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Associations of Battery Cell Voltage Consistency with Driving Behavior 

of Real-world Electric Vehicles 

 

Abstract: For proposing an adaptive-threshold-based method for detecting battery voltage inconsistency fault, this 

study explored the associations between driving behavior and voltage consistency between cells (VCC) at a 

microscopic level, by performing a naturalistic driving experiment on real-world electric vehicles (EVs). The 

running process of EVs is divided into four kinds of micro-segments A, B, C, D through the driver’s pedal actions. 

Focusing on these segments, Pearson correlation coefficients (PCCs) between driving behavior parameters (DBPs) 

and voltage variation coefficient between cells (VVCC) are calculated, the impact patterns of DBPs to VVCC are 

analyzed by accumulated local effects (ALE) plots obtained from random forest (RF) modeling. The results show 

that the maximum PCC is reached by average accelerator pedal stroke with 0.724 for segments A, and by average 

speed with 0.789, 0.554, and 0.553 for the other three segments. The four RF models show a high accuracy of VVCC 

prediction with goodness of fit over 0.919, and the ALE plots demonstrate the impact patterns are positive-nonlinear 

overall. The maximum VVCC growing rates are reached by average accelerator pedal stroke for segments A 

(48.09%), and average speed for other segments (55.70%, 29.01%, and 23.68% for segments B, C, and D, 

respectively). These results imply a strong connection between driving behavior and battery voltage consistency, 

which could be effectively captured to provide crucial inputs and interpretation methods for modeling voltage 

consistency prediction during EVs running. Hence, this work lays the foundation for the development of battery 

voltage fault detection algorithms considering different driving states. 

Keywords: Electric vehicles; Driving behavior; Voltage consistency; Association; Random forest 

1. Introduction 

With the rapid development of electric vehicles (EVs), there is a growing concern about the safety issues of 

their traction batteries[1-3]. In order to meet the driving power demand and obtain the desired vehicle range, 

hundreds or even thousands of cells are connected in a series-parallel structure within a battery pack[4-6]. 

Unfortunately, the inevitable heterogeneity between battery cells is a key factor that influences the performance and 

safety of the entire battery system[7,8]. A degree of inconsistency, also known as cell-to-cell variation, between cells 

always exists within the battery pack and cannot be completely avoided. The heterogeneity between battery cells is 

generally caused by the manufacturing process and can be further exasperated during vehicle usage[9,10]. Indeed, in 

battery manufacturing, the inevitable minor errors and deviations on electrode fabrication, assembly and formation 

lead to discrepancies in initial capacity, internal resistance, open-circuit voltage, self-discharge rate and so forth, 

even for the same batch of battery cells[11,12]. The discrepancies in these initial parameters would cause cell 

differences in current, voltage, and temperature during long-time real-world operation[13]. Moreover, the 

nonuniform current and temperature would further aggravate cell inconsistency, which can be embodied by the cell-

to-cell variations in depth of discharge, state of charge (SOC), temperature, terminal voltage, output power, capacity, 

and other factors[14]. An excessive inconsistency between cells must be avoided since it can lead to the issues of 

over-voltage, under-voltage, over-temperature and even thermal runaway[15-17]. Therefore, a large cell 

inconsistency is typically classified as a fault because it shows that the battery pack contains overly aged or defective 

cells[18,19]. Accurate evaluation and diagnosis for inconsistency in the battery pack are necessary to detect aging or 

faulty cells timely and then prevent thermal runaway. 

Many efforts have been dedicated to cell inconsistency evaluation and diagnosis for battery pack in EVs, and 

various methods have been proposed. These methods can be generally classified into three categories, i.e., signal-
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processing-based, model-based and information-fusion-based methods[20]. Signal-processing-based methods 

generally conduct time-domain or frequency-domain analyses on waveform and amplitude of measured signals, such 

as voltage, current, and temperature. For time-domain analyses, the quantities such as mean, standard deviation (SD), 

range, and other statistical descriptors can be used to detect faults[21,22]. Model-based methods obtain cell 

inconsistency information through the estimation of battery parameters, relying on battery electrochemical models or 

equivalent circuit models (ECMs)[23]. Electrochemical models have the highest accuracy but also have the highest 

computational cost and parametrization burden, as a large number of physical parameters must be identified from 

carefully designed experiments. ECMs offer a compromise as they still provide accurate and physically-interpretable 

variables while being computationally simple with parameters relatively easy to be estimated[24]. On the other hand, 

information-fusion-based methods can perform cell inconsistency evaluation and diagnosis by combining 

information from multi sensors to obtain the best possible fault feature through intelligent algorithms, e.g., 

weighting/voting fusion[20], clustering algorithm[25], artificial neural network (ANN)[26]. It is worth noting that 

ANN has been increasingly applied to the estimation and prediction of battery voltage, SOC, and other parameters to 

improve battery safety and energy efficiency. In particular, powerful deep learning algorithms have shown 

tremendous potentials and advantages. For example, Lu et al.[27] utilized long short-term memory network (LSTM) 

to establish a voltage prediction model that could integrate future cyclic conditions and a battery model. Liu et al.[28] 

estimated battery aging life using bidirectional gated recurrent unit network. Zhang et al.[29] proposed a robust state 

of health estimation method based on temporal convolutional network (TCN). The ANN is a data-driven approach 

that can learn hidden relationships between battery states and features without relying on precise expert knowledge 

or internal mechanisms of battery[30]. Compared to model-based methods that are susceptible to model uncertainty 

and noise, the ANN based methods usually exhibit stronger robustness in the application on actual EVs.  

For real-world EVs, real-time monitoring of battery internal parameters is a challenging task[31]. Many works 

about cell inconsistency evaluation and diagnosis focus on terminal voltage which has a strong sensitivity to battery 

working state and can be easily measured and immediately extracted[21]. Poor voltage consistency between cells 

(VCC) implies the occurrence of voltage abnormity which can lead to one or more battery faults, such as internal 

short circuit, or electrode structure fault[32]. While battery management systems can monitor and control battery 

states for well-balanced and fresh cells, managing the voltage of excessively aged or faulty cells is challenging. 

Hence, excessive voltage inconsistency should be readily detected. For terminal voltage inconsistency evaluation and 

diagnosis, one of the most common methods is comparing the measured features such as voltage range, SD, variation 

coefficient, curve distance, and entropy among all cells, with a threshold to determine the alarm level[33]. For 

instance, Wang et al.[34] adopted the average distance of the voltage curves of all cells as the VCC indicator. On the 

other hand, Qiu et al.[35] evaluated the voltage inconsistency in battery system using Shannon entropy. Once the 

difference between the maximum theoretical entropy and the measured entropy of all cell voltages in a certain 

module or cluster exceeded the preset threshold, the alarm of inconsistency would be triggered. Li et al.[36] 

employed the correlation coefficient between two cell voltages to measure the cell consistency, and preset a 

threshold of 0.75 for anomaly detection. Lu et al.[37] calculated the voltage variation coefficient between cells 

(VVCC) to evaluate the VCC, and the threshold of 0.025 was set to detect the inconsistency at severest level. Li et 

al.[25] evaluated the deviation of a cell by calculating the difference between its voltage and the average voltage of 

all cells. If the absolute difference exceeded the 0.1 V threshold, the deviation of the cell was considered to be 

abnormal. Li et al.[38] proposed an evaluation method for voltage consistency of lithium-ion battery packs in EVs 

based on the Mahalanobis-Taguchi system, and the first and second-level warning thresholds were set to examine the 

consistency features extracted through sample entropy and fast-dynamic time warping. Recently, Liu et al.[39] 

conducted fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted 

Euclidean distance evaluation, and they set the threshold of evaluation coefficient at 3 in their work. Hence, the cell 
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with the evaluation coefficient beyond 3 would be detected as a voltage dynamic inconsistency fault. However, in 

these works, the threshold was set by a fixed value, which may lead to a high false alarm or missed alarm rate. A 

threshold set too high might lead to a low fault sensitivity, potentially causing the abnormity signal to not trigger the 

alarm. Conversely, setting it too low could result in normal signals triggering false alarms. Therefore, selecting an 

appropriate threshold is crucial for fault diagnosis but requires extensive historical fault data for rule establishment, 

which is difficult in practice[40]. Li et al.[41] analyzed the voltage mean range for fast charging, slow charging, and 

driving, they found that the boundary line for normal and unsafe battery was significantly different between charging 

and driving. Therefore, they suggested that different methods or thresholds should be designed for different EV states. 

To tackle this challenge, Liu et al.[42] proposed online diagnosis and prediction methods for voltage inconsistency 

fluctuation faults using the SD and improved Pearson correlation coefficient (PCC) as two-dimensional fault features. 

They selected different thresholds for detecting sudden and progressive voltage fault. Generally speaking, for actual 

EVs operations, the cell voltages and the measured consistency value fluctuate along with driving status, e.g., a more 

aggressive driving leads to a more significant voltage variation. Therefore, the threshold should be set accounting for 

the driving state of EVs. 

Few studies have proposed differentiated thresholds for different operation modes or driving states to quantify 

voltage inconsistency or detect cell voltage abnormity. For instance, Fang et al.[18] set the abnormity threshold of 

voltage range for three scenarios, i.e., driving, charging, and starting after static charging. In our previous work[43], 

we set the abnormity threshold of the voltage difference between a cell and the mean cell for four driving behavior 

modes, and achieved a more accurate detection for cell voltage fault. However, these studies have merely set fixed 

thresholds for different vehicle operating or driving modes, without quantitatively correlating the battery voltage 

signal with specific driving conditions. Hence, these thresholds are neither individualized enough nor adjusted 

adaptively and intelligently in real time according to the specific driving condition. Driving conditions can be 

assessed using driving state parameters which quantify physical quantities related to driving behaviors. Zhang et 

al.[44] compared the residuals between the estimated and measured battery voltages using an adaptive threshold to 

detect the occurrence of internal short-circuit faults. They achieved the dynamical threshold adjustment to variation 

in environmental factors and driving behavior by using a Gaussian process regression model. In that work, although 

the voltage consistency was shown to vary with driving behavior and environmental conditions, their relationships 

were not analyzed.  

As previously mentioned, the driver’s driving behavior during EV operation would directly impact the 

fluctuations of battery voltage, current and power. Therefore, to propose an adaptive-threshold-based voltage 

inconsistency evaluation and diagnosis method, the associations between driving behavior and VCC need to be 

revealed. So far, a few works have analyzed the correlation between battery voltage and driving factors, but have not 

established models to reveal the underlying relationship between them. For example, Huang et al.[45] conducted the 

voltage prediction on fuel cell for the electric bus. In their work, the PCC, Spearman’s correlation coefficient, and 

Kendall’s correlation coefficient were utilized to analyze the correlation between voltage and relevant factors during 

start-stop driving states. However, they did not perform a detailed analysis on the specific fluctuation patterns of 

voltage along with vehicle speed. Similarly, Zhao et al.[46] adopted PCC in their studies on voltage prediction and 

inconsistency prognosis to analyze the correlation between vehicle speed and voltage, and found a significant 

influence of the driving behavior. However, they did not develop a regression model to explore the mapping 

relationship between driving behavior parameters and the SD of voltage, so only SD of voltage was employed to 

characterize inconsistency. Few scholars have developed voltage prediction and anomaly detection models based on 

the analysis of the correlation between driving behavior and battery voltage. For example, Hong et al.[47] adopted 

the PCC to extract factors strongly correlated with battery voltage, then the vehicle speed and brake pedal stroke 

were selected as two of the inputs of voltage prediction model. Li et al.[48] also utilized PCC to analyze the 
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correlation between voltage and variables such as vehicle speed, accelerator pedal stroke, and brake pedal stroke, for 

constructing a voltage prediction model based on LSTM. The data used in these studies were collected from the 

platform of National Monitoring and Management Center for New Energy Vehicles in China, its sampling interval is 

from 10 to 30 s. However, the calculation for VCC indicators such as correlation coefficient, variation coefficient, 

and entropy must be performed using the continuous data within a time window, namely, data block. Due to the 

incomplete information of driving behavior caused by large sampling interval within the time window, these studies 

could not effectively establish a connection between driving behavior and VCC. Consequently, they were unable to 

deeply analyze the impact mechanisms and practical effects of driving behavior on VCC. 

To fill the research gaps mentioned above, this paper conducts naturalistic driving experiments on EVs to 

investigate the associations between driving behavior and VCC. The detailed study framework is summarized as 

follows. First, the running process of EVs is divided into four types of segments based on the driving behavior of 

pressing/releasing pedal, and the driving behavior parameters (DBPs) are extracted for each segment. Then, the 

PCCs between DBPs and VVCC are calculated and analyzed. Next, a random forest (RF) regression model is 

established for each type of segments, and the relationship between DBPs and VVCC is assessed using the method 

of accumulated local effects (ALE). Finally, through data grouping and statistics, the quantitative effects of these 

important DBPs on VVCC are obtained and investigated.   

In summary, the main contributions and innovations of this paper are: 1) For the first time, the association 

between driving behavior and VCC is investigated using high-frequency running data collected from naturalistic 

driving experiment on EVs. The challenges arising from low data frequency and incomplete driving behavior 

information which have previously hindered conducting association analysis, are addressed in this study. 2) A 

method of dividing the driving phase in different driving segments is proposed to easily capture the association 

characteristics between the driving behavior and voltage consistency. 3) The association characteristics of correlation, 

impact pattern, and quantified effect are assessed for a large volume of segments data. Hence, compared with 

previous works that can hardly obtain the impact mechanisms and practical effects of driving behavior on VCC, this 

study can directly guide the development of adaptive threshold-based method for voltage inconsistency evaluation 

and diagnosis. Based on the results in this study, the most significant DBPs for voltage inconsistency prediction 

modeling can be identified and more insights including impact pattern and nonlinear relationship can be highlighted 

to enhance model interpretability. 

The remainder of this paper is organized as follows. Section 2 introduces the naturalistic driving experiment of 

EVs, the collected data and their preprocessing process. Section 3 describes EVs running segment division and DBPs 

extraction method, indicator of VCC, and modeling approach used for analysis. Research results and discussion are 

then presented in Section 4, followed by the key conclusions summarized in Section 5. 

2. Experiment and data acquisition 

2.1 Naturalistic driving experiment on EVs  

In response to the aforementioned shortcomings in the existing literature, this study designs and conducts 

naturalistic driving experiment to collect the high-quality vehicular operation data of real-world EVs. The basic 

requirements for this experiment are that the driving behavior and vehicle running environment during experiment 

should not be constrained, and the experiment duration should be long enough to obtain a large volume of data in 

order to account for various running and climate conditions. Considering the above experimental requirements and 

actual costs, we decided performing the experiment on 20 electric taxies of same specification, driven by 20 

professional drivers. The main parameters of the studied vehicles are shown in Table 1. It is noteworthy that the 
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experimental vehicle’s battery pack consists of 24 modules and 192 battery cells, as illustrated in Fig. 1. Each 

module comprises eight battery cells, with a 2s4p configuration. 

Table 1 Specifications of the experimental vehicles 

Specifications Values 

Battery type Ternary lithium-ion 

Number of battery cells 96 

Number of battery temperature probes 48 

Total energy of battery pack 49 kWh 

Rated voltage of battery pack 350.4 V 

Nominal voltage of battery cell 3.65 V 

Rated motor power 42 kW 

Rated motor torque 60 Nm 
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Fig.1 Cells layout inside the battery pack of the studied vehicle 

The device of advanced driving assistant system (ADAS) was customized to collect high-frequency data 

transmitted from controller area network (CAN) of the experimental vehicle, including battery state, ambient 

temperature, driving state, etc. Those data are stored in the recorder of ADAS along with the data of traffic 

environment and car following behavior obtained by ADAS camera. The experimental vehicle and data acquisition 

equipment are shown in Fig. 2. 
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Fig. 2 Experimental data collection process and equipment 

This experiment was performed over a period of 10 months from January 28, 2022, to November 28, 2022, 

within the city of Wuhan, China. This long-duration experiment ensured a wide range of climatic conditions and 

considerable running scenarios within which EVs operated. Throughout the experiment, there were no limitations 

imposed on driving time or routes. In essence, the operation of the EVs remained entirely unconstrained in Wuhan, 

and the taxi service operated without being influenced by the experiment. 

2.2 Data collection and preprocessing 

Although a large volume of data and parameters have been collected during the experiment, this study focuses 

on analyzing nine of these parameters. To comprehensively represent driving behavior, the information of pedal state, 

speed, and acceleration are used. In addition, ambient temperature is considered in this study to account for its 

significant impact on the operating range of battery voltage[47]. These parameters were collected at sampling 

frequencies between 1 Hz to 100 Hz, which is significantly higher than the data collected in previous works. The 

249-day data from one experiment vehicle is extracted and preprocessed for the study. Firstly, the outliers are 

screened using the normal ranges of these parameters, and the missing values are identified. Then, the null values 

and outliers are replaced using nearest neighbor interpolation. Secondly, resampling is conducted to achieve the time 

alignment of these parameters, leading to the frequency of 1 Hz for all parameters after processing. After the data 

preprocessing, a total of 6163447 samples are obtained eventually. The extracted nine parameters and their statistics 

for 249-day operation data after preprocessing are shown in Table 2.   

Table 2 Nine extracted parameters and their statistics for 249-day operation data 

Data type Unit Original frequency Mean SD Minimum Maximum 

Accelerator pedal stroke % 10 Hz 8.69 13.26 0.00 99.00 

Brake pedal stroke % 10 Hz 0.77 1.92 0.00 42.00 

Speed km/h 100 Hz 20.94 23.94 0.00 125.45 

Acceleration m/s2 10 Hz 0.49 (accelerate) / -0.49 (decelerate) 0.51 -6.52 4.95 

Ambient temperature ℃ 10 Hz 24.60 10.23 0.00 48.00 

Pack voltage V 50 Hz 373.12 13.85 332.00 401.00 

Cell voltage V 1 Hz — — — — 

Current A 50 Hz -31.03 (charge) / 21.04 (discharge) 33.37 -164.00 251.00 
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SOC % 50 Hz 75.32 14.74 23.80 99.30 

3. Methodology 

3.1 Segments identification and DBPs extraction 

During the running of EVs, the driver’s behavior of pressing/releasing pedal causes the battery to switch 

between two main modes: discharging and charging. The differences in these working modes may impact the VCC. 

Obviously, more accurate and reliable results would be obtained if analyzing the association between driving 

behavior and VCC for the battery under different working modes. Therefore, based on the driver’s behavior in 

pressing/releasing pedal, we divide the running process of EVs into different types of segments, during which the 

working state and signal fluctuation mechanism of the battery vary. To elucidate the fluctuation mechanisms of 

battery signals along with driving behavior and the division method in driving segments, the curves of relevant 

parameters during a short period of operation on January 28, 2022, from one experimental vehicle are depicted in Fig. 

3. 

 

Fig. 3 Driving behavior profiles and battery signals during a short period of operation 

As shown in Fig. 3, the curves of accelerator pedal stroke and current exhibit similar trends, while the voltage 

and current curves indicate opposite trends by roughly displaying a symmetric distribution. As accelerator pedal 

stroke increases, the current correspondingly rises and the battery voltage decreases. Conversely, when the brake 

pedal gets pressed, the current decreases and then transforms to be negative, while the voltage increases. According 

to the working mechanism of the battery during EVs operation, pressing accelerator pedal implies the battery energy 

output. On the other hand, when the brake pedal is pressed, regenerative braking is combined with traditional 

mechanical braking to decelerate the vehicle, and battery energy recovery is triggered. Therefore, the variation 

mechanisms of voltage are different in these two conditions. Additionally, under the condition of vehicle sliding with 

foot unused after releasing accelerator pedal completely, the positive current decreases and transitions to be negative, 

as shown around 1465 s in Fig. 3. It should be noted that this is a general varying mode. When the accelerator pedal 

is released rapidly, the current is negative before the pedal gets fully released. Conversely, under the condition of 

foot unused after releasing brake pedal completely, the negative current decreases and transitions to be positive, as 

shown around 1440 s and 1472 s in Fig. 3. Hence, among the different driving conditions, the fluctuation patterns of 

current and voltage are different. After this analysis, we opted for dividing EVs’ running process into four types of 

segments based on driver’s driving behavior of pressing/releasing pedals, i.e., segments A with driver’s foot on 
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accelerator pedal, segments B with foot idle after completely releasing accelerator pedal, segments C with driver’s 

foot on brake pedal, segments D with foot idle after completely releasing brake pedal. The schematic of the proposed 

segments dividing method is shown in Fig. 4. It should be noted that the segments when the vehicle is stopped are 

removed in this study.  

 

Fig. 4 Schematic of running segment division based on pedal status 

Furthermore, operational data with a duration of 60 seconds was extracted as a visualization example to 

illustrate the results of segment division. As shown in Fig. 5, The range and SD of cell voltages fluctuate in real-time 

with the driving behavior state. The voltage range and SD curves exhibit similar trends to that of accelerator pedal 

stroke, a larger accelerator pedal stroke generally leads to a larger range and SD of cell voltages. Similarly, a larger 

brake pedal stroke tends to correspond to more significant voltage inconsistency, as the performance differences 

between cells are more pronounced during high discharging or charging current. Furthermore, segments A 

demonstrate the most significant voltage fluctuation and voltage inconsistency among the four segments overall. 

These results indicate that, driving behavior has a remarkable impact on the voltage consistency state and separate 

modeling as well as analysis for each segment are necessary. 

 

Fig. 5. Segment division visualization for the running process in a time window of 60 seconds 

There are segments with very short durations during the running of the studied vehicle, which are not long 

enough to provide meaningful results. Therefore, samples with a duration of less than 5 s are excluded for segments 

B, C, D, and 10 s for segments A; these durations are deemed a good compromise between the accuracy of the 
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results and the complexity associated to the subsequent analysis and regression models discussed in the following 

sections. Indeed, while it is deemed out of scope for the present work, a rigorous analysis of the optimal value of the 

minimum segment duration would be needed for a real-time voltage inconsistency detection algorithm. 

After processing, the number of segments A, B, C, and D is 76034, 18154, 20433, and 8050, respectively. Then, 

the DBPs (reported in Table 3) are extracted for each segment to describe driving behavior characteristics in terms of 

vehicle speed, acceleration, and pedal state. 

Table 3 Description of the extracted DBPs for segments A, B, C, and D 

Segments No. DBPs  Unit 

A/B/C/D 1 Maximum speed km/h 

2 Average speed km/h 

3 SD of speed km/h 

4 Maximum positive acceleration m/s2 

5 Maximum negative acceleration m/s2 

6 SD of acceleration m/s2 

7 Average positive acceleration m/s2 

8 Average negative acceleration m/s2 

A 9 Maximum accelerator pedal stroke % 

10 Average accelerator pedal stroke % 

11 SD of accelerator pedal stroke % 

C 9 Maximum brake pedal stroke % 

10 Average brake pedal stroke % 

11 SD of brake pedal stroke % 

3.2 Quantitative characterization of VCC  

The variation coefficient can describe the overall fluctuation characteristics of data over a time interval. 

Compared to other indicators such as entropy, distance between curves, variation coefficient is easier to calculate and 

requires less computational efforts in practice. Hence, following the works of [37][49], we adopted the VVCC to 

quantify voltage consistency during a segment. The calculation for VVCC can be expressed as: 

 kjV
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 (5) 

where, 
ijV represents the voltage value of the i cell at the sampling time j; the total number of cells is n (n is 96 in 

this paper); 
jV represents the average voltage of all cells at the sampling time j; V is the average value of voltage 

during the segment; 
jV max and 

jV min represent the maximum and minimum of voltage at the sampling time j; is 

the VVCC during the segment. A larger value of VVCC means a worse VCC. 

3.3 PCC based correlation analysis 

According to the analysis carried out in section 3.1 for the curves of pedal, voltage, and current, there is a 

significant correlation between battery voltage and driving behavior. Therefore, the PCC is adopted to quantify the 

correlation between DBPs and the VVCC under four types of segments. For two random variables X and Y, the 

Pearson coefficient R(X,Y) can be calculated as follows: 
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where Cov(X,Y) is the covariance between X and Y, )(XD and )(YD are the standard deviations of X and Y, 

respectively, x and y are the means of X and Y, respectively, and m represents sample size.  

The coefficient value is always within the interval [-1,1], and the larger its absolute value, the stronger the 

correlation between variables. Generally speaking, values of 0.8~1.0 are considered to indicate extremely strong 

correlation, whereas values of 0~0.2 suggest very weak correlation or no correlation[47]. 

3.4 RF regression models 

In order to investigate the relationship between the DBPs and the VVCC, a regression model is developed. 

Because the features (i.e., the DBPs) to be used in this study have significant intercorrelation, all regression models 

that require non-correlation between features were discarded. A RF model[50] is selected because it has no 

requirement of non-correlation between features, allowing us to use all features as inputs to the model. Moreover, in 

contrast to other black-box artificial intelligence models, RF model has a strong interpretability thanks to that the 

contribution of features to target prediction can be directly obtained. Besides, combined with marginal impacts 

calculation method, RF models can effectively examine the relationships between features and the target. To achieve 

robust results over the different driving scenarios, one RF regression model is established for each kind of driving 

segments (one for segments A, one for segments B, etc.) to analyze the DBPs’ importance and influence mechanism 

to VCC. In addition to the DBPs, the ambient temperature and SOC were also used as input features for the model, 

while the target variable is VVCC.  

After training a RF model, the importance score of each feature is outputted. The score represents a feature’s 

contribution degree to target regression and prediction, and it is quantified by the percentage increase in mean 

squared error (IncMSE%) of the out-of-bag data. In short, IncMSE% of a feature indicates the prediction accuracy 

decrease after that feature is removed, so a more important variable has a higher IncMSE%. 

3.5 Analysis and interpretation of the RF models  

After training the RF regression models, we assess how the driver behavior parameters affect VVCC, and 

whether their relationships are nonlinear, monotonic, or more complex. In order to interpret black-box machine 

learning models such as RF and ANN, partial dependence plot (PDP)[51] or accumulated local effect (ALE)[52] 

plots are typically used. Both these tools graphically describe the impact of each feature on the response variable. 

More specifically, they display the average marginal effect of each feature on the prediction. However, PDP assumes 

that the features are completely independent from each other. Therefore, given the expected inter-dependence of the 

DBPs, PDP is unsuitable for our model. On the other hand, ALE was specifically developed to handle intercorrelated 

features. Hence, this method was selected in this work to investigate the marginal effect of each individual DBP on 

voltage inconsistency, i.e., how the effect of an individual DBP changes the VVCC when other parameters are held 

constant. 

The underlying idea behind ALE can be summarized as follows. Suppose that )(ˆ f is a regression model. For a 

feature ex , the local effect of ex  on the response variable can be expressed by the partial derivative )(ˆ ef :  

 ecece
e xxxfxxf = ),(ˆ),(ˆ  (7) 

The variables xc refer to all the other features of the model, excluding ex . Then, the value of ALE for feature ex at a 
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given value of ex x= is the accumulated value of this partial derivative (or rather its expected value) from 0ex = to 

x . 

In practice, regression models based on machine-learning are not differentiable and the partial derivative in 

Eq. (7) must be approximated. This is done by dividing the feature space for ex into a finite number of intervals and 

replacing the values of ex with gridded values (the intervals’ bounds). The partial derivative in Eq. (7) is 

approximated, for each interval kI , by the difference: ( ) ( 1)
ˆ ˆ( , ) ( , )k c k cf z x f z x−− , where ( 1)kz − and ( )kz are the left and 

right bounds of kI ; this difference is evaluated for all data points for which the value of ex lies in kI . The value of the 

ALE can then be obtained by accumulating these differences. The specific calculation steps were provided in the 

work of Apley et al.[52]. 

4.Results and discussions 

4.1 Correlation between DBPs and VVCC 

The PCCs between VVCC and DBPs are illustrated in Fig. 6. As shown in Fig. 6, for segments A, the two 

parameters most correlated with VVCC are average accelerator pedal stroke and maximum accelerator pedal stroke. 

The explanation for this high correlation is that the driver’s engagement with accelerator pedal directly influences 

voltage fluctuations so that their curves are roughly symmetrical. Additionally, maximum speed, SD of accelerator 

pedal stroke, average positive acceleration and SD of speed show a moderate correlation with VVCC. The two 

parameters having the lowest correlation are average negative acceleration and maximum negative acceleration, 

since EVs operate primarily by driving and energy output modes during segments A without involving instances of 

large deceleration. In situations requiring rapid deceleration, the driver tends to release the accelerator pedal 

completely and engage brake pedal. For segments C, the two parameters most correlated with VVCC are average 

speed and maximum speed, which both show a moderate correlation. This can be explained by the fact that the 

intensity of regenerative braking is directly influenced by vehicle speed. Generally speaking, the higher the vehicle 

speed, the greater the energy recovery intensity, and therefore, at a higher speed, a larger regenerative braking torque 

can be generated. In other words, energy recovery essentially involves converting kinetic energy into electrical 

energy. Therefore, the vehicle at higher speed would make a greater intensity of energy recovery due to its carried 

larger kinetic energy. Therefore, average speed, maximum speed, and SD of speed exhibit the most prominent 

correlation with VVCC under these segments. The three brake-pedal-stroke related parameters are weakly correlated 

with VVCC. During segments C, regenerative braking and traditional mechanical braking usually work together to 

decelerate the vehicle. The braking force allocation between regenerative braking and mechanical braking involves a 

complicated strategy set by vehicle manufacturer. Since the battery energy recovery is solely related to regenerative 

braking and independent of mechanical braking, the relationship between brake pedal stroke and battery charging 

current is nonlinear. Hence, the correlation with VVCC of brake-pedal-stroke related parameters are weaker than 

speed related parameters. 

In segments B and D, the vehicle is on coasting and the energy recovery made by regenerative braking is the 

primary factor influencing voltage fluctuation. As mentioned before, the intensity of regenerative braking largely 

depends on coasting speed, a higher speed generally leads to a more violent regenerative braking. Therefore, under 

these two segments, the three parameters most correlated with VVCC are also average speed, maximum speed, and 

SD of speed. Additionally, it is observed that the PCC values of these three parameters in segments D are lower than 

that in segments B. As the subsequent segments to braking segments C, segments D often have more lower speed 

than segments B, resulting in smaller energy recovery intensity and voltage fluctuation. 

For segments B, C, and D, despite some differences on vehicle operation and battery mode transitions, the 
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battery is essentially in a charging state through energy recovery. Hence, the correlation results for the three types of 

segments are quite similar, with the same four most correlated parameters and same four parameters holding weakest 

correlation. Moreover, for segments B, C, and D, the correlations of acceleration related parameters with VVCC are 

weaker than that of speed related parameters. 

 

Fig. 6 PCCs between VVCC and DBPs 

4.2 Impact mode of DBPs on VVCC 

As part of the training process for the four RF models, some hyper-parameters, such as number of decision trees, 

maximum depth of trees, and maximum number of features, are optimized. First, the number of decision trees for all 

four RF models is determined through the 3-fold cross-validation method, and eventually, 200 is set for each model 

as a good compromise between the training time and accuracy of the results. Then, the optimal values of the other 

hyper-parameters are determined using grid search and 3-fold cross-validation. The obtained optimal hyper-

parameter values and goodness of fit which is quantified by the coefficient of determination R2, after model training 

are presented in Table 4. The value of R2 for the RF models of segments A, B, C, and D is 0.919, 0.946, 0.955, and 

0.955, respectively. These values suggest that all RF models have good prediction accuracy. The results of feature 

importance are quantified through IncMSE%, as illustrated in Fig. 7. It is noteworthy that the SOC and ambient 

temperature were selected along with DBPs as inputs due to their significant impacts on voltage, in order to establish 

RF models with a high accuracy. Therefore, in Fig. 7, the results of SOC and ambient temperature are also illustrated. 

As Fig. 7 shows, it is observed that SOC is consistently significant for all four types of segments, especially in 

segments C and D, while the importance of ambient temperature is not pronounced. Indeed, as SOC goes down, 

battery voltage gradually decreases. Thus, battery SOC influences the fluctuation range of voltage, establishing a 

close connection with VVCC. 
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Table 4 Optimal hyper-parameter values and goodness of fit of developed RF models 

Segments 

Hyper-parameters 

R2 Number 

of trees 

Maximum 

depth of trees 

Minimum number of samples 

to split an internal node 

Minimum number of 

samples in a leaf 

Maximum number 

of features 

A 200 25 3 1 0.7 0.919 

B 200 15 5 2 0.7 0.946 

C 200 16 2 1 0.5 0.955 

D 200 25 4 1 0.5 0.955 

 

Fig. 7 Importance of features to VVCC regression and prediction 

Regarding the DBPs, it can be seen from Fig. 6 and Fig. 7 that the four most important DBPs for each segment 

type are the same, whether Pearson’s coefficient or the IncMSE is considered as a metric. Therefore, these 

parameters were selected for further exploring their impact patterns on voltage inconsistency. 

 

(a) Segments A 
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(b) Segments B 

 

(c) Segments C 

 

(d) Segments D 

Fig. 8 ALE of important DBPs on VVCC 

Fig. 8 illustrates the ALE of these important DBPs on VVCC. The magenta curve represents the ALE based on 

all training data, while the light blue curves for reference are derived from 50 bootstrap experiments where one-tenth 

of the training data is sampled. These light blue curves show the differences between multiple experimental results: 

the closer the distances between these curves, the clearer the relationship between the feature and dependent variable. 

It can be seen from Fig. 8 (a), under segments A, as average accelerator pedal stroke increases, ALE shows a slight 

decrease before rapidly increasing, the transition point from decrease to increase occurs at approximately 17%. It 

should be noted that the increase of ALE means the rising of VVCC and the deterioration of voltage consistency. For 

maximum speed, the ALE monotonically increases, with high rate within the range of 33-68 km/h but very low rate 

when beyond 68 km/h. For vehicles running on urban road, maximum speed may keep rising after exceeding 68 

km/h, but average speed and average pedal stroke would not increase consistently. Average accelerator pedal stroke 

is the most crucial parameter affecting VVCC, hence, the change of ALE is minimal after maximum speed exceeds 

68 km/h. For maximum accelerator pedal stroke, the ALE continuously decreases when it below 29%, then steadily 

increases after it exceeds 29%, so the influence pattern is similar to that of average accelerator pedal stroke. 

Additionally, ALE increases monotonically with SD of accelerator pedal stroke. 

Under segments B, C, and D, the ALE curves of average speed and maximum speed show a tendency of 

continuous rising, and exhibit an approximate linear upward trend when over a certain speed threshold. This trend is 

attributed to the strong correlation between vehicle speed and voltage fluctuation during energy recovery. 

Additionally, the ALE of average negative acceleration in all three types of segments almost consistently increases, 

mirroring the pattern observed in average speed. A higher average deceleration is often translated into a greater 

conversion of kinetic energy into electrical energy and more pronounced voltage fluctuations, although the average 

deceleration is weakly correlated with VVCC. However, for SD of speed under segments B, the ALE primarily 

increases before slowly decreasing, which shows a notable difference from segments C and D. 

Overall, these important DBPs exhibit a positive influence on the increase of VVCC. Their relationships with 

VVCC are nonlinear, yet approximate a linear association within certain ranges, particularly for average accelerator 

pedal stroke, SD of accelerator pedal stroke, average speed, and maximum speed. The non-linear relationships 

contribute to a better understanding of the driving behavior’s impact pattern on VVCC. 
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4.3 Actual effects of DBPs on VVCC 

The ALE can only describe the theoretical non-linear relationships between DBPs and VVCC, failing to express 

the actual magnitude of their impact on VVCC. Therefore, the authors further conduct a quantitative and more 

intuitive analysis of their actual effects based on data statistics. The segment samples are divided into four groups for 

each DBP, based on their quantiles of 25%, 50%, and 75%. Subsequently, the growth rate on mean VVCC for the 

latter three groups (quantile 25%-50%, 50%-75%, and 75%-100%) with respect to the first group (below quantile 

25%) is used to characterize the magnitude of the effects of the DBP on voltage consistency. 

 

(a) Segments A 

 

(b) Segments B 

 

(c) Segments C 
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(d) Segments D 

Fig. 9 DBPs’ actual effects quantified by growth rate of mean VVCC 

As shown in Fig. 9, for all the involved parameters, groups with higher DBP value have larger mean value of 

VVCC, which further indicates that an increase in these parameter values leads to a deterioration in VCC. Indeed, in 

Fig. 9 (a), the maximum growing rates of mean VVCC are obtained by DBP values above 75th percentile at 

segments A. From this perspective, the most significant effect is observed on average accelerator pedal stroke. 

However, within the range of quantile 50%-75%, the most significant effect is observed on maximum speed which 

reaches 27.12%. As seen from Fig. 9 (b), (c), and (d), for segments B, C, and D, the effects of average speed and 

maximum speed on VVCC are very similar. For these two DBPs, the effect is the most significant over segments B, 

while is the lowest under segments D due to their lowest speed, minimal battery charging current and voltage 

fluctuation overall. Under segments B, the maximum effects of SD of speed and average negative acceleration are 

34.31% and 33.90%, respectively, while their values are below 18% under segments C and D. Additionally, by 

comparison overall, segments D exhibits the lowest effect of DBPs on VVCC, followed by segments C. For 

segments B, the maximum effects of average speed and maximum speed both reach 55.70%, making them the largest 

among all DBPs under the four kinds of segments. 

To more directly reflect the effects of driving behavior on VVCC across the four categories of segments, the 

maximum quantified effects of these DBPs are summarized in Table 5. Segments B exhibits the most significant 

effects of DBPs on VVCC, while segments D show the weakest effects. For segments B, the maximum effects of 

average speed and maximum speed both reach 55.70%, while that of average accelerator pedal stroke under 

segments A is 48.09%. Compared to segments A, the overall speed is lower and the speed interval is larger in 

segments B. Therefore, the difference in VVCC between high-speed (above quantile 75%) and low-speed (below 

quantile 25%) states is more pronounced in segments B. Additionally, the weak effects of driving behavior on VVCC 

under segments D are attributed to the relatively small differences in speed within the segment. 

Table 5 Maximum quantitative effects of important DBPs on VVCC 

DBPs 
Effects (%) 

DBPs 
Effects (%) 

Segments A Segments B Segments C Segments D 

Average accelerator pedal stroke 48.09 Average speed 55.70 29.01 23.68 

Maximum speed 39.99 Maximum speed 55.70 28.10 23.56 

Maximum accelerator pedal stroke 44.55 SD of speed 34.31 13.62 17.34 

SD of accelerator pedal stroke 31.15 Average negative acceleration 33.90 14.17 14.87 

It is important to note that DBPs under segments B generally exhibit the most significant effects measured by 

the growing rate, but this does not necessarily mean the VVCC is highest in these segments. We calculated the 

average VVCC for each kind of segments under different ambient temperatures and SOC conditions, as shown in Fig. 

10. The ambient temperature range of the dataset is from 0 ℃ to 48 ℃, and the SOC range is from 23.8% to 99.3%. 

We group the segments by the interval of 8 ℃ for ambient temperature and 20% for SOC, which can achieve that as 

much groups as possible are obtained and the situation of dividing scanty samples in certain groups is avoided. From 

Fig. 10, it is evident that SOC also has a significant impact on VVCC. Under SOC conditions ranging from 20% to 
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60%, segments A exhibits the highest mean VVCC for almost all ambient temperatures, followed by segments B and 

then segments C. This is primarily because, as mentioned earlier, segments A has the highest speed and the most 

drastic current changes overall, while segment D has the lowest. However, under SOC conditions ranging from 60% 

to 100%, the differences in mean VVCC among the four kinds of segments are obviously reducing, and segments A 

does not always exhibit the highest average VVCC, nor does segment D show the lowest. These results demonstrate 

that SOC, ambient temperature, and driving behavior collectively influence voltage consistency. Therefore, the 

established thresholds need adapt not only to driving behavior but also to environmental factors and the battery’s 

own state. 

 

Fig. 10 Comparison of mean VVCC among four kinds of segments under different ambient temperature and SOC conditions 

The above results intuitively demonstrate and quantify the impact of the DBPs on VVCC. They also directly 

emphasize the necessity of integrating driving behavior for evaluating and diagnosing voltage inconsistency. Based 

on these findings, it is evident that integrating parameters of average accelerator pedal stroke, maximum speed, and 

maximum accelerator pedal stroke at segments A, along with average speed and maximum speed at segments B, is 

crucial for voltage inconsistency evaluation and diagnosis. This integration can maximize the accuracy of VCC 

evaluation and diagnosis. Clearly, for detecting abnormal VVCC using a threshold-based method, larger thresholds 

should be applied to running states with higher VVCC. For instance, a rough estimation suggests that, for segments 

A with average accelerator pedal stroke exceeding 27.53%, the threshold should be approximately 1.48 times larger 

than that of segments below 18.39%, since the mean VVCC corresponding to the average accelerator pedal stroke 

above 75th percentile is 48.09% higher than that below 25th percentile. In summary, these results not only contribute 

to understanding the extent of driving behavior’s impact on VVCC, but also provide insights for setting thresholds in 

engineering practices for voltage inconsistency evaluation and diagnosis. 

4.4 Implications for voltage inconsistency detection 

Based on the results presented above, it is evident that voltage inconsistency exhibits a high sensitivity to 

driving behavior. Thus, as previously mentioned, both single fixed threshold and multiple fixed thresholds for 

different operating scenarios have limitations in detecting voltage inconsistency, and a robust fault detection method 

should use adaptive rather than fixed thresholds. Setting adaptive thresholds, also known as real-time dynamic 
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thresholds, relies on utilizing the real-time mapping relationship between VCC and driving behavior. The results of 

this study show a possibility for the application of such methods. Meanwhile, the breakthroughs of artificial 

intelligence algorithms and the development of platforms using high-frequency data provide a solid foundation for 

the application. Currently, due to the rapid development of EVs worldwide, there is a growing trend globally towards 

utilizing high-frequency operational data for battery and vehicle safety monitoring and control. In addition, to meet 

personalized safety monitoring requirements from automobile manufacturers and automotive service providers, there 

is already a telematics-box available in the market with the data collection and upload frequency of 1 Hz. Meanwhile, 

it is designed with sufficient model computing and analysis capability, which enables comprehensive data collection 

and computation for on-board safety monitoring and warning. On the other hand, with the rapid development of 

artificial intelligence and the explosive growth of vehicular operation data, powerful deep learning algorithms such 

as LSTM, convolutional neural network (CNN), and TCN would be increasingly applied to battery state prediction 

as well as risk warnings with considering vehicle running conditions. Therefore, the findings of this study have broad 

application prospects in future upgraded EVs management platforms for voltage inconsistency detection.  

The findings of this study can effectively support the development of adaptive threshold-based method. Firstly, 

based on the results of PCC and parameters importance, the most significant DBPs that should be preferentially 

selected as model inputs for prediction of VCC are identified. Secondly, this study reveals the impact patterns and 

actual effects of driving behavior on VCC, enhancing the model interpretability for interval prediction. This higher 

interpretability helps developers better understand the model and fosters user trust in the model results. Due to the 

“black box” nature of machine learning models, especially ANN, their interpretability becomes more and more 

important along with their increasing application in battery state prediction. According to the high accuracy showed 

by the RF models in this work, it is found that accurate prediction of VCC can be achieved, and interval prediction 

based on machine learning algorithms is well-suited for voltage inconsistency detection. The suggested method is 

illustrated in Fig. 11. By using extensive operational data from normal vehicles and the extracted ambient 

temperature, SOC, and driving behavior parameters as features, models such as quantile regression forest and 

quantile regression neural network can predict the normal range of VCC during real-time vehicle operation. Once the 

real value of VCC exceeds the upper or lower limits of the normal interval at a certain confidence level, primarily the 

upper limit, abnormal values of VCC can be detected. In this framework, the predicted normal range would serve as 

an adaptive threshold, which changes along with vehicle’s operation. Jo
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Fig. 11 Schematic of adaptive-threshold-based voltage inconsistency detection  

5. Conclusions  

Accurate evaluation and diagnosis of voltage inconsistency are crucial for ensuring the safety of battery system 

in EVs. This study explores the associations between driving behavior and voltage inconsistency, thus setting the 

basis for the development of an adaptive-threshold-based method to detect voltage inconsistency faults using the data 

from real-world EVs. After identifying different kinds of running segments of EVs, the correlation, impact patterns, 

and actual effects of driving behavior with respect to voltage consistency are analyzed for each segment type.  

The key findings can be summarized as follows. First, a significant correlation between driving behavior and 

VVCC is observed over the experimental data. Specifically, the parameter most correlated with VVCC at segments A 

is average accelerator pedal stroke, with a PCC value of 0.724, while for segments B, C, and D, it is average speed, 

with PCC values of 0.789, 0.554, and 0.553, respectively. Secondly, the four RF models all show a high accuracy of 

VVCC prediction with R2 over 0.919, which indicates that the relationships between VVCC and important DBPs can 

be effectively captured. Moreover, the ALE results demonstrate their relationships are positive-nonlinear overall, 

while approximately linear for most intervals. Thirdly, the data statistics verifies that the important DBPs have 

obvious promoting effects on VVCC for all kinds of running segments. The DBP with the maximum effect is 

average accelerator pedal stroke for segments A, and average speed for segments B, C, and D. The mean VVCC 

corresponding to their value above 75th percentile is respectively 48.09%, 55.70%, 29.01%, and 23.68% greater than 

that below 25th percentile. Hence, based on all the results, we can conclude that there is a strong connection between 

driving behavior and battery voltage consistency and there is the potential to use the proposed approach for 

predicting voltage consistency. Additionally, key parameters for modeling voltage inconsistency are identified, 

including average accelerator pedal stroke, maximum speed, maximum accelerator pedal stroke, SD of accelerator 

pedal stroke for segment A, and average speed, maximum speed, SD of speed, and average negative acceleration for 

the other three segments. 
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The findings in this study, as indicated by the correlation analysis and parameter importance, would provide 

crucial inputs for VCC prediction modeling in future works. The revealed impact patterns and actual effects of 

driving behavior on VCC could be utilized for interpreting and improving VCC prediction models. However, it is 

worth to point out the limitations of this research. Firstly, this study exclusively investigates VCC during vehicle 

motion and does not analyze the scenario of vehicle in a stationary state. Secondly, this research focuses specifically 

on VVCC, and the results from other indicators characterizing VVCC might exhibit slight variations. In future work, 

it would be worthwhile to explore the relationships between driving behavior and different VCC indicators, such as 

entropy, curve distance, and so forth, then establish corresponding prediction models. Furthermore, the performances 

of several models can be compared to identify the optimal model for voltage inconsistency evaluation and diagnosis. 
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HIGHLIGHTS 

 

⚫ Naturalistic driving experiment is conducted to collect running data from actual electric 

vehicles 

⚫ Relationship between driving behavior and voltage consistency is investigated 

⚫ Pearson correlation coefficients between driving behavior and cell voltage consistency are 

calculated  

⚫ Accumulated local effects of driving behavior parameters on cell voltage consistency are 

obtained using random forest models 
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