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Abstract: This study investigates the potential of deploying a neural network model on 

an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-

time inference within the predictive maintenance framework. In the context of Industry 

4.0, edge computing aims to process data directly on local devices rather than relying on 

a cloud infrastructure. This approach minimizes latency, enhances data security, and re-

duces the bandwidth required for data transmission, making it ideal for industrial appli-

cations that demand immediate response times. Despite the limited memory and pro-

cessing power inherent to many edge devices, this proof-of-concept demonstrates the suit-

ability of the Finder Opta™ for such applications. Using acoustic data, a convolutional 

neural network (CNN) is deployed to infer the rotational speed of a mechanical test bench. 

The findings underscore the potential of the Finder Opta™ to support scalable and effi-

cient predictive maintenance solutions, laying the groundwork for future research in real-

time anomaly detection. By enabling machine learning capabilities on compact, resource-

constrained hardware, this approach promises a cost-effective, adaptable solution for di-

verse industrial environments. 

Keywords: PLC; Arduino board; industrial automation; edge computing; machine  

learning; predictive maintenance; structural health monitoring 

 

1. Introduction 

Industry 4.0 refers to the integration of traditional industrial processes with smart 

digital environments, aiming to collect vast amounts of data from every stage of the man-

ufacturing cycle. This digital revolution enhances the speed of information exchange and 

enables data-driven advantages such as cost reduction, lower downtime, and improved 

operator safety [1–3]. One of the most promising technologies in this context is machine 

learning (ML), especially as it applies to predictive maintenance, where ML algorithms 

are used to predict failures and optimize machinery efficiency [4–6]. 

Machine learning, particularly artificial neural networks (ANNs), can handle com-

plex, high-dimensional data, extracting hidden relationships from various sources to be-

come a valuable predictive tool in manufacturing [7]. However, deploying ML models in 

traditional production environments is challenging due to high computational costs and 

the need for centralized infrastructure, which demands significant investments [8]. A key 

strategy to address these challenges is edge computing, which involves deploying ML 

models directly on terminal devices like programmable logic controllers (PLCs), 
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eliminating the need for large cloud infrastructures. This approach enhances processing 

speed, privacy, and cost-efficiency [9]. 

By processing data directly on devices like PLCs, edge computing allows for real-

time applications such as rapid fault detection, which would otherwise be impossible due 

to the latency inherent in cloud-based architectures [10,11]. However, limitations in 

memory and power still represent a major challenge for the development of edge compu-

ting, especially when machine learning is involved. Many hybrid architectures are being 

investigated to circumvent the issue, such as training the model on the cloud before de-

ploying it to the edge device, or “Federated Learning”, proposed by Google in 2016 [12], 

where deep learning models are trained at the edge, with the cloud serving as a model 

aggregator. The former approach is the most common and straightforward and will be 

employed in this study, though it does present some drawbacks, especially when the 

model needs updating since all of the data need to be transferred to and from the cloud. 

Predictive maintenance is one of the fields where machine learning can be most im-

pactful [13–15]. It represents a middle ground between “Run-to-Failure” strategies, where 

maintenance is performed only after machinery fails, and “Preventive Maintenance”, 

scheduled at regular time intervals regardless of the actual condition of the equipment 

[16,17]. Instead, by continuously monitoring a machine’s condition, predictive mainte-

nance enables companies to anticipate breakdowns and perform maintenance only when 

needed, accurately estimating the Remaining Useful Life (RUL) and minimizing unex-

pected downtimes [18]. This approach has been shown to improve overall equipment ef-

fectiveness by over 90% [19]. 

Among the various ML methods, ANNs stand out due to their ability to operate in 

real-time and their robustness against inconsistent data and outliers. ANNs do not require 

domain-specific knowledge, making them applicable across various industries [20]. How-

ever, one major disadvantage is the significant cost involved in training and executing 

these models, as they require large amounts of data and computing resources [21]. Re-

search in this area focuses on reducing the computational footprint of these models to 

make them suitable for deployment in resource-constrained environments like edge de-

vices. 

An important aspect of predictive maintenance discussed in this paper is the use of 

acoustic data for anomaly detection. Anomalous sound detection is an emerging field that 

involves identifying abnormal sounds emi�ed by machinery to detect early signs of fail-

ure [22]. Traditionally, skilled technicians could identify such anomalies by ear, but this 

approach lacks scalability [23]. The use of AI for sound-based anomaly detection is a 

promising alternative, allowing for the automation of this process [24]. For example, AI-

based sound detection has been successfully applied to fault detection in vertical drilling 

machines [25], with current research also focusing on unsupervised models to recognize 

abnormal situations without any a priori knowledge [26,27]. 

The case study presented in the paper explores the deployment of an ANN model to 

infer the rotational speed of ball bearings using acoustic data recorded by an affordable 

electret microphone. Although the case study primarily focuses on speed measurement, 

the broader goal is predictive maintenance within Industry 4.0, where acoustic data are 

used to detect equipment malfunction. The rotational speed measurement was selected as 

an initial test case due to its simplicity in acquiring measurable signals from basic sensors, 

thereby enabling efficient model training and facilitating a clear comparison between pre-

dicted and actual values. However, it does not represent the ultimate objective, as future 

iterations of this work aim to contribute to predictive maintenance strategies within the 

framework of Industry 4.0, leveraging acoustic data to detect potential equipment mal-

functions. 
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The adaptability of this system for retrofi�ing existing processes with minimal cost 

could foster adoption rates even in smaller plants or where it would not make financial 

sense to employ high-end solutions because of the type of technology (i.e., pneumatic sys-

tems that are known for their reliability, making fault detection critical, but low overall 

costs). 

This work serves as a preliminary proof of concept aimed at evaluating whether an 

innovative PLC device with Arduino integration, such as the Finder Opta™, can support 

real-time inference with an artificial neural network. Nowadays, several solutions to im-

plement machine learning algorithms and AI are available on the PLC market, with man-

ufacturers providing dedicated modules, programmable, for example, in C++ or MicroPy-

thon. These, however, are often quite costly and do not offer the flexibility and ease of use 

of the Arduino platform, which also has the advantage of being open source. The Finder 

Opta™ was, therefore, deemed an appropriate choice for this work in order to build an 

affordable and easy-to-retrofit PLC system with a low entry barrier. A more exhaustive 

comparative analysis against alternatives on the market is out of the scope of this feasibil-

ity study and will be carried out in future work. 

By demonstrating initial feasibility in tasks such as rotational speed measurement 

from acoustic data, this study lays the groundwork for more advanced applications. 

Paper Structure 

Section 2 focuses on the experimental setup and hardware configuration, with a de-

scription of the key features of the Finder Opta™ PLC that enable research of this kind. 

Section 3 goes into detail about the methodology and the case study, illustrating the main 

steps of data acquisition, data processing, model architecting, and model deployment. 

Section 4 presents the experimental results, along with their critical analysis, and Section 

5 presents the conclusions, including future developments. 

2. Experiment Setup 

The experimental test bench is designed to evaluate the Finder Opta™ PLC’s ability 

to perform real-time speed inference through embedded neural networks using acoustic 

data. 

The setup (Figures 1 and 2) consists of a rotating shaft driven by an asynchronous 

electric motor, supported at each end by radial ball bearings. Originally developed for the 

characterization of bearing lubrication, this test bench highlights the adaptability of the 

proposed approach for retrofi�ing into existing systems. The motor’s speed is managed 

through a closed-loop PID control system, which is tuned to minimize fluctuation and 

maintain stable rotations within a specified range (200–1500 rpm). The motor is powered 

by an inverter, which links to a Human–Machine Interface (HMI) for easy speed monitor-

ing and adjustments. 
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Figure 1. Experiment setup diagram. 

 

Figure 2. Experiment setup. 

The two primary sensors deployed in this experiment are an electret microphone, the 

ARCELI GY-MAX4466, and an inductive proximity sensor. The electret microphone cap-

tures the sound emi�ed by the rotating shaft and bearings. Acoustic monitoring was se-

lected because sound analysis is highly effective in detecting mechanical anomalies, such 

as misalignments or bearing wear, which can manifest as deviations in sound pa�erns. 

The microphone’s output is pre-amplified to enhance signal quality and ensure com-

patibility with the Finder Opta’s analog-to-digital converter (ADC), which accepts signals 
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within a 0–10 V range. This configuration eliminates the need for additional custom am-

plification, streamlining integration while maintaining adequate sensitivity. 

The inductive proximity sensor, powered at 24 V DC, is mounted near the rotating 

shaft and detects the passages of a small magnet a�ached to the shaft. This sensor provides 

precise speed measurements by counting the magnetic pulses over a defined interval, 

yielding accurate speed labels essential for supervised training and model validation. The 

resulting data pairs—acoustic signals and corresponding speed labels—form the neural 

network’s training dataset. 

The Finder Opta™ PLC 

The core of this study is the Finder Opta™ PLC, a compact and versatile Program-

mable Logic Controller designed through a collaboration between Finder and Arduino. 

This device incorporates a dual-core ARM Cortex-M processor (ST STM32H747XI, 

STMicroelectronics), making it suitable for applications requiring both high performance 

and resource efficiency. The Finder Opta’s hardware architecture, coupled with its indus-

trial-grade form factor, supports a wide range of connectivity options, including Wi-Fi, 

Bluetooth LE, RS-485, as well as Ethernet for robust communication capabilities in indus-

trial environments focused on IoT applications. 

A key advantage of the Finder Opta™ in this context is its compatibility with the 

Arduino ecosystem, allowing it to be programmed with both traditional PLC languages 

(IEC 61131-3) and the Arduino variant of C++. This dual compatibility significantly lowers 

the entry barrier for adopting state-of-the-art technologies, making advanced machine 

learning and IoT applications accessible even to technicians without extensive experience 

in the field. The Arduino programming environment provides access to countless official 

and third-party libraries, such as TensorFlow Lite for Arduino, which is the machine 

learning framework of choice employed in this work, enabling rapid development and 

easy integration of multiple technologies. Note, however, that at the time of writing, the 

official version of the library (2.4.0-ALPHA) only supports the Arduino Nano 33 BLE 

Sense board. Nevertheless, it is possible to eliminate the explicit references to the Nano 

board peripherals, as the framework code is compatible with most Arm Cortex M-based 

boards, including the Finder Opta™. 

The official Arduino IDE (version 2.3) is used to develop the software to run on the 

Opta™, accessed via the serial port over USB. 

3. Methods and Case Study 

3.1. Data Collection and Preprocessing 

The workflow, depicted in Figure 3, starts with the data collection phase, which in-

volves recording the sound emi�ed by the test bench in operation, exploiting the Opta’s 

analog inputs to sample the output voltage from the microphone. A sampling frequency 

of 5000 Hz allows capturing the relevant frequencies while addressing the PLC’s memory 

constraints, as it reduces the number of data points required to store a recording of signif-

icant duration. 

The inductive proximity sensor provides an accurate rotational speed measurement, 

producing speed labels necessary for supervised learning. To build a comprehensive da-

taset, 1350 audio samples are recorded across the relevant range of speeds (200–1500 rpm, 

with 50-rpm increments) and under various operational conditions at different times of 

the day to account for different levels of foreign noise present on the laboratory floor. 

The raw voltage signals undergo on-device preprocessing to extract higher-level fea-

tures. While it would be conceivable to feed the model the raw voltage signal sampled by 

the PLC, extracting meaningful features would pose quite a big challenge for a small 
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network. Instead, a common approach in audio recognition is providing a spectrogram as 

input, i.e., a 2D representation of the frequency spectrum of the signal over time, a higher-

layer abstraction with the most useful information [28]. 

 

Figure 3. Machine learning workflow. 

The Fast Fourier Transform (FFT) algorithm is applied to the segments of the audio 

signal to build their spectrograms, thanks to the ArduinoFFT library (v 2.0.2). Spectro-

grams offer a 2D matrix format, with one axis representing time and the other frequency 

(Figure 4). This format allows the neural network to recognize both temporal and fre-

quency-domain pa�erns, which are crucial for distinguishing between different rotational 

speeds. The spectrogram dimensions were set to 256 × 32, a trade-off between information 

density and their size. This results in a 1.64 s long audio acquisition process. 

 

Figure 4. Spectrogram example—900 rpm. 
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3.2. Model Architecture and Training 

A regular Multilayer Perceptron model is not suitable for audio or image recognition 

because of its inability to work with multidimensional tensors and recognize the relation-

ships between groups of adjacent pixels. Instead, convolutional neural networks (CNNs) 

were developed precisely for such purpose, as they can learn how simple features of a 

multidimensional tensor fit together into more complex structures, aiding in the interpre-

tation of the frequency information contained in the spectrogram. A CNN is, therefore, 

the most natural choice here [28,29]. 

The CNN architecture (Figure 5) can be constructed with the Sequential Keras API 

(Figure 6) since only a single input and output tensor are required for each layer. The 

input to the model is a two-dimensional 32 × 256 tensor, while the output layer comprises 

a single neuron whose activation represents the speed prediction, as this is a regression 

problem. 

One of the most common activation functions nowadays is the ReLU or rectified lin-

ear unit. This is especially true for CNNs, where their low computational complexity and 

cleanly defined gradients provide significant advantages in terms of training speed and 

accuracy. 

The ReLU is, therefore, the choice for all layers of the network, including the output, 

where it is particularly appropriate since it leaves positive speeds unaltered (y = x, for x ≥ 

0) and brings negative predictions, which are unphysical, to zero. Three 2D convolutional 

layers are employed to extract the high-level features from the spectrograms. Each layer 

defined with the keras.layers.Conv2D() class is composed of 32 filters for the convolution, 

striding one pixel at a time. The filter size is decreased deeper into the network for im-

proved accuracy and to maintain compatible dimensions with the layers as they are down-

sampled by three MaxPooling2D() operations that halve the size of the input. The structure 

is completed with two hidden fully connected layers of 64 and 32 nodes, respectively, that 

predict the speed on the basis of the features extracted by the convolutional layers. 

 

Figure 5. CNN Architecture. 
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Figure 6. CNN Model Design in TensorFlow, using Python in Google Colab. 

Model training is performed in Google Colab using TensorFlow (version 2.15.1), lever-

aging GPU acceleration to optimize learning speed. The collected dataset is randomized 

and split into training, validation, and test sets, with a 70%/15%/15% ratio, to evaluate and 

optimize model performance. This is carried out in Google Colab with the Python library 

numpy. For loss calculation, the Mean Absolute Error (MAE) metric (Equation (1), with � 

the number of predictions, with �� being the true outputs and ��� being the predicted 

ones) is chosen due to its robustness against outliers that may arise from extraneous noise 

in the acoustic data. Moreover, MAE provides a more balanced view, avoiding the dis-

proportionate weighting of outliers that may arise from noise in acoustic data [30]. This 

choice aligns well with predictive maintenance objectives, where robustness to noise and 

accuracy are prioritized. An adaptive learning rate scheduler is implemented to adjust the 

learning rate dynamically [31], allowing the model to converge more efficiently on a (sub-

)optimal solution (Figure 7). 

 

Figure 7. Training and validation loss. 

The trained model is validated on the test set, achieving an average prediction error 

of 28.7 rpm. The final CNN configuration represents a balance between predictive 
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accuracy and computational efficiency, making it suitable for real-time deployment on the 

Finder Opta™ with its memory constraints. 

3.3. Model Optimization and Deployment with TensorFlow Lite 

Deploying the trained convolutional neural network to the Finder Opta™ PLC re-

quires conversion to the TensorFlow Lite format for size reduction and optimization. 

Alongside this process, the embedded application to acquire the audio samples, compute 

their spectrograms, and run inference with the model needs to be designed. 

TensorFlow is primarily thought for desktop and cloud environments and does not 

address properly the confinements of embedded applications of machine learning. For 

this reason, the TensorFlow Lite (TFLite) project was initiated in 2017, enabling much 

smaller binary sizes by eliminating certain features, such as the ability to train models 

directly on target devices or dropping support for more complex architectures [32]. This 

opened the door to experimentation with machine learning on small, mobile, memory-

constrained devices, bringing advanced inference capabilities closer to the end applica-

tion. 

Thanks to the TensorFlow Lite Converter’s Python API, the model can be encoded as 

a FlatBuffer [33], applying post-training full-integer quantization to achieve a smaller foot-

print in terms of memory and resource utilization. 

 

Full-integer quantization requires a representative dataset to estimate the typical 

range of variation of the variables involved. To this end, it is convenient to provide the 

converter with the test dataset, as it contains a sufficient number of examples to com-

pletely characterize the input. 

 

Lastly, int8 (fixed-point 8-bit integer) is specified as the target datatype for all internal 

quantities, while float32 is still used for the input and output tensors. This ensures be�er 

future compatibility with traditional applications, as float32 is the most common type for 

tensors, and the Finder Opta is not limited to integer-only operations. 

 

The model can be finally converted with the specified optimization and saved as a C 

byte array to be embedded in an Arduino header file. The resulting size is 1 029 kB, which 

leaves just enough memory available for the rest of the code. 

MAE (Mean Absolute Error) = 
�

�
∑ |�� − ���|
�
��� , (1) 
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Once deployed, the Finder Opta™ captures the audio in real-time from the test bench 

via the electret microphone. The signal is processed on-device to produce spectrograms 

that match the input format used during model training. These are fed to the CNN model 

to conduct inference and obtain a speed prediction. Given the potential for foreign noise 

in industrial environments, the predicted speeds are averaged over a 10-s interval, miti-

gating the effects of temporary fluctuations and environmental noise-enhancing robust-

ness. 

4. Results and Discussion 

The deployment of the convolutional neural network (CNN) model on the Finder 

Opta™ PLC for real-time rotational speed inference yielded a promising outcome, vali-

dating the feasibility of integrating machine learning applications within resource-con-

strained industrial devices. Tables 1 and 2 report the experimental results. 

In the experimental activity, the CNN model achieved an overall Mean Absolute Er-

ror (MAE) of 42.1 rpm across the operational speed range of 200–1500 rpm. The detailed 

MAE for each speed category indicates consistent performance without any apparent 

trend across different speed ranges. Although the selected metric does not allow an eval-

uation of the sign of the speed predictions, it was observed that the model prevalently 

outputs higher speeds than the measured values (Figures 8–10). This bias suggests the 

presence of underlying systematic factors that may require further investigation, with one 

possible solution being the expansion of the training dataset. 

Table 1. Experimental MAE per speed category. 

Speed Label  

[rpm] 

MAE  

[rpm] 

Speed Label  

[rpm] 

MAE  

[rpm] 

200 56.1 900 34.5 

250 29.9 950 62.1 

300 35.8 1000 36.5 

350 28.3 1050 44.0 

400 53.2 1100 59.7 

450 22.6 1150 42.2 

500 36.1 1200 45.0 

550 46.5 1250 59.1 

600 60.5 1300 41.2 

650 29.5 1350 42.0 

700 33.4 1400 47.7 

750 36.3 1450 40.9 

800 45.1 1500 36.3 

850 32.2   
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Table 2. Overall Experimental MAE Result. 

Overall Mean Absolute Error (MAE) 42.1 rpm 

 

Figure 8. Serial port—speed prediction vs. measurements—200 rpm. 

 

Figure 9. Serial port—speed prediction vs. measurements—500 rpm. 

 

Figure 10. Serial port—speed prediction vs. measurements—900 rpm. 
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The experimental results were collected under various conditions, including differ-

ent times of the day, to account for changing levels of ambient noise in order to evaluate 

the system’s robustness. The experimental activity was carried out in the labs of mechan-

ics with common testing machines and mechanical equipment operated by personnel 

throughout the day and, therefore, has a level of background noise comparable to that of 

a standard industrial environment. The MAE result of 42.1 rpm indicates that the model 

maintained a reasonable accuracy, highlighting CNN’s ability to filter out irrelevant in-

formation, ensuring reliable performance in real-world industrial environments. 

The Opta’s RAM usage is around 85%, indicating how effective optimization tech-

niques, such as those presented in the previous section, are paramount for AI feasibility 

on edge devices. 

However, an average MAE of 42.1 rpm significantly reduces the applicability of such 

a method in environments where precise speed measurements are required. However, the 

aim was not to prioritize accuracy but rather to investigate the workflow and tools at one’s 

disposal and the trade-offs that are necessary to deploy complex AI models on resource-

constrained platforms in anticipation of further research in the field of predictive mainte-

nance. This was a goal that was successfully met. 

5. Conclusions 

This study successfully demonstrated the feasibility of deploying a convolutional 

neural network model on the Finder Opta™ PLC for real-time rotational speed inference. 

The proof-of-concept achieved in this research allowed for the investigation of the availa-

ble tools and required workflow, opening the door for future advancements in predictive 

maintenance on edge devices. 

The Finder Opta™ PLC, thanks to its integration with the Arduino ecosystem, 

proved capable of handling the computational demands of the CNN model after appro-

priate optimization and quantization. This accomplishment highlights the potential of lev-

eraging existing industrial hardware to incorporate advanced AI functionalities without 

substantial infrastructural changes. 

The model’s consistent performance under varying noise conditions a�ests to its ro-

bustness and reliability, which are crucial for real-world industrial applications. However, 

its generalizability to other systems or varied industrial environments has not been fully 

assessed. 

Deploying machine learning models on existing PLCs like the Finder Opta™ offers a 

cost-effective alternative to traditional centralized cloud-based solutions. The minimal ad-

ditional infrastructure required and the ability to retrofit into existing production lines 

make this approach highly scalable. Smaller manufacturing plants, which may not have 

the budget or technical skills for extensive upgrades, can adopt this methodology to en-

hance their maintenance practices, as will be explored in more detail in subsequent stud-

ies, thereby improving access to advanced predictive maintenance and manufacturing 

technologies. 

Future Developments 

To build upon the findings of this study, future developments will focus on expand-

ing the applicability of the proposed solution to monitor the health of mechanical machin-

ery in broader predictive maintenance frameworks. Specifically, this will involve leverag-

ing acoustic data to detect anomalous sounds indicative of wear, misalignment, or other 

potential faults. To achieve this, research will investigate advanced signal processing tech-

niques and machine learning methods to enhance the system’s ability to distinguish be-

tween operational noise and early-stage fault signals. Efforts will also aim at reducing 
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prediction errors and mitigating the effects of environmental disturbances, such as vary-

ing background noise levels. 

For instance, processing the raw audio signal with the Wavelet transform instead of 

the FFT could provide richer time–frequency domain features, particularly for non-sta-

tionary signals such as acoustic data from rotating machinery. The Wavelet transform’s 

ability to capture localized frequency components could improve the model’s ability to 

detect subtle variations, potentially enhancing the accuracy of predictions or enabling the 

system to detect early-stage anomalies. Additionally, examining alternative machine 

learning models, such as recurrent neural networks (RNNs) for sequential data or hybrid 

approaches combining feature extraction with traditional classifiers, may yield models 

be�er suited for varied predictive maintenance tasks. By addressing these aspects, future 

studies could extend the applicability of this work, offering insights into optimizing edge 

AI applications across a broader spectrum of industrial applications. 
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