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Abstract
The “Augmented Humans” term refers to the opportunity to improve human possibilities by
using innovative technologies such as Artificial Intelligence (AI) and Extended Reality (XR).
Digital therapies, particularly suitable for those treatments requiring multiple sessions, are
increasingly being adopted for home-based treatment, enabling continuous monitoring and
rehabilitation for patients, thus alleviating the burden on healthcare facilities by facilitating
remote therapy sessions and follow-up visits. Among these, the Mirror Therapy (MT) for
patients suffering from Phantom Limb Pain (PLP) could benefit greatly. This paper proposes
a novel “Augmented Humans” framework for the treatment of PLP through home-based
MT; the framework is designed to consider the activities carried on by the therapy center,
the patient, and the system supporting the treatment. Moreover, an XR-based solution that
integrates a Deep Learning (DL) approach has been developed to provide patients with a self-
testing and self-assessment tool for conducting at-home rehabilitation sessions independently,
even in the absence of physical medical staff. The DL algorithm enables real-timemonitoring
of rehabilitation exercises and automatic provision of personalized feedback on the gesture’s
performance, supporting the progressive improvement of the patient’s movements and his
ability to adhere to the treatment plan. The technical feasibility and usability of the proposed
framework have been evaluated with 23 healthy subjects, highlighting an overall positive
user experience. Remarkable results were obtained in terms of automatic gesture evaluation,
with macro averaged accuracy and F1-score of 95%, paving the way for the adoption of the
“Augmented Humans” approach in the healthcare domain.

Keywords Augmented humans · Deep learning · Extended reality · Phantom limb pain ·
Home-based treatment · Augmented therapy · Digital therapy

1 Introduction

The practice of providing medical treatments and consultations through the internet using
telecommunications technology is known as telemedicine [1]. This approach enables patients
to connect with medical staff members like doctors, nurses, and experts without having to
physically visit a hospital [2].Additionally, telemedicinemakes routinemedical consultations
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more convenient for patients [3], improving access to medical facilities and the effectiveness
of healthcare for a large number of individuals. To enable virtual consultations, telemedicine
involves a variety of communication techniques, such as video conferencing, phone conver-
sations, secure messaging, and mobile apps [4]. Nonetheless, the digital technologies already
available nowadays and the promising perspective of further development are promoting the
adoption of an “Augmented Humans” approach to provide full support both from the physi-
cian and the patient’s perspective fostering the improvement of the doctor-patient relationship
and the therapy success [5].

The “Augmented Humans” paradigm aims to improve individuals’ skills by making use
of innovative technologies such as precision robotics, Internet-of-Things (IoT), Additive
Manufacturing, but also Extended Reality (XR) and Artificial Intelligence (AI), whose recent
increasing development is affecting multiple disciplines in the healthcare industry, such as
orthopedics [6], urology [7], and oncology [8].

XR represents a continuumof technologies ranging frompurely physical to entirely virtual
reality, extending human perception through digital tools. XR includes three main categories
of immersive technologies [9], which from the least immersive to the most immersive, are
Augmented Reality (AR), in which digital information is superimposed on the real world,
Mixed Reality (MR), in which virtual objects dynamically interact with the real world,
and Virtual Reality (VR), in which the world that the user experience is entirely virtually
generated. AI is a branch of computer science that deals with the development of systems and
algorithms that can perform tasks that would normally require human intelligence [10], such
as reasoning, learning, natural language understanding, image recognition, problem solving,
and decision making. Specifically, machine learning (ML) is a subfield of AI that focuses on
developing algorithms that allow systems to learn from data and improve their performance
without being explicitly programmed for each task. Deep Learning (DL), a subcategory of
ML, instead uses deep artificial neural networks to model complex data and make decisions
or predictions.

In recent years, there has been a significant shift in healthcare paradigms towards more
patient-centered approaches to treatment [11]. “Augmented Humans” proved to be core for
the home-based treatment, which is at the forefront of this transformative shift, offering
the opportunity to receive medical care, therapy, and rehabilitation within the comfort and
familiarity of patients’ own homes. Home-based treatments are a comprehensive range of
medical and therapeutic services that are specifically tailored tomeet each patient’s individual
needs, whether it be for managing chronic illnesses [12], recovering from surgery [13],
getting palliative care [14], or even addressing mental health issues [15]. This approach
to healthcare has gained prominence for several compelling reasons. Firstly, it promotes
patients’ autonomy, allowing individuals to actively participate in their care plans in such
a way that therapies could fit with their preferences and lifestyles. Secondly, it reduces the
burden on healthcare facilities, freeing up resources for more critical cases while making
the therapy more easily accessible for those who may have difficulty traveling to a clinic or
hospital. Additionally, home-based treatment provides the opportunity to receive treatment
in a supportive and familiar environment, which can have a positive impact on a patient’s
emotional well-being and recovery process.

Phantom limb pain (PLP), a debilitating condition that affects individuals who have under-
gone amputation or experienced limb loss due to trauma or disease, turns out to be a breeding
ground to adopt an “Augmented Humans” approach for improving the quality of the treat-
ment. It is estimated that 80% of all the patients who underwent amputation report a sensation
of a phantom limb and, additionally, PLP [16]; this percentage increases if children with con-
genital absence of limb are considered [17]. Amongst the therapeutic techniques employed
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in PLP treatment, mirror therapy (MT) plays a key role. MT involves the use of mirrors
to create visual illusions that can help alleviate pain, improve motor function, and reduce
sensory disturbances in the affected limb [18]. In 2009 Darnall et al. [19] reported a case
study involving a patient with acquired above-knee amputation; his results with standard care
were disappointing even though he was receiving multidisciplinary care for his condition.
His agony from the phantom limb vanished once he started receiving self-delivered, home-
based mirror treatment. Some years later, Darnall and Li [20] extended the study to forty
patients confirming that the findings supported the efficacy of home-based self-delivered
mirror therapy, also providing benefits in terms of costs; nonetheless, the authors highlighted
the need to broaden further the investigation to people with lower levels of education to draw
conclusions regarding the feasibility of such an approach. The advent of XR technologies
allowed to employ both Virtual Reality (VR), such as Köktürk et al. [21], who carried out a
virtual treatment deployed on an Oculus Rift, and Augmented Reality (AR), such as Thørg-
ersen et al. [22], who demonstrated the suitability of the treatment on seven PLP patients
superimposing the virtual 3D model of the limb to the missing one.

The paper is structured as follows: The next Section highlights the research objectives,
Section 3 reports previous works related to the XR technologies employed in the PLP treat-
ment and DL studies on Hand Gesture Recognition, which is core to automatically recognize
hand movements during rehabilitation exercises; Section 4 describes the augmented frame-
work and a demonstrative solution employing XR and DL according to the “Augmented
Humans” paradigm; Section 5 shows and discusses the obtained results; Section 6 draws the
conclusions.

2 Aim and goals

The goal of the current work is to outline a framework for the treatment of PLP through
home-based Mirror Therapy according to the “Augmented Humans” approach. In this sense,
patients are requested to perform exercises making use of XR technologies, while DL algo-
rithms are integratedwithin the framework to verify the correctness of the performed exercises
and provide real-time feedback. The framework is designed to support both the physician
and the patient according to a user-centered perspective, considering of utmost importance
the need for a medical expert for the whole treatment supervision and intervention in case of
a critical situation. As most of the current solutions are tied to the requirement to perform
rehabilitation exercises under the direct supervision of a healthcare specialist, digital tools are
currently mostly used to improve patient awareness through better visualization or doctor-
patient communication. To maximize the effectiveness of the therapeutic approach at home,
the proposed framework integrates these features with a DL-based automated assessment
tool to empower patients to self-test and self-assess their performance by supporting remote
therapy sessions in which patients can perform the exercises at home without the constant
need for the physical presence ofmedical staff.With the introduction of aDL-based algorithm
for the identification of the correct rehabilitation exercise, patients can independently moni-
tor their progress, receive immediate feedback, and adapt exercises accordingly, fostering a
sense of autonomy and encouraging continued engagement in therapy. As an example of the
feasibility of the proposed framework, an initial solution based on MR and DL technologies
was designed and developed to conduct virtual MT sessions in a home environment, relying
solely on a Mixed Reality (MR) Head-Mounted Display (HMD). Unlike other solutions that
may depend on a wide range of additional devices, such as motion capture systems or spe-
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cialized sensors, this approach simplifies the setup for the patient, making the proposed PLP
home-based treatment highly accessible, and allowing patients to engage in effective ther-
apy without the need to purchase or maintain expensive or complex equipment at home. The
minimalist hardware requirement alsomakes the proposed solutionmore portable, increasing
its potential for use in a variety of settings. The remote management of patient monitoring
allows for continuous supervision of patient progress without the need for frequent in-person
visits, enabling physicians to respond quickly when needed. Finally, the framework presents
guidance for automatically generating detailed patient progress reports, which are shared
with the medical team to facilitate timely adjustment of the treatment plan. This provides
an efficient and transparent way to manage patient data, ensuring a complete and up-to-date
understanding of their condition.

3 Related works

The framework presented in the current study aims to integrate XR andDeep Learning digital
technologies for the home-based treatment of PLP.

Section 3.1 summarizes the recent employment of XR as a visualization technology capa-
ble of improving the patients’ and the physicians’ experience in the treatment of PLP. Section
3.2 gathers DL methodologies that have been adopted for Hand Gesture Recognition, which
is core for the automatic verification of the exercises’ correctness performed by the patients
and the development of a truly user-centered solution.

3.1 Extended reality solutions for phantom limb pain

Among the first approaches to support PLP therapy using AR, Desmond et al. [23] imple-
mented a solution to move a 3D arm representation on a screen through the data sent by
a glove equipped with sensors that the patient could wear on the healthy hand. Similarly,
Murray et al. [24] employed a HMD to display a virtual environment (VE). A glove was
utilized for upper-limb participants to depict their limb movements, while sensors were used
for lower-limb participants. For amputees with lower or upper limbs, sensors were attached
to the knee and ankle joints or the elbow and wrist joints, respectively. In 2010 Georgoulis
et al. [25] incorporated PLP in an innovative pain management system to deal with other
two different kinds of pain, i.e., acute pain and chronic pain; pain relief was provided to the
patients by showing AR scenarios triggered by analyzing facial expressions. Following a dif-
ferent approach, Huang et al. [26] carried out a study on hand phantommaps based on tactile
sensory feedback and employing support vector machine (SVM) for the maps generation,
while Henriksen et al. [27] provided electrical stimulation to amputees playing VR games
and the patients affirmed to feel an increased control of the amputated limb in addition to
pain relief, whereas Snow et al. [28] presented a case-study proving a 50% pain reduction
and increased mobility of the amputated limb by means of a VR headset, Oculus Rift, and
haptic feedback.

Several works focused on the use of myoelectric signals to map healthy limb movements.
A myoelectric virtual hand is a sophisticated prosthetic device that uses myoelectric signals
generated by the residual muscles in an amputee’s residual limb to control the movements
of the prosthetic hand. The virtual hand can be displayed using desktop VR [29–31], HMD
VR [32–34] and MR [35–37], helping to relieve pain in the vast majority of patients who
underwent the experiments. Likewise, the sameapproach canbe also adopted for the treatment
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of lower limbs, as shown by Correa-Agudelo et al. [38] in their study related to amputated
victims due to anti-personnel mines in Colombia, and by Zeher et al. [39] in their program
conducted by the Defense Advanced Research Projects Agency (DARPA) to implement a
platform to design, develop and test prosthesis through a strict interaction between patients
and physicians.

The above-mentioned works found evidence of an improvement in terms of pain relief in
amputees experiencing PLP. These findings fostered the development of solutions employ-
ing XR technologies coupled with motion tracking systems to better focus on the specific
movements requested for the rehabilitation. Several works focused on the realization of
“exergames”, aiming to blend the higher entertainment level provided by a game with exer-
cises targeted for rehabilitation [40]. In this sense, theMicrosoftKinectmarket entry, followed
by other customer-grade motion capture systems such as Leap Motion [41], enabled a fast
and accurate tracking propaedeutic to virtual models animation, as shown by Carrino et al.
[42], Fukumori et al. [43], and Penelle et al. [44]. Actually, Inamura et al. [45] used the spatial
information provided by Kinect v2 to animate a virtual avatar and adapt the arm length to
the user’s one, increasing the sense of agency and sense of ownership, even if the experiment
was limited to healthy subjects. More recently, Adaikkammai et al. [46] designed a solution
including a motion-sensing glove to send real-time data to a virtual environment by means
of an Arduino microcontroller and a motion tracking device. Another example of adaptation
was provided by Annaswamy et al. [47], through the development of a MR application (Mr.
MAPP) capable of real-time capture and generation of a 3D model of the patient’s healthy
arm to overcome the dependency on pre-built 3D models which, according to the authors’
opinion, could negatively affect the overall experience; the same authors presented amodified
version of Mr. MAPP for the lower limbs treatment [48] and taken up by Chung et al. [49]
in order to further increase the sense of experience perceived by the user.

Eventually, motion capture systems proved to be useful to trigger non-visual feedback,
such as auditory and tactile sensations [50, 51], or artificial upper limb movements [52],
as evidenced by the Nervebot solution [53], that can be controlled via the internet in a
shared near-real virtual environment. The importance of patient’s comfort during the virtual
experience was investigated by Nielsen et al. [54], who compared two different positions to
perform rehabilitation exercises, i.e., sitting and lying, finding that the results were strictly
exercise-dependant and suggesting that VR-based approach might be preferable to easily
adapt the exercise setup to the patients’ needs, as well as by Henriksen et al. [40] with their
study focused on anti-symmetrical movements, like walking, running, and cycling.

Although traditional desktop or personal devices have advantages in terms of ease of
use [55], the spreading of HMDs definitely fostered the employment of XR as enabling
technology to support and study PLP. Thørgersen et al. [22] designed an innovative MR
solution consisting of an Oculus Rift equipped with two additional digital cameras in order
to simulate the arm amputation by removing own-limb visual feedback; Carrino et al. [56]
presented IMPACT, a platform equipped with Oculus Rift, OVRvision Pro stereo cameras,
and Kinect v2 implementing customizable serious games; similarly, Osumi et al. developed
an Oculus Rift application integrated with infrared stereoscopic cameras, both Kinect v2 and
Leap Motion, to track the movement of the healthy limb [57]; Köktürk et al. [21] provided
a twofold solution, LIMBrehabVR, available for smartphone or Oculus Rift designed to
potentially reach double-limb amputees; Akbulut et al. [58] integrated Kinect, Oculus Rift,
and awearable surface EMG sensor in a pilot study consisting of four different serious games,
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and the solution was considered practically suitable for usage without physician’s assistance;
for the same purpose, Marsh et al. [59] proposed a framework including Oculus Go and
computing the virtual arm position and orientation using an inverse kinematics model; Saito
et al. [60] used an optical see-through HMD, the Microsoft HoloLens, and the Leap Motion
infrared camera to properly project the image of the phantom hand in front of the patient’s
field of view, extending the solution into a shared VR space in a subsequent work using the
Oculus Rift [61]; the same hardware usage was employed by Kocur et al. [62] to specifically
focus their study on missing fingers and obtaining promising responses according to the
involved patients. Even more complex visualization systems have been used to make the
experience totally immersive, such as the adapted CAVE-like projection employed by Molla
et al. [63] that, coupled with a motion capture system, allowed the user to control a virtual
avatar and maximize the patient’s full-body awareness.

Recently, several studies have been conducted on PLP home-based rehabilitation treat-
ments based onXR technologies, obtaining promising results in termsof adherence to therapy,
pain relief, and improved functions and balance [64–66]. For example, Tong et al. [67]
reported in a case series that immersive VR experiences provided significant relief from
PLP, with patients reporting a dreamlike sensation of moving their limbs, underscoring the
potential of VR to alter perceptual experiences in amputees. Additionally, Abbas et al. [68]
conducted a randomized, controlled trial to examine the impact of adding VR to traditional
exercise programs for unilateral traumatic lower extremity amputees, demonstrating that VR
not only significantly reduces pain, but that incorporating VR into rehabilitation can offer
significant psychological benefits to PLP patients. Other researchers, such as Lendaro et al.
[69], have focused on enabling patients to take control of their own rehabilitation while main-
taining supervision of the attending medical staff through telemedicine platforms. In their
work [70], they exploit myoelectric pattern recognition based onmachine learning algorithms
to decode motor intentions from the stump muscles in order to use them to command certain
virtual environments, thus providing adaptive therapy and improving home rehabilitation.

The carried-out analysis highlighted the importance of identifying a trade-off to combine
the importance of providing reliable results in terms of accuracy for the correct gesture
assessment and the need for an agile, easy-to-use solution to support the exercise execution
in a home environment, even without the presence of medical staff.

Table 1 summarizes the results of the literature review on XR-based solutions for PLP
rehabilitation therapy. Each paper has been categorized according to the XR technology used,
the type of XR device employed, the type of tracking exploited for the healthy limb, and the
need for additional cameras and/or wearable sensors to complete the setup. In addition, the
last column of the table refers to whether some type of feedback can be provided to the user
for the eventual therapy adaptation or personalization.

To the best of our knowledge, this is the first work that integrates a DL algorithm into an
XR solution to offer an automated self-assessment and self-monitoring tool for supporting
patients during remote therapy sessions without requiring physical medical staff involve-
ment. The DL-based algorithm allows real-time monitoring of the execution of rehabilitation
exercises, checking their correctness in execution, and providing automatic feedback on the
execution. This supports the patient’s progressive improvement of their phantom limb pain
and their ability to adhere to the treatment plan, ensuring a successful and safe rehabilita-
tion at home. Furthermore, this MR HMD-only approach further simplifies the patient setup
compared to other solutions that might rely on a variety of additional devices, like motion
capture systems or wearable sensors.
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3.2 Deep learning solutions for hand gesture recognition

The rapid development of artificial intelligence approaches in computer vision led to the adop-
tion of deep learning-based methods, which demonstrated to provide state-of-the-art results
thanks to their ability to automatically learn hierarchical representations from data [71]. Since
hand gesture recognition interprets and understands human hand movement through the use
of computer vision, the rising popularity of deep learning had an impact onmultiple domains,
such as surgery [72], reading assistant systems for blind people [73], sign language translation
[74], art [75], computer games [76], smart homes [77], human-computer [78], and human-
robot interaction [79]. Among the existing DL approaches used for addressing hand gesture
recognition, those leveraging hand keypoints identification rather than the whole input image
or frames from a video were considered. Indeed, the literature highlights that keypoint-based
hand gesture recognition methods are more appropriate to minimize the complexity of the
system to provide real-time results and keep the focus on the hand movement, avoiding pos-
sible sources of confusion arising from original image visual features, for example, the image
background, camera viewpoints, or unfavorable lighting conditions [78, 80–82].

DL-based hand gesture recognition systems commonly adopt a two-step design. The first
stage consists of a hand-keypoint estimation model serving as a feature extractor; the second
stage includes a further deep-learning model to infer the hand gesture class. The most sig-
nificant differences among the methodologies usually arise in the latter stage. Lu et al. [73]
involved hand keypoints for training a simple classifier to save computing power for reading
assistance for blind people purpose. Following the same idea, Neog et al. [83] leveraged on
VGG16 network to infer the classification labels from hand keypoints. A simple and effec-
tive hand gesture recognition system was proposed by Xie et al. [84] to enable high-accuracy
real-time gesture recognition on embedded devices with limited processing power. A cas-
caded multi-task convolutional neural network was implemented to simultaneously predict
hand detection probabilities and regress hand keypoint positions. An adaptation of this neural
network has been proposed to find a trade-off between the required computational power and
the need to consider the temporal component. Zuo et al. [74] proposed to guide a spatial atten-
tion module through pre-extracted pose keypoints heatmaps to focus on informative regions.
Furthermore, they introduced a sentence-level consistency constraint between the visual and
sequential features to improve the performance of continuous sign language recognition.
Additionally, a further module comprising a transformer, an LSTM block, and a fully con-
nected block was added to the system in order to encode the temporal correlation information
and estimate the gesture category. Wang et al. [72] presented a novel Human-Robot Inter-
face to achieve touch-free and precise manipulation with a surgical robot in robot-assisted
minimally invasive surgery. The system was based on a UNet architecture to address gesture
recognition, leveraging hand-keypoint regression and hand-shape reconstruction methods.
Avola et al. [85] proposed a new framework for 3D hand pose and shape estimation, which
was extended for addressing gesture classification by adding the same classifier described
in [86]. In the same year a vision-based multi-input fusion deep network (MIFD-Net) was
introduced by Wang et al. [78]; first, hand keypoint data and gesture images were processed
through Euclidean distance normalization and image segmentation technologies; then, both
the information for gesture classification were fused.

Literature showed that single frames are typically used as input for the designed neural
networks, especially due to the higher computational power required to analyze videos.
Nonetheless, within the augmented framework that the current work is going to propose,
relying on temporal application is crucial to correctly assess the rehabilitation exercises and
provide actual support to the patient during the exercise performance. Temporal information
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can be analyzedwithout considering thewhole image or frame, but relying on hand keypoints,
thus reducing the input data size. Therefore, it has been chosen to rely on hand keypoint
coordinates in order to feed an LSTM neural network architecture.

The Long Short-Term Memory (LSTM) architecture is highly effective for capturing
temporal dependencies in data, making it particularly advantageous for tasks that require
understanding sequences of information [87]. Unlike other machine learning and deep learn-
ing approaches, such as Convolutional Neural Networks (CNNs) that excel at processing
spatial features in static frames [88], LSTMs are specifically designed to handle time-based
patterns. This makes them ideal for applications like rehabilitation exercise assessment and
hand gesture recognition, where movements unfold over time. In these scenarios, many
gestures, letters, or words are dynamic and cannot be accurately recognized by analyzing
individual frames in isolation. LSTMs, however, can track the sequential progression of these
actions, ensuring that the temporal information is incorporated into the analysis. This capa-
bility enables LSTM-based systems to recognize complex patterns of movement that might
otherwise go undetected, providing a significant edge over other architectures that do not
account for the importance of time [89]. By maintaining and utilizing memory of previous
inputs, LSTMs can interpret not only the current state but also the context in which it occurs,
leading to more accurate and robust performance in dynamic environments.

A detailed description of the employed dataset, the network architecture, and training
parameters is provided in Section 4.3.

4 Methods

As highlighted in the previous Sections, wide adoption of digital technologies has spread
in the rehabilitation processes with a particular focus on PLP. These tools broaden the
spectrum of possibilities to realize therapies tailored to the patients’ needs according to a
“patient-centered” approach. Nonetheless, current solutions are intertwined with the need to
perform rehabilitation exercises under the direct supervision of a therapist; thus, digital tools
are employed to enhance patients’ awareness through enhanced visualization or improved
physician-patient communication. The proposed framework aims to integrate these features
with an automatic assessment tool to further exploit the home-based treatment approach
by letting patients’ perform exercises autonomously, without the need for ongoing physical
medical care.

Figure 1 illustrates the activity diagram for the entire framework and lists the tasks that
the patient, the system, or the therapy center must perform in order to complete the whole
procedure. This Section is organized as follows: subsection 4.1 describes the proposed frame-
work, while subsections (4.2 and 4.3) clarify the role of MR and DL technologies through
the description of an innovative solution for PLP exercises performance and assessment.

4.1 Augmented framework

Three prerequisites must be sequentially met by each patient to activate digital therapy for
the home-based treatment of PLP.

1. Patient’s health condition. This evaluation performed by the healthcare operator takes
into account a number of variables, including the patient’s overall health, the degree and
kind of PLP, the patient’s mental and physical capability to adhere to the therapy at home
and any other concerns that could compromise the treatment’s safety.
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Patient clinical
condition assessment

[therapy needed]

Therapy protocol
prescription

Therapy explanation and
first usage in loco

[therapy not needed]

Patient HMD usage
assessment

[negative]

Augmented Limb Pain
therapy tools allocation

Patient summons
in loco

Patient suitability to
digital XR technologies

[not suitable] [suitable]

Therapy center

Check authentication

[authenticated][not authenticated]

New patient registration

Check
exercise results

Patient sign up

[accept]

Start session

[decline]

HMD training

Patient consent
to the Augmented
Limb Pain therapy

Perform exercise

Provide exercise
personal feedback

Patient authentication

System Patient

[positive]

Fig. 1 PLP home-based Mirror Therapy treatment framework activity diagram. The activity diagram outlines
the actions that the patient, the system, or the therapy center must do for the telemedicine operation to be
completed. The red dashed rectangle identifies the framework area on which the solution proposed in Section
4.2 and Section 4.3 is focused on

2. Patient’s attitude in using digital technologies. A licensed healthcare operator should train
the patient on how to use the device properly during this phase and evaluate his capacity
to manage the HMD safely. Training must cover how to use the HMD, including how to
put it on correctly, switch it on, and navigate the interface, as well as how to handle any
technical issues that could come up while using it.

3. Patient’s willingness to undergo a digital therapy treatment. The patient’s dedication
and active engagement are necessary for home-based treatment in order to execute MT
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Therapy completed
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[no]
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Provide suggestions

Session
completed

Check criticality

[no]

Provide user
experience feedback

[yes]

Patient intends
to continue

[no]

[yes]

Fig. 1 continued

exercises on a regular basis, adhere to the application instructions, and offer information
and comments during augmented therapy sessions.

If the patient meets the above-mentioned requirements, the therapy center will register the
patient for the telemedicine service and assign the required tools for the augmented therapy.
This ensures that the patient is fully equipped to conduct the home-based treatment without
the need to independently purchase any hardware or software. Personal information, informed
permission for treatment participation, and acceptance of the telemedicine application’s terms
of use may all be sought during the registration process.

The therapy center can then provide a therapy prescription, taking into consideration the
patient’s special needs and personal responses to treatment. The therapy prescription will
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consist of specific information, including the frequency of sessions, length of the period
of treatment, exercises to be carried out, therapeutic objectives to be met, eventual patient
progress monitoring, and regular follow-up appointments.

A first on-site therapy session will be arranged in order to provide the patient with the
knowledge to deal with augmented therapy independently. During the first session, the patient
will learn about the HMD device and execute some virtual mirror exercises while being
observed by a healthcare operator, who can explain therapy prescription details, and address
any queries or worries the patient may have. To enhance accessibility and ensure that all
patients can fully benefit from the therapy, training will be customized to meet each individ-
ual’s specific needs. This tailored approach will take into consideration various factors, such
as the patient’s prior experience with technology, cognitive capabilities, and any physical
limitations they may have. By adapting the training to these individual characteristics, we
aim to simplify the technical aspects andmake the therapymore approachable for all patients,
regardless of their level of familiarity with digital tools. This personalization will not only
ease the learning curve but also empower patients to confidently engage in their rehabilitation
process. Moreover, by reducing potential barriers related to technology use, this approach is
expected to foster a more positive attitude toward digital technologies, encouraging patients
to embrace these tools as integral components of their rehabilitation program. Ultimately,
this strategy seeks to optimize patient participation and enhance the overall effectiveness of
the therapy.

During the first home therapy session, the patient enrolls in the app, establishing the
credentials required for login and future access. The patient can launch the app on the HMD
supplied by the medical center and log in with the personal credentials to start a therapy
session. The treatment session can be started only if the system detects a patient who has
been medically cleared for treatment by the medical center.

Within the application, the patient has the option to choose from a series of virtual mirror
therapy exercises, those predetermined by his treatment prescription.

The patient is requested to give comments regarding the exercises after completing each
activity (Fig. 2). The patient’s performance during the execution of the exercise, such as
running time and correctness of the performance, are evaluated, along with user feedback, to

Fig. 2 MR solution scene views captured from HoloLens 2 word-facing camera while completing self-
evaluation test
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provide execution suggestions to the patient, or in case of a critical situation, alert the therapy
center to start a real-time remote support procedure.

If the digital therapy is completed, the gathered information is combined into a report
containing exercise evaluation and user feedback, which is requested to provide comments
on the overall user experience that the system can store for later use, for instance for further
development of the app. The digital therapy can be stopped by the user at any time.

The medical facility gets the sent data at the conclusion of therapy and carefully assesses
it to track the patient’s development during PLP treatment. The treatment plan may need
to be modified based on the assessments or, maybe, the patient’s willingness to continue
therapy. For example, new exercises may be added or current ones modified, and the length
or frequency of therapy sessions may be changed.

In the following Sections (4.2 and 4.3) a solution compliant with the described framework
has been proposed.Although the framework describes the overall workflow from the very first
medical examination, in which the need for a rehabilitation path arises, to the whole digital
therapy completion, the solution focuses on the methodological perspective that allows for
the adoption of the “Augmented Humans” paradigm. In fact, as highlighted in Fig. 1, the
framework blocks involved in the proposed solution are those describing a single digital
therapy session, namely those enabling a truly remote rehabilitation. It has been decided not
to include the other blocks in the experimentation, because they would have lengthened the
paper not providing innovative content.

A physiatrist expert in PLP treatment participated in the exercise definition and the auto-
matic hand gesture recognition evaluation.

4.2 Mixed reality-based solution

MR allows for the integration of reality with virtual content with which the user can interact.
The ability to share clinical data, medical reports, and audio-video connected to the patient
in real-time throughout the whole procedure must always be guaranteed.

In this context, a MR-based solution that allows patients to conduct virtual MT sessions
in their home environment, using only a MR HMD, has been developed.

The application’s main objective is to promote the patient’s autonomy in the rehabilitation
process tomanage the therapywithout the need for on-sitemedical staff. This is accomplished
by giving the patient a self-testing and self-assessment tool to conduct rehabilitation sessions
at home independently, thanks to the possibility of receiving real-time virtual visual feed-
back from a first-person perspective while performing perceptual exercises. In this way, it
is possible to reverse the maladaptive plasticity of the sensorimotor brain and relieve pain
by increasing the mobility of the phantom limb [90]. Additionally, using a virtual prosthesis
model encourages adaptation to the real prosthesis and a sense of familiarity and acceptance
of it, creating continuity in therapy once training is finished [91].

An animated human hand model depicts the exercise in the proper way to aid in repro-
duction by the patient, providing a real-time visual guide to assist the patient in performing
the exercises correctly. Opening/closing of the fist, thumb-to-finger opposition, and flex-
ion/extension of the thumb were the implemented motor tasks. The patient is then asked to
perform the exercises with both the intact and residual limbs at the same time. The move-
ments of the intact hand are tracked and mirrored in real-time on the virtual prosthetic model
overlapped to the patient’s stump, giving him the illusion of performing the exercise indepen-
dently on the virtual limb. Deep learning feedback is immediately provided to the patient to
indicate whether the exercise was performed correctly, allowing for patient self-assessment.
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The MR application workflow can be summarized as follows:

1. the patient puts on the headset, and logs in to his therapy session (Fig. 3);
2. a virtual model of a prosthetic limb is overlapped on the residual limb to give him the

illusion of wearing a real prosthesis;
3. using a push-button menu, the patient can select the exercises specified in his therapy

plan from a variety of options;
4. the rigged model of a human hand is used to recreate the proposed exercise;
5. the patient performs the exercise with both the intact and residual limbs;
6. the movements of the healthy limb are tracked and mirrored in real-time on the virtual

prosthetic model;
7. the patient receives instant deep-learning feedback indicating if the exercise was carried

out properly (Fig. 4).

The Microsoft HoloLens (HoloLens, Microsoft, Redmond, WA, USA) was chosen as the
HMDdue to its unique characteristics as a commercially available optical-see-through device
with a self-sufficient computer power source and wireless connection. The MR application
was developed using the cross-platform game engine Unity3D (v2021.3.18f1) and integrated
with the Mixed Reality ToolKit (MRTK) to support user interactions within the application.
The MRTK framework provides a series of components primarily designed for the develop-
ment of MR applications, which comprises hand gesture detection, head movement tracking,
and voice command recognition capabilities.

An 80 mm square marker is worn on the patient stump to properly identify the user’s arm,
and superimpose the virtual model accordingly positioned and oriented. To that purpose,
the detection and tracking capabilities of Image Targets supplied by the Vuforia SDK were
included in theMR application. Image Targets are images that the Vuforia Engine detects and
tracks in real-time by recognizing naturally occurring features in images. These extracted
image features are stored in a preprocessed database,which is then integrated into the software
application and used for runtime comparisons. Vuforia Engine tracking will continue as long
as the Image Target is at least partially visible to the camera after recognition.

The healthy limb’s movement is tracked using the Microsoft HoloLens 2 inside-out hand
tracking system, detecting the coordinates of the supported tracked hand joints. The detected
coordinates are then mirrored on the sagittal plane and remapped onto the corresponding
joints of the virtual prosthesis model; in this way, the movement is reproduced on the affected
limb, and virtual visual feedback is provided to the patient on the movement that has been
performed.

Fig. 3 MR solution scene views captured from HoloLens 2 word-facing camera at login in the application
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Fig. 4 MR solution scene views captured from HoloLens 2 word-facing camera during a therapy session

4.3 Deep learning-basedmethodology for virtual mirror therapy assessment

The exercise assessment during the remote therapy session was addressed by a keypoint-
based LSTM architecture for Hand Gesture Recognition. The general workflow, shown in
Fig. 5, includes a keypoint estimation and an LSTM-based action recognition step. The
system receives in input the frames related to the current exercise, Microsoft HoloLens 2
inside-out hand tracking system was used to track the motion of the healthy limb, identifying
the coordinates of the supported tracked hand joints, and serving as a feature extractor of
the LSTM Hand Gesture Recognition model, which was handled as a classification task and
provided the predicted executed exercise as output. The dataset, the model architecture, and
the training process are described in the following subsections.

4.3.1 Dataset

The LSTM network was trained with a custom dataset that comprised video data for each
rehabilitation exercise and the corresponding keypoint annotations. Six exercises were con-
sidered as examples for the current investigation:

1. Closing of the fist
2. Flexion and extension of the thumb
3. Thumb to index finger opposition
4. Thumb to middle finger opposition
5. Thumb to ring finger opposition
6. Thumb to pinky opposition

For each class, 60 videoswere recorded reproducing themovement for the specific gesture.
In addition, a neutral class was created to collect random gestures related to exercises not
included in the therapy. Thus, the comprehensive dataset consisted of 420 videos, of which
10% were randomly selected to produce the test set. As a result, the final dataset comprised
357 videos for training, and 42 for test sets, respectively.

Fig. 5 General workflow of the Hand Gesture Recognition process

123



Multimedia Tools and Applications

Video data should be provided in the form of a set of hand keypoints coordinates along
with their associated gesture label to train the LSTM network for hand gesture detection.
The Google MediaPipe framework [92] was employed as a data annotator for this purpose.
MediaPipe takes advantage ofmachine learning pipelines to handle time series data, including
audio, video, and text. It offers a collection of libraries with the ability to carry out various
operations like object recognition, image classification, image segmentation, hand gesture
recognition, hand landmarks, and pose detection.

The keypoint coordinates for each frame were estimated using theMediaPipe Hand Land-
marker task [93]. Within the designated hand areas, the MediaPipe hand landmark model
identifies 21 palm-knuckle keypoints, which are highlighted in Fig. 6 as blue points. Each
keypoint is represented as a set of x, y, and z coordinates in a three-dimensional space.

The final application used the Microsoft HoloLens 2 inside-out tracking, which includes
four additionalmetacarpal keypoints than the 21 provided byMediaPipe (shown by red points
in Fig. 6). Nevertheless, the inference phase of the model did not include them for the hand
gesture recognition phase because they were unrelated to the current gesture identification.

4.3.2 LSTM network architecture

Figure 7 illustrates the Long Short-Term Memory (LSTM) network architecture.
The network input is a set of triplets representing the x, y, and z coordinates of 21 keypoints

belonging to each frame.A temporal sequence of 2 secondswas involved. Since the frequency
was 30 frames per second, each input sequence comprised 60 frames. Themodel is composed
of an LSTM block which extracts a significant representation of the input over time, and a
fully connected blockwhich provides the prediction. The former comprises five LSTM layers
with 64, 128, or 256 output nodes, while the latter includes three fully connected and time-
distributed Dense layers with 128, 64, and 32 output nodes, respectively, each followed by a
Dropout layer with a probability of 0.4 of the input units to drop, to prevent overfitting. As an
activation function, a rectified linear unit (ReLU) is placed after each layer of both blocks. In
the final Dense layer of the architecture, a Softmax activation function is employed to map
the 32 output units from the layer preceding to a probability function of the desired number
of classes, which in this case is 7, consisting of six classes for example treatment exercises
and the neutral class.

Fig. 6 21MediaPipe landmarks (blue points), and four additional Microsoft HoloLens 2 metacarpal keypoints
(red points)
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Fig. 7 LSTM network architecture. The input consists of a collection of triplets that represent the x, y, and z
coordinates of each frame’s 21 keypoints. LSTM layers are shown in blue boxes, Dense layers in green boxes,
and Dropout layers in yellow boxes. Each box has a number on the top indicating the number of hidden units
in the output space. Several output units equal to the classes to be discriminated are provided by the final layer

4.3.3 Training andmetrics

The LSTM network architecture was trained for 121 epochs using an Adam optimizer with a
learning rate of 0,0001. For parameter optimization, categorical cross-entropy and accuracy
were chosen. The model ran for about 30 minutes on the Google Colaboratory platform,
adopting the TensorFlow open-source machine learning framework and Keras API.

The classification performance of the LSTM network model was assessed by computing
the confusionmatrix and the related classificationmetrics, namely, accuracy, precision, recall,
and f1-score, described below. Given the values of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), accuracy, precision, and recall are defined as:

Accuracy = T P + T N

T P + T N + FP + FN

Precision = T P

T P + FP

Recall = T P

T P + FN

The f1-score is defined as the harmonic mean between precision and recall and it is
computed as:

F1 = 2 ∗ precision ∗ recall

precision + recall

The f1-score serves as a performance indicator by combining both measurements through
harmonic mean since the relationship between precision and recall has an inverse proportion.
Accuracy, precision, recall, and f1-score metrics were computed independently for each class
and then they were macro-averaged to provide a more concise overview of the performance.

5 Results and discussion

In this paper, we provide a novel augmented framework with an “Augmented Humans”
approach for the home-based treatment of Phantom Limb Pain through digital therapy. By
offering patients a highly customized, enjoyable, and convenient home-based therapy option,
this framework aims to provide a successful and efficient alternative to enable PLP patients
to manage their rehabilitation minimizing the need for ongoing physical medical care.
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5.1 User experience assessment

Twenty-six healthy subjects (ten male, thirteen female), aged 22 to 56 years old were selected
through a public call for volunteers at Politecnico di Torino (Torino, Italy) to provide a first
evaluation of the usability of the proposed MR solution. Participants were recruited from
among those who have no previous experience with XR technologies. The sample size has
been chosen by means of a power analysis performed considering a large effect size (0.8), a
significance level of 0.05, and power of 0.8.

To provide a safe and obstacle-free environment for participants, a 2-by-2-meter section
of our research lab has been designated as the testing area. Upon arrival, each participant
needed to complete a consent form stating their willingness to engage in the study, as well
as a demographic form containing basic demographic details such as age, gender, and any
relevant background information. Participants were then briefed on the study’s aims and
procedures, including a full explanation of the experiment’s scope, as well as a description
of the HoloLens 2 headset’s primary functions. Prior to testing, each participant conducted
an eye calibration using Microsoft’s Eye Tracking Calibration tool to calibrate the HoloLens
eye tracking in order to properly capture the user’s gaze and eye movements inside the MR
environment. This ensures that theMR solution properly responds to the specific user’s visual
cues. After that, each participant went through a Hololens native training program (Learn
Gestures by Microsoft) to learn how to interact with the holograms via head movements,
gestures, and spoken commands. This training is critical for ensuring that users are proficient
in utilizing MR technology and can efficiently explore and interact with holograms, thus
avoiding bias due to unfamiliarity with the technology. Following calibration and training,
the MR application is launched, and the subject engages in a complete session of therapy and
interacts with the MR content.

At the end of the MR session, a questionnaire was distributed to participants to measure
user experience (UX) related to visual perception, interaction and ergonomics, and engage-
ment. As the questionnaire is not tailored to a specific condition or demography, it provides
a more generalized understanding of how users from varied backgrounds and conditions
perceive and interact with the MR solution.

The questionnaire, as shown in Table 2, consists of 20 items, each of which is scored on
a Likert 5-point scale (from 1 “strongly disagree” to 5 “strongly agree”). The items express
both positive and negative thoughts towards a given feature of our MR solution. Participants
are asked to indicate their level of agreement or disagreement with the statement for each
item. The questionnaire was drafted with both positive (affirmative sentences) and negative
(negative sentences) items in mind. Favorable (Affirmative) items are statements that elicit
a favorable response from participants: a high score on the Likert scale, such as 5, would
indicate agreement or a favorable experience. Unfavorable (Negative) items are statements
that elicit unfavorable responses from individuals: a high score might imply disagreement
or an unpleasant experience. To make all items comparable, the negative sentences were
reversed in the data analysis phase, such that a high score (5) was associated with a positive
feature for our study.

With respect to the questionnaire results, the median was used to characterize the central
trends of replies to a single test item, with dispersion determined by examining minimum
and maximum values.

According to the data, the majority of users seem to have responded favorably to the
statements. In general, our findings indicate that the solution was successful in providing
a sense of visual control (median 4), allowing users to experience a high level of visual
immersion in the virtual therapy environment (median 5), and effectively creating a good
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visual illusion of the mirror (median 4), allowing proper alignment of the virtual prosthesis
(median 4), with no noticeable visual delays between the performance of exercises on the
healthy limb and virtual limb (median 5).

In terms of interaction, the majority of users report that the gesture interaction and app UI
were perceived as user-friendly and intuitive (median 5 and 4), and theywere able to complete
their experience without incident (median 5), indicating strong usability for the interaction.
Some participants indicated the application’s Field of View (FOV) was insufficient (median
3). Thismight bemotivated by the restricted viewof the user’s entire limbs throughHoloLens,
which could cause the user to switch between viewing their limbs and the app’s panels.While
using the program, most of the individuals did not report severe postural pain (median 3)
or visual fatigue (median 3), although the findings show a larger variability for these items.
Furthermore, some of them felt nausea, dizziness (median 5), or headaches (median 4).
Although all participants used the MR application for the same amount of time and within
the manufacturer’s recommended usage limits, variability in the results can be explained by
a number of factors, including differences in personal tolerance to pain and visual fatigue,
individual adaptation to the application and the specific MR environment, and sensitivity to
specific visual or sensory stimuli that may cause nausea, dizziness, or headaches.While some
usersmay acquiremore tolerance to the application stimuliwith continuous usage, decreasing
these effects, it is of utmost importance to assess each individual’s eligibility for augmented
therapy treatment. This justifies our decision to include a patient suitability assessment as part
of the augmented therapy prescription process inside the proposed telemedicine framework,
therefore ensuring safe and effective treatment for patients by putting their safety and well-
being first.

The findings point to a positive overall experience in terms of engagement and user
perception of their own performance during the activities. The majority of users felt they
were able to complete the tasks satisfactorily (median 5). This is a significant indicator that
users found the exercises manageable and that they were able to achieve their objectives
effectively. The activities were believed to be engaging by users (median 5), indicating
that they were actively involved and interested in the exercises, which can lead to a more
enjoyable and effective user experience. Users reported no major sensations of irritation
during the exercises (median 4) and did not believe they were required to put in much effort
to accomplish their performance level. This shows that the exercises were not extremely
difficult to perform and that users considered them comfortable. Low effort needs and the
lack of frustration are essential for an optimal user experience, as frustration can detract from
the overall efficacy of the MR solution.

Even though the usability evaluation of the MR solution was set up to reduce potential
biases, there are still some risks that need to be taken into consideration for future investi-
gations. Each participant in the current study was unfamiliar with XR technologies prior to
testing, and each one followed the same protocol, conducting the evaluations in a controlled
environment using the same device, ensuring consistency in terms of external conditions for
all participants. Age-related biases, however, could still have an impact on the outcomes of
these evaluations. Although it is crucial to consider users of different ages, given the broader
audience our solution is aimed at, it is also necessary that, to ensure the generalizability of
the framework, age-related factors, such as variations in cognitive processing speed or motor
skills, will need to be further studied in future research, as they may impact user performance
and usability perception. Another potential bias could arise from the propensity to use digital
technologies. Despite all participants being selected to have no previous experience with
XR, individual attitudes toward adopting new technologies may vary. To mitigate this, the
framework already takes this factor into account by requiring participants to meet three key
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prerequisites (i.e., Patient’s health condition, Patient’s attitude in using digital technologies,
Patient’s willingness to undergo a digital therapy treatment) for accessing augmented ther-
apy, ensuring that they possess the necessary familiarity and comfort with digital tools before
starting treatment.

5.2 Hand gesture recognition evaluation

As can be seen in Fig. 8, training and validation loss, as well as training and validation
accuracy, were plotted for each epoch using raw and interpolated values to show their trends.
Both the validationmetrics continue to improve for roughly 120 epochs, and then they remain
unchanged or worsen, as can be inferred from both raw and interpolated values. As a result,
the training was early stopped to prevent overfitting, and the best model, which corresponds

Fig. 8 Training and validation metrics trends. Raw loss and accuracy values were displayed in the upper part,
while interpolated values are shown in the below part
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to epoch 121, was selected for the final application. Specifically, validation accuracy was
checked to terminate the learning phase prematurely. A 20-epoch threshold was defined to
allow for no gain in accuracy. When the threshold was exceeded, training was stopped.

Both offline and live videos were used to evaluate the implemented LSTM network.
Regarding offline tests, the LSTM model was assessed on the test set, and the results are
displayed in Fig. 9 and Table 3. For model evaluation, 10-fold cross-validation was involved
during training to obtain more representative and robust results. Specifically, the dataset was
randomly split into 10 equal subsets. The model was trained on 9 subsets and tested on the
remaining 1. This process is repeated 10 times, using a different subset for testing. As can be
observed from the confusion matrix shown in Fig. 9, almost all test samples were accurately
classified, except four samples. A video from the neutral class was incorrectly identified as
belonging to the “thumb to annular finger opposition” class and vice versa. Two samples of
the “thumb to index finger opposition” class are misclassified as “thumb to middle finger
opposition” and “thumb to pinky opposition”. Table 3 provides evidence of this since all
classification metrics achieve remarkable values, with all macro averaged values greater than
80%, but strongly affected by the “none” class.

Afterward, additional tests were carried out by analyzing the webcam video stream to
measure the model’s performance in real-time. A total of 112 movements were executed and
each gesture was repeated 16 times in random order. Figure 10 illustrates a few instances
of accurately anticipated motions during real-time tests, with the predicted gesture reported
at the top of each image and the estimated keypoints overlapping on the detected hand.
Outstanding results were achieved in this instance, as seen by the confusion matrix shown in
Fig. 11 and the classification metrics outlined in Table 4.

Most of the movements were correctly classified, even under real-time testing. Only one
sample was misclassified for the categories “thumb to middle finger opposition” and “flexion

Fig. 9 Confusion matrix of test set videos
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Table 3 Classification metrics on the test set videos

Class Accuracy Precision Recall F1-score

thumb to index 0.91 (0.80 - 1) 0.84 (0.72 - 0.96) 0.90 (0.80 - 1) 0.88 (0.77 - 0.95)

thumb to middle 0.89 (0.78 - 0.99) 0.91 (0.83 - 0.98) 0.89 (0.79 - 0.99) 0.89 (0.83 - 0.94)

thumb to annular 0.91 (0.81 - 1) 0.88 (0.74 - 1) 0.91 (0.81 - 1) 0.88 (0.77 - 0.99)

thumb to pinky 0.89 (0.79 - 0.98) 0.86 (0.70 - 1) 0.89 (0.79 - 0.98) 0.84 (0.75 - 0.95)

closing hand 0.98 (0.94 - 1) 0.90 (0.83 - 0.98) 0.98 (0.95 - 1) 0.94 (0.89 - 0.99)

flex ext thumb 0.84 (0.72 - 0.96) 0.75 (0.62 - 0.89) 0.84 (0.72 - 0.96) 0.77 (0.68 - 0.87)

none 0.43 (0.23 - 0.63) 0.54 (0.29 - 0.79) 0.43 (0.23 - 0.63) 0.47 (0.26 - 0.67)

macro avg 0.84 0.80 0.83 0.81

All the metrics were calculated separately for each class and then macro-averaged. The values are shown with
related confidence intervals. The best-performing category for each metric is highlighted in bold and the worst
in italics

and extension of the thumb.” The sample was assigned to the class “thumb to ring finger
opposition” for the former class because the network misidentified the middle finger for
the ring finger. Similarly, a sample from the “flexion and extension of the thumb” class
was categorized as a “thumb to pinky opposition” gesture since the thumb movement is
typically the same in both exercises and the network probably missed the pinky movement.
In a comparable manner, two samples from the “thumb to pinky opposition” class were
categorized as “thumb flexion and extension”. Instead, for the neutral class, five data were
wrongly categorized, presumably because each exercise begins with the hand in a resting
posture, which the network erroneously assumed was a movement. This generally affected
the “flexion and extension of the thumb” and the “thumb to pinky opposition” exercises,
suggesting that it might be challenging for the network to distinguish small finger movements

Fig. 10 Examples of exact detection of exercises achieved through tests conducted in real-time
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Fig. 11 Confusion matrix of real-time videos

and gestures made by the thumbwhen it is the only finger moving. Notwithstanding the slight
difficulties of the real-time task, the network produced impressive outcomes, averaging a 91%
accuracy and F1-score throughout all classes.

Statistical tests were conducted to determine whether a statistically significant difference
existed betweenmodel performance on real-time tests and performance assessed on recorded
video for all classes of gestures. The paired t-test was performed for each of the classification
metrics considering both testing conditions, obtaining the following: accuracy p-value =
0.182, precision p-value = 0.056, recall p-value = 0.182, F1-score p-value = 0.108. Since a
p-value greater than 0.05 was obtained for all metrics, no statistically significant differences
can be determined between the performance of the model in real-time and on prerecorded
video tests. These results imply that the model performs similarly in both testing conditions,

Table 4 Classification metrics on
the real-time test

Class Accuracy Precision Recall F1-score

thumb to index 1.00 1.00 1.00 1.00

thumb to middle 0.94 1.00 0.94 0.97

thumb to annular 1.00 0.94 1.00 0.97

thumb to pinky 0.81 0.87 0.81 0.84

closing hand 1.00 1.00 1.00 1.00

flex ext thumb 0.94 0.71 0.94 0.81

none 0.69 0.92 0.69 0.79

macro avg 0.91 0.92 0.91 0.91
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suggesting that its robustness can make it effective in real-life scenarios without losing
reliability.

5.3 Ethical considerations

The proposed framework for home-based treatment of phantom limb pain through virtual
mirror therapy presents some ethical and logistical challenges that must be highlighted for
successful implementation.

From an ethical perspective, data privacy is a critical concern, as the system collects and
processes sensitive patient information, including motion data and therapy progress metrics.
Ensuring secure data storage, encrypted transmission, and strict compliance with privacy
regulations like GDPR or HIPAA is essential to safeguard patient confidentiality and build
trust.

Economic accessibility also poses a significant challenge, as the cost of Mixed Reality
(MR) Head-Mounted Displays (HMDs) and associated technologies could limit access for
underserved populations. For this reason, according to the proposed framework, the therapy
center is intended to provide digital tools to the patients for the whole digital therapy duration.
In this scenario, the economic impact is mitigated since hardware cost is not critical for health
facilities.

Logistically, the adoption of such an advanced framework requires extensive training for
healthcare professionals to operate MR systems and interpret Deep Learning (DL)-generated
feedback effectively. This training introduces additional complexity andmay encounter resis-
tance in traditional healthcare settings. Nonetheless, this resistance can be mitigated by
designing adaptable interfaces, useful both for physicians and patients. In this sense, the pro-
posed case study was tested first on non-experts, to understand how to minimize the impact
of the technology on the ultimate purpose of the application.

Modernizing healthcare infrastructure is another hurdle, as reliable internet access is
necessary to support the framework’s real-timeMR functionalities, whichmay be unavailable
in rural or remote areas. For this reason, HMD should incorporate local data storage and
delayed synchronization. This method allows the therapy system to operate independently
of real-time internet access while ensuring data integrity and eventual synchronization with
healthcare providers once the network becomes available.

Ensuring integration with existing healthcare practices also requires developing protocols
that bridge traditional in-person care and digital therapies seamlessly. In this perspective,
future work on clinical validation could pave the way for the adoption of the proposed
framework for different clinical conditions.

6 Conclusions

The integration of MR and Deep Learning technologies into the assessment of patients’ MT
exercises for home-based PLP treatment holds significant promise and potential benefits. The
synergy between MR, which provides an immersive and interactive environment, and DL,
which facilitates intelligent data analysis, creates a comprehensive solution for advancing
the field of rehabilitation medicine.

The visual and interactive nature of MR technologies allows for a more accurate and per-
sonalized assessment of patients’MT exercises, capturing nuancedmovements and providing
valuable insights into their progress. On the other hand, the incorporation of DL algorithms
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allows for the analysis of vast amounts of data generated during MT sessions, identifying
subtle patterns and trends that may elude traditional assessment methods. The intelligent
analysis enables healthcare professionals to tailor treatment plans more precisely, adapting
to individual patient needs and optimizing therapeutic outcomes.

Future research will be focused on the clinical validation of the proposed framework to
optimize the support that the exploreddigital technologies canprovide to healthcare operators,
safeguarding patient welfare and maintaining the highest standards of care. Evaluations will
be conducted in clinical settings with a significantly larger sample of patients suffering from
phantom limb pain (PLP), to ensure that the findings are not only scientifically valid but also
directly applicable to real-world clinical practice. This expanded patient cohort will enable
us to gather more comprehensive data, allowing for a deeper understanding of the efficacy
and practicality of our approach in a clinical context. By testing in environments that closely
mirror actual clinical conditions, we aim to confirm the generalizability and robustness of
the results, thereby enhancing the potential for real-world implementation and ultimately
improving patient outcomes. The study will include two groups of pathological subjects:
one group undergoing traditional mirror therapy and the other group participating in the
augmented therapy outlined in our framework. By incorporating both approaches, we aim to
conduct a comprehensive and rigorous comparison between the conventional therapy and the
innovative augmented approach. This comparative study design will allow us to thoroughly
assess the effectiveness of the augmented therapy, not only in terms of its clinical outcomes but
also in its potential to offer enhanced benefits over the traditional method. Such a comparison
is crucial for determining whether the augmented therapy can provide superior rehabilitation
outcomes, and ultimately, whether it can be considered a viable alternative or complement to
existing techniques in clinical practice. Moreover, long-term assessments will be integrated
as part of the upcoming clinical evaluations to determine whether the therapy’s benefits are
sustained over time, in addition to addressing short-term efficacy. This multifaceted strategy
will ensure that the proposed structure contributes to long-term patient outcomes as well as
immediately meeting therapeutic needs.
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