-hydroxides and silicates, usu-
ally of sodium and potassium, are the most common
alkaline activators4 that can be added both in a liquid or
a solid state.4,6 Geopolymers (GPs) are a subset of AAB
and are made from calcium-poor precursors (such as FA
or MK) that give them a special chemical structure and
specific chemical–physical and mechanical properties.7,8

AABs allow a significant reduction in carbon dioxide
emissions compared to Portland cement due to their dif-
ferent chemical reactions and the absence of kiln fir-
ing.4,9 For instance, the use of FA precursors produces
only 250 kg of CO2 per 1000 kg of binder.8 Davidovits
et al.8 found a reduction of carbon dioxide emissions in
the range of 75% to 90% using FA based cements when
compared to Portland cement concrete. Additionally, the
use of by-products as precursors enhances the environ-
mental compatibility of the process.

Numerous studies have been conducted on alkali-
activated and geopolymeric binders, while research on
concretes made with these binders has primarily focused
on material properties. A comprehensive review can be
found in Davidovits8 and Provis.7 Many authors4,10 have
shown that the properties of these concretes vary signifi-
cantly depending on the type of precursor used and the
method of activation. While calcium-rich precursors
result in the formation of C�S�H gel and concrete-like
properties, calcium-poor precursors result in the forma-
tion of GP three-dimensional chains that give the con-
crete unique chemical and physical properties that differ
from those of OCs.11

Generally, AAB concrete can offer similar or even
superior mechanical properties to Portland cement con-
crete, along with improved resistance to alkali-silica reac-
tion and sulfate attack.12–14 GPC, in particular, exhibits
higher early strength, excellent chemical resistance, and
low shrinkage and creep compared to traditional Port-
land cement concrete.4,15,16 In addition, FA-based GPC
shows better durability in aggressive environments, such

as exposure to acids or sulfates,4,17–19 and better fire
resistance.2,13,14

From the mechanical point of view, AAB and GP con-
crete seem to be more brittle in compression.20,21 There-
fore, some authors suggest adding fibers to enhance
ductility.22,23 The Young modulus of the material is lower
than that of Portland concrete, especially in the low to
medium strength range.11,24–26 For these reasons, the
compressive stress–strain relationship of GPC shows
some differences from that of Portland concrete11 that
can affect the mechanical behavior of structures.

In the field of civil engineering, understanding the
behavior of structural elements is of paramount impor-
tance. Regarding the behavior of beams, studies have ana-
lyzed various factors influencing their behavior, including
cracking moment, deformability, ultimate moment, shear
strength, bond, and crack width. A review can be read in
Mo et al.,27 Ansari et al.,20 and Dwibedy and Panigrahi.28

Regarding beams in flexure, the current literature
reports mixed results. Some experimental studies have
found that the behavior of beams in the elastic field is simi-
lar to that of Portland concrete beams,21,27 with a cracking
momentMcr that may be equal or slightly higher.27

Lopes et al.29 performed experimental four-point
bending tests on small-scale beams reinforced with steel
rebars. The authors compared the behavior of FA GPs
with that of OC and observed that the former had a
slightly lower modulus of elasticity, reduced maximum
compressive strength, and lower values of ductility in
terms of curvature.

Another study by Du et al.30 performed four-point
bending tests on FA GP beams and observed quite similar
behavior to that of OC, except for higher deformability in
the elastic field.

Alex et al.31 also conducted bending tests on low-
calcium FA-based GPC beams with steel bars to assess their
bending behavior in terms of load-bearing capacity, deflec-
tion, crack propagation, and ultimate moment. Unlike
Lopes et al.,29 authors concluded that the GP beams exhibit
higher ultimate loads and ductility than OC.

Upon analyzing experimental data, it can be observed
that GPC beams exhibit similar behavior to Portland
cement concrete beams in the elastic phase. However, in
some cases, higher cracking moments have been noted.
This behavior is consistent with studies on the material,
which have shown that GPC can have a higher tensile
strength than conventional concrete with the same com-
pressive strength.24,25,32–35 This effect is attributed to the
nature of the chemical bonding, which results in a more
homogeneous and less porous matrix than Portland
cement concrete. As a result, the use of phenomenologi-
cal equations for Portland cement concrete to estimate
the flexural tensile strength of GPC beams based on the
average compressive strength may not be appropriate.

2 LENTICCHIA and VESCOVI
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When considering the ultimate moment Mu, the
behavior of under-reinforced concrete beams, whose failure
is controlled by the reinforcement, is similar to that of Port-
land cement beams.21,35 However, in the case of over-
reinforced beams, whose failure is controlled by the com-
pressed concrete, a different behavior is observed.21 In partic-
ular, concrete crushing occurs in a brittle, almost explosive
manner. This difference is explained by the more brittle
behavior of the material in compression. Some authors claim
that the ultimate moment would be different from that of
Portland concrete,21 and, consequently, specific compression
stress–strain relationships have been proposed to better
understand the behavior of over-reinforced beams.26,36

While the principles of concrete design based on
mechanics can be applied across different concrete types,
applying standard concrete design codes to compute the
cracking or the ultimate moment of GPC beams may not
always yield accurate or reliable results. The unique
properties and behavior of GPC must be taken into
account to design structures, and specific standards must
be used for this material.

Currently, no European standards exist for the design
of GPC structures. The English code standard PAS 882037

refers to “Alkali-activated cementitious material and con-
crete”, but it specifies only the performance requirements
and the resulting concretes. Only the Australian
SATS19911 provides requirements for the design of AAB
and GP building structures.

In the absence of a specific standard, some authors
have considered using the ones for Portland concrete and
have estimated the resulting model error.

Kathirvel et al.38 performed a four-point bending test
on GBFS reinforced concrete with recycled aggregates,
finding that the ACI31839 underestimates the ultimate
moment. On the other hand, Zhang et al.40 found the
opposite result, both for cracking and ultimate moments
from four-point bending tests on reinforced beams.
Sumajouw et al.35 observed that the AS3600 standard41

tends to underestimate experimental results for low cal-
cium FA-based GP-reinforced concrete beams both for
cracking and ultimate moments. Ozturk et al.42 made a
comparison between their experimental data on GBFS
concrete beams and the numerical cracking moment
values obtained following different standard
codes,39,41,43,44 as well as some models for GPC
beams.25,45–49 Interestingly, he found that EC2:200443

and ACI31839 overestimate the value of the cracking
moment in contrast to the standards ACI36344 and
AS3600.41 Additionally, Ozturk carried out the same pro-
cedure by comparing the experimental data and the theo-
retical values about the ultimate moment obtained
following the ACI318 code,39 finding relatively good but
overestimated predictions. Worth noting, Ozturk's42

research is the only study currently available that con-
siders EC2:2004 models for both cracking and ultimate
moment.

Considering these results, it is important to compare
the model error of multiple data. In fact, most researchers
calculate the model error by referring to their experimen-
tal data without comparing it with other data obtained
with different types of binder or amounts of reinforce-
ment. By analyzing the model error for the different data-
sets, it will be possible to assess if the existing standard
codes, although originally designed for Portland cement,
are suitable for use in the flexural design of GPC beams.

To address this, the authors of the present article have
collected extensive experimental data from the literature
on the cracking and ultimate moment of GPC beams. The
experimental data have been compared with analytical
results obtained using the models of the main interna-
tional standards for Portland cement concrete beams: 2nd
generation EC250 (that from now on, it will be indicated as
EC2), ACI318,39 ACI363,44 and AS3600.41 The SATS19911

standard, which is specific for GPC structures, was also
considered. The experimental and analytical results have
been compared to calculate the model errors. The binder
types have been distinguished to ascertain their influence
on the outcomes. In addition, to assess the importance of
model errors, the same procedure was performed on an
experimental data set for Portland cement concrete beams
and compared with the results for GPs.

The work procedure is summarized and clarified as
follows:

• Gathering of experimental data in terms of cracking
moment Mcr,test and ultimate moment Mu,test;

• Evaluation of Mcr and Mu according to EC2, ACI318,
ACI363, SATS199, AS3600;

• Definition of three clusters by matrix type (GPC made
with FA or GBFS, FA with SFs, OC);

• Evaluation of the model error for Mcr,test=Mcr and
Mu,test=Mu, and model quality indicators;

• Comparison and discussion of the models.

It is worth noting that in the literature, the term GP is
usually, albeit improperly, used as a synonym for AAB.4

Therefore, in the next part of this article, the term GP will
be used without distinguishing between the two types of
binders.

1.1 | Research significance

The spin-offs of the proposed work are multiple, both sci-
entific and applicative. The first is to provide a contribu-
tion to the discussion for the development of specific

LENTICCHIA and VESCOVI 3
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standards for GPC structures. In this area, the quantifica-
tion of the model error is also useful for the definition of
partial safety factors. Turning to the application aspects,
it is noted that in some countries, the absence of specific
standards requires that the design of GP structures, such
as precast ones, goes through design by testing. The
results of this work are useful for their pre-dimensioning.

2 | CRACKING MOMENT

The cracking moment Mcr is an important parameter in
defining the serviceability behavior of reinforced concrete
beams, as it governs the transition from the non-cracked
state (stage I) to the cracked one (stage II). The cracking
moment is usually defined as the value of the moment
that causes the flexural tensile strength f ctm,fl (also known
as modulus of rupture) to be reached in the extreme ten-
sion fiber, that is,

Mcr ¼
f ctm,fl � Iom

yt
ð1Þ

where Iom is the moment of inertia of the homogenized
section and yt is the distance of the extreme tension fiber
from the centroid of the homogenized section. Typically,
standards define the value of the mean flexural tensile
strength f ctm,fl as a function of the compressive strength
of the concrete using phenomenological formulae. For
example, EC250 calculates the flexural tensile strength
f ctm,fl as a function of the mean tensile strength f ctm of
concrete and the beam height h, which accounts for the
so-called size effect:

f ctm,fl ¼ max 1:6� h
1000

� �
f ctm; f ctm

� �
ð2Þ

The average tensile strength f ctm is expressed by the
EC250 as

f ctm ¼ 0:3f ck
2=3 f ck ≤ 50 MPa

1:1f ck
1=3 f ck >50MPa

(
ð3Þ

where f ck is the characteristic compressive strength of
concrete.

According to the EC2,50 f ck ¼ f cm�8 MPa, in agree-
ment with Rüsch.51 This simple relationship between f ck
and f cm was confirmed in several experimental cam-
paigns, where mean strength and standard deviation
were measured.52

The American code ACI31839 for normal weight con-
crete, suggests calculating

f ctm,fl ¼ 0:62λ
ffiffiffiffi
f 0c

q
ð4Þ

in which the coefficient λ is equal to 1 for normal weight
concrete and f 0c is the specified compressive strength.
Since Equation 4 was calibrated on the basis of experi-
mental results, according to Nowak et al.,53 for compari-
sons with experimental data, the value f 0c can be replaced
with the average compressive strength f cm.

The ACI363 code39 for high strength concrete
provides

f ctm,fl ¼ 0:94
ffiffiffiffi
f 0c

q
21MPa< f 0c <83MPa ð5Þ

The Australian code AS360041 adopts the
relationship:

f ctm,fl ¼ 0:77
ffiffiffiffiffiffiffi
f cm

p
ð6Þ

Finally, the Australian SATS199 code,11 which is spe-
cific for geopolymeric concretes, gives the following
equation

f ctm,fl ¼ 0:4 f cmð Þ2=3 ð7Þ

As can be seen, the different equations vary signifi-
cantly from each other. However, to facilitate compari-
sons, the flexural strengths f ctm,fl have been plotted in
Figure 1 as a function of the mean compressive strength
f cm. For consistency, a beam with a height h¼ 500 mm
was assumed, and the different compressive strengths
were related to the average strength f cm as described

FIGURE 1 Mean flexural tensile strength f ctm,fl as a function

of mean compressive strength f cm according to some code

standards.

4 LENTICCHIA and VESCOVI
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earlier. It is notable that the curves ACI31839 and EC250

are closer to each other, whereas the ACI36344 curve pro-
vides the highest resistance values.

Experimental data were collected from the literature
to understand how these equations behave in the case of
GPC. More specifically, 65 GPC (13 made with GBFS and
52 with FA) were collected from published references.
Table 1 contains the references, the number of specimens
N, the type of binder, the base b and height h of the
beam, the mean compressive strength f cm, and the geo-
metric reinforcement ratio ρ¼As= bhð Þ, where As is the
area of the reinforcement in tension.

The range of compressive strengths f cm varies
between 23 and 115MPa, with heights h between
150 and 300mm and the geometric reinforcement ratio ρ
between 0.19% and 2.49% (Table 1). Starting from the
experimental data, the experimental flexural strength
f ctm,fl was obtained from Equation (1) as

f ctm,fl ¼
Mcr,test � yt

Iom
ð8Þ

Figure 2a shows the experimental values f ctm,fl as a
function of f cm. The figure reveals that for f cm >50 MPa

the scatter of f ctm,fl is higher, especially for GBFS samples.
In addition, a change in the slope of the trend of the
experimental points is evident for FA samples. For each
sample, the corresponding analytical value of Mcr was
computed using Equations (2–7) for different stan-
dards.11,39,41,44,50 The ratio between the experimental
value Mcr,test and the analytical value Mcr gave the model
error, which is shown in Figure 3a–e. In the same figures,
the horizontal line represents the mean value μθ of the
error.

EC250 (Figure 3a) gives the best results for GPC, with
errors between 0.64 and 1.30 and a mean value μθ ¼ 0:97.
It can be noticed that the dispersion of data is higher for
FA with low f cm whereas in the case of GBFS, the disper-
sion increases with high strengths. The greater uncer-
tainties for the GBFS than for FA specimens are also
confirmed by the ACI31839 model in Figure 3b. In this
case, the mean error is μθ ¼ 1:03. Figure 3c shows the
results for the ACI36344 model, which gives values that
are less than unity, with a mean error μθ ¼ 0:68; the
model, therefore, significantly overestimates the cracking
moment. Finally, Figure 3d shows the results for the
models AS360041 and Figure 3e for SATS199.11 The mean
values of the errors are μθ ¼ 0:85 and μθ ¼ 0:83,

TABLE 1 Summary of experimental data for cracking moment in GPC and OC beams.

No. Reference N. of data. Type of binder b (mm) h (mm) f cm (MPa) ρ (%)

1 Sumajouw et al.35 12 FA 200 300 37–76 0.62–2.47

2 Shibayama et al.54 6 FA 150 250 29.9–50.1 0.73

3 Ozturk et al.42 6 GBFS 150 240 46.18–71.0 1.28

4 Maranan et al.55 1 GBFS 200 300 31 1.18

5 El-Sayed56 2 FA 150 300 66.3–114.9 0.25–0.4

6 Alex et al.31 3 FA 125 250 22.8–24.1 0.55

7 Zhang et al.40 7 FA 95–102 238–255 37.6–41.1 0.65–2.12

8 Saranya et al.36 1 FA 100 150 54.67 1.21

9 Mathew et al.57 5 FA 150 200 25.58–47.46 0.58

10 Mudimby et al.58 18 FA, GBFS 100 155 30.65–62.33 0.19–2.49

11 Jeyasehar et al.59 4 FA 125 250 35.64–37.39 0.90

12 Bosco et al.60 18 OC 100 100–400 75.96 0–0.31

13 Fantilli et al.61 2 OC 200 500 41.3 0.22

14 Pecce et al.62 6 OC 400 180 41.3–95.4 1.09–2.59

15 Fantilli et al.63 1 OC 100 150 40.42 0

16 Fantilli et al.64 2 OC 150 282 51.4 2.32

17 Yacob et al.65 1 OC 203 305 43.4 1.57

18 Lopes et al.29 3 OC 100 150 29.05 0.4–0.81

19 Jang et al.66 16 OC 140 245–260 40–75 1.37–5.57

21 Zhang et al.40 4 OC 125 250 25.4–50,6 0.55

22 Saranya et al.36 2 OC 100–105 250–258 43.2–47.9 1.21–1.31

LENTICCHIA and VESCOVI 5
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respectively. Furthermore, it can be observed that in all
models, the GBFS points show errors greater than the
mean value. To compare the different models, the

minimum min, maximum max, and mean μθ values of
the errors and the corresponding coefficient of variation
(COV) are summarized in Table 2. The same table shows

FIGURE 2 Variation of the experimental flexural strength f ct,fl,test as a function of f cm: A) GPC; b) OC.

(a) (b) (c) (d)

(f) (g) (h) (i)

(e)

FIGURE 3 Comparing the model error for the cracking moment Mcr,test=Mcr as a function of f cm considering the models of various

standards and evaluated for GPC and OC. The considered standard models are: The EC2,50 the ACI318,39 the ACI363,44 the AS3600,41 and

the SATS199.11 In particular, for GPC, the results are reported in (a–e), while for OC are shown in (f–i).

6 LENTICCHIA and VESCOVI
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the parameter i20, which expresses the percentage of
points evaluated with an error of less than 20%. This
parameter is less sensitive to outliers and can be conve-
niently used to compare models.67 The results indicate
that the SATS19911 model, although proposed for GPC,
produces greater errors for the examined cases than those
of EC250 and ACI31839 codes. The errors for these two
models are relatively small.

To limit shrinkage cracking, fibers can be added to the
GPC matrix. However, the existing literature on the exper-
imental cracking moment of fiber-reinforced GPC often
lacks essential informations about the fibers used
(in terms of diameter, length, shape, percentage, strength,
etc.), which are necessary for calculating the cracking
moment according to the standard codes. Therefore, fiber-
reinforced GPs will not be included in the present study.
Similarly, regarding the mix design, it was not possible to
differentiate the potential influence of the various factors
due to the insufficient quantity of data and the absence of
detailed mix design information in many studies.

The procedure previously described was applied to an
experimental dataset of OC beams to determine if the
model errors were greater than those of Portland cement
concrete. A summary of the experimental data is reported
in Table 1. The range of compressive strengths f cm varied
between 25 and 95MPa, the beam height h between
100 and 500mm and the geometric reinforcement ratio ρ
between 0% and 5.57% (Table 1). In Figure 2b, the trend
of the experimental values of flexural strength f ctm,fl as a
function of the compressive strength f cm is shown. The
dispersion of points is rather wide, especially for data
belonging to a specific experimental campaign60 with
compressive strength equal to 75.96MPa.

For each sample, the corresponding analytical value
of Mcr was calculated using the formulae provided by
EC2,50 ACI318,39 ACI363,44 and AS3600.41 The ratios
between the experimental cracking moments Mcr,test and
the analytical ones Mcr are shown in Figure 3f–i.

Also in this case, the EC250 model (Figure 3f) gave
the best results with μθ ¼ 1:02, despite a significant

dispersion of the points for low f cm. In this region, EC250

tends to underestimate the experimental values.
Figure 3g shows that the ACI31839 model gave ratios
slightly greater than one μθ ¼ 1:09ð Þ. In contrast, the
ACI363 (Figure 3h) and AS3600 (Figure 3i) models gave
ratios whose mean values were less than one, that is, they
tend to underestimate the cracking moment. Further-
more, the results are summarized in Table 2. A compari-
son of the results obtained for the GPC and OC beams
reveals that the model errors are similar, both as mean
value and COV. Regarding the effects of shrinkage, it is
known that in concrete it generates tensile self-tensions
that affect the cracking moment.68 However, in GPC, the
literature offers contradictory findings regarding
the effects of drying shrinkage on its cracking perfor-
mances, depending on the mix design, curing method,
and specimen size4,16,69; therefore, this aspect is not con-
sidered in the study.

3 | ULTIMATE BENDING
MOMENT

One of the fundamental aspects of designing reinforced
concrete beams is calculating the ultimate moment Mu.
Figure 4 shows the calculating sequence adopted by the
main standards. It is possible to observe the cross-section
of the beam, the plane strain diagram, the stress distribu-
tion for concrete and steel, and the resulting forces. In
particular, Cc is the force in the compressed concrete, C0

s

is the force in the compressed steel, Ts is the force in the
tension steel, and Tc is the force in the tension concrete if
fibers are present.

The position x of the neutral axis n�n is computed
by solving the non linear equilibrium equation

CcþC0
s�Ts�Tc ¼ 0 ð9Þ

Then, Mu is obtained from the rotational equilibrium
equation of the four forces with respect to n�n

TABLE 2 Model error Mcr,test=Mcr for GPC and OC beams using different standard codes: Minimum min; maximum max; mean value

μθ; coefficient of variation, COV; and percentage of specimens with error smaller than 20% i20.

Model
GPC OC

min (�) max (�) μθ (�) COV (�) i20 (%) min (�) max (�) μθ (�) COV (�) i20 (%)

EC250 0.64 1.30 0.97 0.15 82.82 0.76 1.28 1.02 0.11 85.8

ACI31839 0.71 1.60 1.03 0.20 77.62 0.79 1.41 1.09 0.13 70.9

ACI36344 0.47 1.05 0.68 0.20 22.63 0.52 0.93 0.72 0.13 26.2

SATS19911 0.57 1.29 0.83 0.20 42.64 - - - - -

AS360041 0.60 1.24 0.85 0.16 61.85 0.64 1.13 0.88 0.13 85.9

LENTICCHIA and VESCOVI 7
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Mu ¼Ccx 1�k2ð ÞþC0
s x� c0ð ÞþTs d�xð ÞþTc d� xð Þ=2

ð10Þ

where

Cc ¼ k1k3f cbx ð11aÞ

C0
s ¼ σ0sA

0
s ð11bÞ

Ts ¼ σsAs ð11cÞ

Tc ¼ f ct,eqb d�xð Þ=2 ð11dÞ

in which the coefficients k1, k2, and k3 depend on the
adopted constitutive law for compressed concrete. More
in detail, k1 is the ratio between the average compressive
stress to the maximum stress

k1 ¼

Z x

0
σcbdξ

bxf c
ð12Þ

k2 is the ratio between the distance of Cc from the
extreme compression fiber to the depth of the neutral axis
x

k2 ¼ 1�

Z x

0
σcξbdξ

b
Z x

0
σcbdξ

ð13Þ

and k3 is the ratio between the maximum concrete stress
to the concrete strength f c. The definition of f c varies in
the considered standards and will be specified later.
Table 3 summarizes the expressions of k1, k2, and k3
according to EC2,50 ACI318,39 AS3600,41 and SATS19911

codes.

To determine the coefficients, the EC250 assumes that
the compressive stress–strain relationship for concrete is
given by the equation:

σc ¼ k3f c 1� 1� ϵc
ϵc2

� �2
� �

0≤ ϵc ≤ ϵc2

k3f c ϵc2 ≤ ϵc ≤ ϵcu2

8<
: ð14Þ

in which ϵc2 ¼ 2‰ and ϵcu2 ¼ 3:5‰, regardless of con-
crete compressive strength f c.

The values of k1 and k2, which are obtained by inte-
gration of the stress–strain relationship, are reported in
Table 3. The same table shows the value of k3 that
depends on the characteristic compressive strength of
concrete f ck, the reference strength f ck,ref ¼ 40 MPa, and
ktc ¼ 1 for short term loading.

The American code ACI31839 assumes that concrete
stress k3f c is uniformly distributed over an equiva-
lent rectangular stress-block bounded by the top
edge of the cross-section and a line parallel to the
neutral axis and located at a distance k1x from the
top edge.

The coefficient k1 varies between 0.65 and 0.85 as a
function of the specified compressive strength f 0c
(Table 3). ACI31839 assumes k3 ¼ 0:85 observing that a
large variation in compressive strength of concrete
does not cause a significant change in the flexural
capacity of the section. The ultimate strain ϵcu2 is fixed
at 3‰.

The Australian code AS360041 considers a linear vari-
ation of k3 with f 0c. Similarly to the ACI318,39 the stress-
block is rectangular but with a coefficient k1 that is a lin-
ear function of f 0c (Table 3).

The Australian code SATS19911 assumes that the
stress–strain relationship of GPC is formed by a first lin-
ear branch for ϵ< ϵc2 followed by a constant branch for
ϵc2 ≤ ϵ< ϵcu2 with:

(a) (b) (c) (d)

FIGURE 4 Determination of the ultimate moment Mu: (a) beam cross-section; (b) strain profiles; (c) stresses; (d) resultants.

8 LENTICCHIA and VESCOVI
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ϵc2 ¼ 1:21α2 � f
0
c

Ecj
ð15Þ

ϵcu2 ¼ 1:14f 0c
kE �Ecj

≥ 0:003 ð16Þ

where

Ecj ¼
5050

ffiffiffiffiffiffiffiffiffi
f cm,j

q
f cm,j ≤ 40 MPa

14100þ2820
ffiffiffiffiffiffiffiffiffi
f cm,j

q
f cm,j >40 MPa

8><
>: ð17Þ

and kE ¼ 0:14þ0:012f 0c with 0:5≤ kE ≤ 0:74, and α2 ¼ k3.
The values of k1 and k2 are obtained by integration of the
stress–strain relationship. The expressions of the coeffi-
cients are reported in Table 3.

A comparison of the product k1k2, which rules com-
pressive force in concrete Cc, is shown in Figure 5 for the
different standards previously described. To allow com-
parison with the experimental data, the value f cm was
used instead of f c, f ck, f cm,j, and f 0c in the previous

equations. It is possible to observe a noticeable difference
in k1k2 between the standards. In particular, EC250 gives
the highest values while ACI31839 gives the lowest.

Regarding the stress–strain relationship of reinforcing
bars, the EC250 assumes a linear elastic branch up to the
yield stress f y, followed by a linear hardening branch up
to the failure stress f t, which corresponds to the ultimate
strain ϵu. In contrast, the other standards analyzed here
assume a perfectly plastic behavior after yielding.

Frequently, GPC are fiber-reinforced to increase the
shear strength, reduce the crack width, and improve duc-
tility in compression. For this reason, this study also con-
siders fiber-reinforced GP beams.

In this context, the concrete tensile strength contribu-
tion Tc (Equation 11d) is taken into account in Equa-
tions (9) and (10). The standards considered do not cover
the use of fibers. According to Model Code 2010,70 the
value of Tc depends on the equivalent tensile strength of
concrete f ct,eq. In the case of work hardening or degrad-
ing bending behavior of the experimental tensile stress-
crack width curves, equivalence formulae are given to
obtain the equivalent tensile strength f ct,eq. The American
standard ACI544.4R-1171 also provides guidelines for
fiber-reinforced concrete beams. However, it requires
information on fibers (such as diameter, length, and ten-
sile strength) that are not always available in the experi-
mental references.

In order to ascertain the suitability of the described
code standard models for GPC, experimental data were
gathered from the literature. For comparative purposes,
data were collected for GPC beams with and without
fibers and for Portland cement concrete beams. Table 4
summarizes the data for GPC with and without SFs and
for OC. The table includes the references, the number of
specimens, the type of binder, the base b, and the height
h of the beams, the mean compressive strength of con-
crete f cm, the geometric reinforcement ratio ρ¼As= bdð Þ
where As is the area of the reinforcement in tension, and
the mechanical reinforcement ratio ωs ¼Asf y= bdf cmð Þ.

TABLE 3 Expressions of the coefficients k1, k2, and k3 according to the considered code standards.

Model k1 k2 k3

EC250 0.8095 0.4160
ktcmin

f ck,ref
f ck

� �1=3
,1

� �

ACI31839/ACI36344 0:85 f 0c <27:6 MPa

0:85�0:05
145:05f 0c�4000

1000
27:6 MPa≤ f 0c <55:16 MPa

0:65 f 0c ≥ 55:16 MPa

8>>><
>>>:

0:5k1 0.85

AS360041 0:97�2:5 �10�3f 0c 0:5k1 0:85�0:0015f 0c

SATS19911 1� ϵc2
2ϵcu2

ϵ2c2�3ϵc2ϵcu2þ9ϵ2cu2
3ϵcu2 �ϵc2þ2ϵcu2ð Þ

0:85�0:0015f 0c

FIGURE 5 Comparison of different standards for calculating

the ultimate moment of RC beams: Product of the coefficients k1
and k3 as a function of f cm.

LENTICCHIA and VESCOVI 9
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More specifically, 64 GPC (26 made with GBFS and
38 with FA), 68 OC, and 28 GPC fiber reinforced test
results were collected.

Concerning the GPC samples, the range of compres-
sive strength f cm varies between 14 and 76MPa with
heights h between 150mm and 305mm and geometric
reinforcement ratio ρ between 0.24% and 4.91% (Table 4).

Figure 6a shows the experimental values in terms of
the dimensionless ultimate moment μu ¼Mu,test= bd2f cm

	 

as a function of mechanical reinforcement ratio ωs.
Figure 6a shows that for ωs >0:25, the scatter of μu is
higher, especially for the GBFS samples.

For each sample, the corresponding analytical value
of Mu was computed using the equations for the five

standards considered. The ratio between the experimen-
tal ultimate moment Mu,test and the analytical ultimate
moment Mu provided the model error, which is shown in
Figure 7a–d. In particular, the markers represent the ana-
lyzed experimental points while the horizontal lines
show the mean error μθ. The mean errors μθ and the cor-
responding COV are summarized in Table 5. The same
table shows the parameter i20 and the minimum and
maximum values of the error.

EC250 (Figure 7a) gave the best results for GPC, with
ratios between 0.92 and 1.16 and a mean error μθ ¼ 1:06.
It can be noticed that EC2 model is suitable both for FA
and GBFS samples regardless of the value of ωs with a
high value of i20 ¼ 94:64. Greater uncertainties are

TABLE 4 Summary of experimental data on ultimate moment Mu of GPC, with and without SFs, and OC beams.

No. Reference N. of data Type of binder b (mm) h (mm) f cm (MPa) ρ (%)
ωs

(%)

1 Sumajouw et al.35 12 FA 200 300 37–76 0.6–2.5 4.5–37.2

2 Shibayama et al.54 6 FA 150 250 30–59 0.7 5.3–8.8

3 Ozturk et al.42 6 GBFS 150 240 46.2–71.0 1.3 11.5–16.5

4 Maranan et al.55 1 GBFS 200 300 31 1.2 19.0

5 Kathrivel et al.38 3 GBFS + FA 150 150 33.4–35.4 1.9 28.1–33.5

6 Lopes et al.29 2 FA 203 305 41.2–43.4 1.57 20.3–28.1

7 Kumar et al.72 5 GBFS 100 150 19.8 0.4–1.4 11.7–44.6

8 Tauquir et al.73 2 FA 150 225 36.9 2.1 25.6

9 Yacob et al.65 5 GBFS 100 150 49.7–55.9 1.8 18–18.9

10 Lin et al.74 6 GBFS+FA 150 300 33.1 0.24–2.99 3.96–49.99

11 Bayuaji et al.75 6 FA 100 150 14 0.77 12.94–13.25

12 Yost et al.21 6 FA 305 152 52.2–54.7 1.56–4.91 12.35–38.92

13 Cong et al.76 3 FA 200 300 35 1.16–2.82 15.52–37.49

14 Hammad et al.77 1 FA 100 200 40.5 1.32 14.08

15 Yacob et al.65 1 OC 203 305 43.4 1.6 20.3

16 Kathirivel et al.38 1 OC 100 150 40 1.8 23.4

17 Lopes et al.29 5 OC 100 150 29.1 0.4–1.4 8–30.4

18 Mansur et al.78 2 OC 170 250 72.9–76.3 6.3 45.6–47.8

19 Alca et al.79 3 OC 150–335 282–630 51.4–54.2 2.3–2.4 17.5–18.1

20 Ulfkjaer80 2 OC 100–200 200–400 22.8–24.8 1.7–8.2 44.7

21 Ko et al.81 35 OC 150–200 150–180 66.6–82.1 1.6–6.5 11.1–34.5

22 Jang et al.66 19 OC 140 195–210 40–75 1.9–5.6 11.8–45.2

23 Su et al.82 5 SF 150 300 145.6–156.2 1.10–2.24 3.53–6.78

24 Tran et al.83 4 SF 150 200 61–70 0.7 5.3–6.1

25 Ozturk et al.42 5 SF 150 240 51–71 1.3 10.7–14.9

26 Kathirvel et al.38 5 SF 150 150 49.5–55.9 1.77 16.8–18.9

27 Monfardini et al.84 5 SF 200 460 24–37 0.5 7–11

28 Yacob et al.65 2 SF 203 305 41.2–43.4 1.6 6.9–10.7

29 Monfardini et al.85 2 SF 200 300 33.2–37.5 0.77 20.3–21.4

10 LENTICCHIA and VESCOVI
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observed by the ACI31839 model (Figure 7b). In this case,
the mean error is μθ ¼ 1:25. The model, therefore, under-
estimates the experimental value of the ultimate
moment. Finally, Figure 7c shows the results for the
models of the AS360041 and Figure 7d for SATS19911

standards. The mean errors are μθ ¼ 1:14 and μθ ¼ 1:09,
respectively. In the examined cases, the results demon-
strate that the SATS199,11 despite being proposed for
GPC, produces greater errors than EC250 but better than
AS3600.41 The errors for these two models are relatively
small when compared to the ACI31839 results. In addi-
tion, it can be seen that for all models, the error tends to
be almost constant both for low and high values of ωs,
that is, for the less and most heavily reinforced beams.

The same procedure was followed for fiber-reinforced
FA + SF samples. Table 4 shows a summary of the data.
The range of compressive strengths f cm varies between
24MPa and 156.2MPa with beam height h
between 150mm and 460mm and geometric reinforce-
ment ratio ρ between 0.7% and 2.24% (Table 4). In this
case, since the articles considered did not provide the ten-
sile stress–strain curve of the fiber concrete or the proper-
ties of the fibers, but only the cracking moment of the
beam, it was assumed that f ct,eq was equal to f ct,fl, thus
overestimating its value. Figure 6b shows the experimen-
tal values of μu as a function of ωs. It is possible to
observe that the trend of μu is approximately linear
with ωs.

Also in this case, for each sample, the corresponding
analytical value of Mu was computed using the equations
for the considered standards.11,39,41,44,50 The ratio
between the experimental value Mu,test and the analytical
value Mu provided the model error, which is shown in
Figure 7d–f and summarized in Table 5 with also the
minimum min, maximum max values of the errors,
the corresponding coefficients of variation COV, and the
parameter i20.

Similarly to previous results, the EC250 model
(Figure 7e) gave the lower uncertainties with ratios

between 0.74 and 1.20 and a mean value of μθ ¼ 0:99
(Table 5). Similar results were obtained for the AS360041

(Figure 7g) and SATS19911 models (Figure 7h) with lower
mean values of 0.91 and 0.89, respectively (Table 5). In
contrast, the ACI31839 model shown in Figure 7f under-
estimated the experimental moments with a mean of
μθ ¼ 1:02 (Table 5). Looking at the results, it seems that
models that tend to overestimate the resistant moments
gave better results in the presence of fibers. In any case,
it seems that in the case of concretes reinforced with
fibers, it is necessary to evaluate the contribution of fibers
with precision.

Furthermore, to determine whether the model error
in the ultimate moment for GPC beams is greater than
that for Portland cement, the same procedure was
applied to an OC experimental data set. A summary of
the experimental data is given in Table 4. The range
of compressive strengths f cm was between 29.1 and
82.1MPa for specimens with heights h between 150 and
650mm and a geometric reinforcement ratio ρ between
0.4% and 8.2% (Table 4). An essentially linear relation-
ship between the data is observed by Figure 6c, which
displays the experimental values μu as a function of ωs,
although a slight change in the slope of the trend of the
experimental points is observed at ωs = 0.25.

For each sample, the corresponding analytical value
of Mu was also computed using the formulae provided by
EC2,50 ACI318,39 ACI363,44 and AS3600.41 The model
SATS19911 was not used because it is specific for GPC.
The ratios between the experimental values Mu,test and
the analytical ones Mu provided the model errors, which
are shown in Figure 7i,l,m, while Table 5 summarizes the
other parameters.

Again, the EC250 (Figure 7i) gave the best results with
ratios between 0.79 and 1.10 and a mean of μθ ¼ 1:00
(Table 5). Different results were obtained for the AS3600
(Figure 7m). In this case, the mean error is μθ ¼ 1:11
(Table 5). Finally, Figure 7l shows the results for the
models of the ACI31839 standard. The mean error is 1.24

(a) (b) (c)

FIGURE 6 Experimental dimensionless ultimate moment μu as a function of mechanical reinforcement ratio ωs, results for beams in:

A) GPC with FA or GBFS precursors; b) GPC with SFs; c) OC.

LENTICCHIA and VESCOVI 11
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(Table 5). The results indicate that the ACI31839 model
produces more significant errors for the cases studied
than those produced by the EC250 and also AS360041

models. The errors for the EC250 model are relatively
small, confirming again, the EC250 gave the best results.

An examination of Table 5 reveals that, when using
the same model, the outcomes between GPC and OC are
strikingly similar, both in terms of the mean value, μθ,
and the COV. Consequently, it appears feasible to employ
these models for estimating the ultimate moment in the

context of GPC. However, it is important to note that the
limited availability of experimental data for heavily rein-
forced beams raises some concerns and prevents defini-
tive conclusions from being drawn. The discrepancy
between the various standards is not unexpected, given
the differing regulatory frameworks. Additionally, it is
common to encounter a significant degree of uncertainty
in all the cases examined, which can be attributed to the
fact that some experimental campaigns do not report data
with the required accuracy.

(a) (b) (c) (d)

(e) (f) (g)

(i) (l) (m)

(h)

FIGURE 7 Model error for ultimate moment Mu,test=Mu as a function of mechanical reinforcement ratio ωs using different

codes11,39,41,50; (a)–(d) GPC both precursed with FAs or GBFS; (e)–(h) GPC with fibers (SF); (i)–(m) OC.

12 LENTICCHIA and VESCOVI
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4 | CONCLUSIONS

In this study, the authors collected from the literature the
experimental cracking moment Mcr and ultimate
moment Mu data of GPC beams reinforced with steel
bars, both made with FA and GBFS. The cluster category
exhibits considerable diversity with respect to mixture
design and production methods. This variability depends
on the fact that the use of GP cement in structural engi-
neering applications is relatively new and, consequently,
there is still a lack of available comprehensive data in the
literature; the authors have compared design specifica-
tions despite the numerous disparities, with the aim of
obtaining a sufficient data set for meaningful compari-
sons. The gathered experimental tests were assessed
using different standard codes: 2nd generation EC2,50

ACI318,39 ACI363,44 AS3600,41 and SATS199,11 which is
specific for GPC. The model errors were evaluated for the
different data sets. To investigate whether and how
the model error was larger than that for OC, the same
procedure was repeated on reinforced concrete beams
made with Portland cement. The results suggest the fol-
lowing conclusions:

• Considering the experimental flexural strengths f ct,fl, it
can be observed that the dispersion of data in the FA
case was greater for low values of f cm. On the contrary,
in the case of GBFS, the dispersion increased with f cm.
Furthermore, no significant differences were observed
in the variation of the experimental values of f ct,fl with
f cm between GPC and OC.

• The previously described standards were employed to
calculate the flexural strength, f ct,fl. The model error,
expressed as the ratio of the experimental flexural
strength to the calculated flexural strength, was found
to be similar for GPC and OC, both in terms of the
mean value μθ and the COV. In particular, EC250 and
ACI31839 gave the best results, with mean errors 0.97
and 1.03, respectively, and a percentage of points with
an error of less than 20% equal to 82.8% and 77.62%,

respectively. Furthermore, it was observed that the
SATS19911 standard, although specific to GPC, led to a
slightly greater error (0.83) on the safe side.

• Regarding the experimental values of the dimension-
less ultimate moment μu, GPC showed a linear trend
both for GBFS and FA data. The OC beams showed
similar behavior.

• Concerning the calculation of the ultimate moment,
the different models considered yield varying results.
These differences can be due to the level of conserva-
tism inherent in each model. However, when consider-
ing the same model, no significant differences were
observed between GPC and OC.

• The EC250 and SATS19911 models exhibited the lowest
average error in the calculation of the ultimate
moment, with values of 1.06 and 1.09, respectively.

A comparison of models for calculating the cracking
and ultimate moments of reinforced concrete beams
showed similar results for GP and Portland concretes.
These conclusions were based on approximately 60 data
points, and further confirmation would be useful when
more data became available.

Further research is needed to expand the database and
gather experimental evidence to fully understand the behav-
ior of over-reinforced beams, where the response of the com-
pressed concrete plays a more important role. Currently, the
field is relatively under-explored, with limited specific exper-
imental validations. In the meantime, the results obtained
may be useful both for the development of new code stan-
dards specific to GPC but also for the predimensioning of
structures made of these promising materials.
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TABLE 5 Model error Mu,test=Mu for GPC, SF and OC beams using different standard codes: Minimum min; maximum max; mean

value μθ; coefficient of variation, COV; and percentage of specimens with error smaller than 20% i20.

Model
GPC SF OC

min
(�)

max
(�)

μθ
(�)

COV
(�)

i20
(%)

min
(�)

max
(�)

μθ
(�)

COV
(�)

i20
(%)

min
(�)

max
(�)

μθ
(�)

COV
(�)

i20
(%)

EC250 0.92 1.16 1.06 0.03 94.64 0.74 1.20 0.99 0.105 92.45 0.79 1.10 1.00 0.082 93.99

ACI31839 1.14 1.48 1.25 0.068 27.56 0.59 1.37 1.02 0.131 84.84 1.12 1.65 1.24 0.058 17.83

SATS19911 0.94 1.24 1.09 0.040 90.08 0.50 1.15 0.89 0.120 97.53 - - - - -

AS360041 0.96 1.29 1.14 0.059 70.10 0.54 1.18 0.91 0.122 99.82 0.50 1.15 0.89 0.122 87.66
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