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Abstract: In the design of structures involving quasi-brittle materials such as concrete, it
is essential to consider the scale dependence of the mechanical properties of the material.
Among the theories used to describe the phenomenon of size effect, the fractal theory
proposed by Carpinteri and colleagues has attracted attention for its results in the last three
decades of research. The present study employs the fractal perspective to examine the
scale effect in three-point bending tests conducted on expanded polyethylene (EPS) beam
specimens. The influence of size on flexural strength, fracture energy, and critical angle of
rotation is investigated. Additionally, numerical simulations based on peridynamic (PD)
theory are performed based on the experimental tests. The global behavior, brittleness,
failure configuration, and fractal scale effect obtained numerically are evaluated. The
numerical results show a good correlation with the experimental ones and, moreover, both
the experimental and numerical results are in agreement with the fractal theory of scale
effect. More precisely, the error of the sum of the fractal exponents, computed with respect
to the theoretical one, is equal to −1.20% and −2.10% for the experimental and numerical
results, respectively. Moreover, the classical dimensional analysis has been employed to
demonstrate that the scale effect can be naturally described by the PD model parameters,
allowing to extend the results for scales beyond those analyzed experimentally.

Keywords: size effect; fractal approach; peridynamic; dimensional analysis

MSC: 74A70; 74A40; 74A45

1. Introduction
The damage process in quasi-brittle materials, including rocks, concrete, ceramics, and

some polymers reinforced by fibers, is a complex phenomenon involving a wide range of
scale and assuming lengths. The nucleation, growth, and coalescence of internal defects of
varying kinds, shapes, and sizes can lead the material to the final collapse catastrophically.
Furthermore, a significant challenge arises from the sample-size dependence, that is, the
size effect of certain material properties (such as nominal strength, fracture energy, and
deformation at failure [1]), which makes it difficult to accurately predict the behavior of
large structures based on laboratory tests on similarly shaped samples [2,3].
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Different approaches have been proposed to solve the size effect problem over the
past 40 years. Some examples of these approaches are the size effect law (SEL) proposed
by Bazant and colleagues [4–6], the fractal scale approach proposed by Carpinteri and
colleagues [7–10], and the Krajcinovic approach proposed by Rinaldi and Mastilovic [11].

Regarding the fractal approach employed in this work, Carpinteri and coworkers
have shown that fracture in quasi-brittle materials, and more precisely the variation of
their properties with their size, is better described by considering fractal dimensions rather
than the traditional Euclidean dimensions, which are integers [12]. In fractal geometry, the
dimensions are not integers but fractional, which reflects the complexity and self-similarity
of fracture surfaces at different scales [13]. In fact, experimental evidences confirm that on
the fracture surface of many materials, fractal shapes can be observed, such as in metals,
ceramics, concrete, and rocks, among others [13,14]. According to the fractal size effect,
the measurement of the variation of a mechanical property (Q) is carried out through the
so-called fractal exponents, dQ, described by a power law in general terms as:

Q = Q∗bdQ (1)

where Q∗ is the scale invariant material property and b is a characteristic dimension of
the structure. The range of variations observed in fractal exponents is dependent upon
a number of factors, including the geometrical shape of the specimens, the boundary
conditions, the characteristics of the material (in particular, the maximum aggregate size and
quantities in the concrete, for example), and other variables [15]. In Refs. [7,8,10,13,16–19],
it was demonstrated that the fractal exponent of tensile stress varies between 0.091 and
0.41, the fractal exponent of fracture energy varies between 0.085 and 0.48, and the fractal
exponent of critical strains varies between 0.48 and 0.73. In the context of three-point
bending tests, the exponent values, according to the studies conducted by Carpinteri and
Accornero [20] and Lacidogna et al. [21], are in the range of 0.1 to 0.3 for flexural strength,
0.1 to 0.3 for fracture energy, and 0.2 to 0.5 for the critical rotation angle (which has the
same meaning as the critical strain for the tensile test).

The size scale effects on the mechanical properties in quasi-brittle materials has been
investigated in numerous experimental studies over decades under different kinds of
loading such as compression [22,23], tension [15,24,25], flexure [20,21,26], shear [27], and
torsion [28]. In order to help and complement the understanding of this phenomenon,
a number of numerical models have been proposed over the years. Such models can be
divided, in general terms, into two broad categories according to their approach. The first
category comprises models based on continuum mechanics, which can be considered a
classical approach, including those based on the Finite Element Method (FEM), such as
the Cohesive Zone Model [29], X-FEM [30] and Phase-Field [31]. The second category
includes statistically based models that assume a random nature for the microstructure of
the material, such as, for example, the Discrete Element Method (DEM) [32–34]. Continuum
mechanics-based models incorporate damage variables or damage evolution laws into the
equations describing mechanical fields [35]. On the other hand, the DEM has been applied
with the same role, but allowing more shapes, sizes, materials, and other parameters to be
studied, as can be seen in Refs. [36,37].

An alternative to the above approaches is a model based on the peridynamic (PD)
theory, which is an integral-type non-local theory initially proposed by Silling [38]. The
efficacy of PD as a modelling tool for cracking and failure processes in solid bodies has
been increasingly acknowledged in recent years [39,40]. The governing equation of PD can
keep valid even when discontinuities or cracks occur. Another advantage of PD is that the
damage process and crack propagation can be spontaneously predicted without other extra
crack propagation criteria as the re-meshing approach [41], for example.
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In the context of simulation of quasi-brittle materials, some applications of PD are
present in the recent literature, such as in Refs. [42–47]. In particular, in the case of the size
effect, few works are found. In Hobbs et al. [48], the size effect in quasi-brittle materials
using a three-dimensional peridynamic model was examined. Geometrically similar beams
of different sizes were modeled to examine the size effect on structural strength based on
the SEL approach. Notched and unnotched beams were modeled to examine the effect
of boundary types on the predictive accuracy of the peridynamic model, and mode I and
mixed-mode problems were considered. In Bazant et al. [49], the performance of PD theory
in studying the scale effect of concrete beams was criticized by the authors, claiming that
PD cannot reproduce the transitional size effect, which is an essential characteristic of
quasi-brittle materials.

In this context, the present work focuses on analyzing the scale effect of quasi-brittle
materials based on the fractal approach through experimental tests and numerical simula-
tions using peridynamics. To the best of the authors’ knowledge, this is the first time that
PD models have been applied to investigate the fractal scale effect. The experimental tests
were carried out on scaled expanded polystyrene (EPS) beam specimens subjected to three-
point bending tests. By employing a PD approach for quasi-brittle materials, based on the
first version of the PD theory, named the bond-based peridynamic theory, tridimensional
PD models were used to simulate the experimental tests. Both experimental and numerical
results were compared in terms of global behavior, brittleness, failure configuration, and
the fractal scale effect on the flexural strength, fracture energy, and critical rotation angle.
Moreover, the classical dimensional analysis is employed to demonstrate that the scale
effect can be described by the PD model parameters, allowing the results to extend to
extreme cases for large and small samples.

2. A Bilinear PD Model for Quasi-Brittle Materials
In this section, firstly, a concise overview of the bond-based PD theory is presented.

Then, the bilinear PD model (named BPD model in the following) recently proposed in
Friedrich et al. [46] for failure analysis of quasi-brittle material is presented. The main fea-
tures of this model are the implementation of: (i) a bilinear bond force–stretch relationship,
and (ii) the random field for the fracture energy.

2.1. Basic Concepts of the Bond-Based Peridynamic Theory

The PD theory discretizes a solid body subjected to external loads into material
particles, each of them surrounded by a neighborhood known as the peridynamic horizon,
δ0. Figure 1a illustrates the kinematics of a typical PD body.

The force of interaction between material particle x and any neighboring particle x′ in
the horizon (i.e., x′ ∈ Hx, as illustrated in Figure 1a) is defined by the pairwise force density
function f. This function is measured as a force per unit volume and represents the force
vector exerted by particle x′ on particle x.

The governing PD equation of motion at time step t can be described as follows [50]:

ρ(x)
..
u(x, t) =

∫
Hx

f(x′ − x, u(x′, t)− u(x, t))dVx′ + b(x, t) (2)

where ρ is the material mass density, x and x′ are the position vectors, u and
..
u are the

displacement vector and the acceleration vector, dVx′ denotes an infinitesimal volume
around the x′ particle, and b is the body force density.
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The pairwise force density function, f, for linear elastic materials, is given by [51]:

f = f
ξ + η

|ξ + η| (3)

where ξ and η are the relative position vector and the relative displacement vector, respec-
tively, defined as ξ = x’ − x and η = u’ − u, and f = cs is the scalar bond force density
function, with c being the PD bond constant and s the scalar bond stretch.

The value of parameter c is determined by the Poisson ratio, which varies depending
on whether the analysis is performed (fixed as ν = 0.25 for three dimensional analysis and
for two dimensional analysis under plane strain conditions, whereas it is fixed as ν = 1/3
for two dimensional analysis under plane stress conditions) [50,51]:

c =


6E

πδ4
0(1−2ν)

3D analysis
6E

πhδ3
0(1−ν)

2D analysis—plane stress
6E

πhδ3
0(1−2ν)(1+ν)

2D analysis—plane strain

(4)

where E is the elastic modulus, h is the thickness, and δ0 represents the horizon size. In the
PD model implementation, generally δ0 is defined as the radius of a circle for 2D problems
or the radius of a sphere for 3D problems.

The bond stretch, s, is given by:

s =
|ξ+ η| − |ξ|

|ξ| (5)

To describe brittle fracture, the Prototype Microelastic Brittle (PMB) model is widely
adopted, as shown in Figure 1b [51]. According to this model, the function f is described as:

f = φcs (6)

where φ is given by:

φ =

{
1 if s < s0

0 if s ≥ s0
(7)
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with s0 being the critical bond stretch (see Figure 1b), which can be computed as [46,51]:

s0 =

√
RG f

Eδ0
(8)

where G f is the material fracture energy, R is equal to 5/6 for 3D analysis, and 4π/9 and
5π/12 for 2D plane stress and plain strain analysis, respectively [46].

Based on Equation (7), a local damage index ϑ, which can be used to observe the crack
path, can be defined as,

ϑ(x, t) = 1 −
∫

Hx
φdVξ∫

Hx
dVξ

(9)

2.2. A PD Approach for Quasi-Brittle Materials

According to recommendations [51,52], a minimum of three material particles must
exist within the horizon (δ0) in order to guarantee good precision in the results. Therefore,
a minimum particle spacing is necessary, ∆ (assumed to be equal in the three coordinate
directions x, y, and z), equal to δ0/3.015. If a smaller discretization needs to be applied
while maintaining the previous δ0 value, then the number of particles within the horizon
will increase, which would lead to simulations with higher computational cost. The BPD
model, initially introduced by Cabral et al. [43] and further improved by Friedrich et al. [46],
was developed in response to this issue. More specifically, two horizons are defined in the
BPD formulation: δ′, which is independent of the chosen ∆ and that assumes the concept of
material property (which will be defined in the following), and δ0, which is a parameter that
depends only on the model discretization and has a fixed relation with the discretization
level, δ0 = 3.015∆. The key aspect of the BPD model is the correlation between δ′ and δ0, as
it allows simulating the same material behavior with different levels of discretization; i.e.,
it is possible to use different δ0 while maintaining the same δ′.

Contrasting with the classic PMB model presented in the previous section, the BPD
model presents a linear softening branch, allowing to capture the post-peak softening
behavior inherent to quasi-brittle materials. In Cabral et al. [43] and Friedrich et al. [46],
several numerical results were compared with experimental ones showing the capabilities
of such model. Furthermore, the equivalence between the PMB model utilizing δ0 = δ′ and
the BPD model has been verified in Cabral et al. [43].

The bilinear bond force–stretch relationship is shown in Figure 2, where the parameters
characterizing such a relationship are:

• the loading branch slope, c (see Equation (4));
• the maximum elastic stretch, sp, being the strain at the material elastic limit (see

Friedrich et al. [46,47] for details);
• the rupture stretch, sr, defined as:

sr = Krsp (10)

where Kr governs the shape of the softening branch (red line in Figure 2).
In the BPD model, it is proposed that parameter Kr should be calculated by equating

the area underlying both the PMB model (Figure 1b) and the bilinear one (Figure 2), that is:

s0
2 = spsr = Krsp

2 (11)
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By computing the critical stretch corresponding to the PMB model when δ′ is employed
(replacing δ0 by δ′ in Equation (8)), the following relation is obtained:

s′ =

√
RG f

Eδ′
(12)

and by replacing Equation (11) into Equation (8) and exploiting Equation (12), the following
relation is obtained:

Kr s2
p δ0 = s′2 δ′ (13)

The Kr parameter, as computed using Equation (13), establishes a connection between
the numerical horizon (δ0) and the material horizon (δ′). It is worth noting that ensuring
stability in the formulation requires Kr to be greater than 1.0.
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The horizon material property, δ′, is calculated by exploiting concepts of the Linear
Elastic Fracture Mechanics (LEFM). Let us consider Equation (12) and the relation between
the critical stress intensity factor under mode I, KIc, and the fracture energy, G f (that is,

KIc =
√

G f E). Such an equation can be rewritten as:

δ′ =
R
s′2

(
KIc
E

)2
(14)

By considering a crack problem under pure opening Mode I loading, that is,
KIc = σ0Y

√
πac and assuming the failure stress σ0 = Es′, δ′ can be computed from

Equation (14) as:
δ′ = RY2πac (15)

where Y is the geometric shape function, depending on the geometry of the cracked body,
and ac is the crack length at failure (critical crack size). If for simplicity, we assume that
RY2π ≈ 1, then the horizon can be understood as a critical crack size, δ′ ≈ac.

Based on the above concept, Figure 3 shows the behavior of a structure considering
the presence of a given crack of size d. If d is smaller than the horizon, δ′, case (i), then it is
possible for the crack propagates unstable, and brittle behavior is expected. On the other
hand, if the crack d is larger than the horizon, case (ii), then this crack does not enter inside
the horizon and ductile failure occurs.

To compute δ′ a procedure exploiting the concept of the so-called Theory of Critical
Distance (TCD), introduced by Taylor [53], is here employed. More precisely, according to
the TCD, the failure of a body containing a stress concentration (as for example, a crack or
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a notch) can be predicted by using elastic stress information in a critical region close to the
crack tip or the notch root. More precisely, such a critical region is here defined in terms of
the characteristic material length by Taylor, named LE, and given by:

LE =
1
π

(
KIc
σ0

)2
(16)
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By combining Equation (14) with Equation (16) and assuming again, σ0 = Es′, then δ′

is given by:
δ′ = RLEπ (17)

where the value of LE is available in the literature for many materials [53]. Moreover,
when the value of LE is not available, it can be defined by exploiting the microstructural
characteristics of the material such as the grain size in metals and ceramics and the aggregate
size, for example, in concrete [54].

On the BPD model the unloading branch is characterized by the absence of residual
strain (see the solid blue line in Figure 2) and under compression, the f –s relationship is
linear elastic.

In the BPD model, the scalar bond function (Equation (7)), φ, is given by:

φ =


1 s < sp
area OFB
area OAB sp ≤ s ≤ sr

0 s < sr

(18)

where the above areas are graphically defined in Figure 2 in order to compute the elastic
and damage energy.

It is worth noticing that the bilinear bond force–stretch relationship presented in
Figure 2 is also implemented in other PD models available in the literature. For example, it
can be seen in the Micropolar Peridynamic Model proposed by Gerstle et al. [55] and in the
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fully homogenized peridynamic model by Niazi et al. [56], and the PD framework based
on the global arc-length method proposed by Sheikhbahaei et al. in Ref. [57] also employs
this relationship.

To consider heterogeneous materials, different approaches have been employed in the
context of peridynamic theory; see for example, the Intermediately Homogenized PeriDy-
namic (IH-PD) model [58–60] and random fields [46,47], with the latter being employed in
this work. Specifically, a three-dimensional random field for the fracture energy has been
implemented. More precisely, the linear spatial correlation of G f is performed by dividing
the domain into prismatic regions, each of them characterized by eight vertices and whose
sizes are given by the correlation lengths, lcx, lcy, and lcz along the three directions of a fixed
reference frame x, y, and z, with a Weibull probability distribution being assumed along
each of the above directions. The scaling and shape parameters of the Weibull distribution
can be computed by means of a coefficient of variation, CVGf. The energy release rate
for a generic bond i, G f ,i, identified by the coordinates of its barycenter (that is xi, yi and
zi), is calculated by using a 3D interpolation, performed on the G f values related to the
eight vertices of the prismatic region containing the generic bond, i. Consequently, as the
parameters sp and sr are functions of G f , the f –s relationship is different for each bond.
More information regarding the 3D G f random field can be found in Friedrich et al. [46].

Therefore, the input data, in addition to the geometrical sizes and boundary conditions
characterizing the BPD model, are: ∆, E, ρ, sp, G f , and LE. As far as the random field for
G f is concerned, lcx, lcy, lcz, and CVGf have to be defined.

3. Materials and Methods
3.1. Description of the Experimental Tests

In order to analyze the size effect, unnotched beams with rectangular cross-sections
are considered. The specimens were submitted to three-point bending testing, Figure 4a.
Table 1 and Figure 4b show the average dimensions of the three sizes considered (with the
depth of the beam, b, being the characteristic structural size), named in the following as
Large (L), Medium (M), and Small (S). Tests were conducted under displacement-controlled
mode up to final collapse, with the same strain rate maintained for all the sample sizes.
The displacement rate is presented in Table 1 as well.

The mechanical and physical properties of the EPS constituting the beams are the
following: mass density ρ = 11.9 kg/m3 [46], elastic modulus E = 3.12 MPa [46], fracture
energy G f = 233.96 N/m [61], and flexural strength σ = 0.1 MPa. In order to characterize
the material at the microstructural scale, a statistical analysis was performed in [61] to
compute the average grain size of the EPS, obtaining its value equal to 5.02 mm.

Table 1. Average dimensions of specimens and displacement rate.

Dimensions and Test Speed S M L

Span length, l [mm] 160 320 640
Depth, b [mm] 24 48 96
Width, e [mm] 16 32 64

Displ. rate [mm/min] 3.5 7.0 14
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Figure 4. (a) Test setup and beams dimensions, (b) relative size of EPS specimens.

3.2. Numerical Models

The beams described above were numerically simulated by employing 3D PD models.
The models consist of a number of particles along the x, y, and z direction, respectively,
equal to 40 × 5 × 3 for the S size, 80 × 10 × 6 for the M size, and 160 × 19 × 13 for the L
size. For all the specimen sizes, ∆ is equal to 5 mm. Regarding the boundary conditions, see
the example of the L size in Figure 5; the particles highlighted in blue on the left-hand side
are constrained along the y direction, while those on the right-hand side are constrained
along the x and y directions. On the particles located at the center of the beam, highlighted
red in Figure 5, a uniform vertical displacement was applied in the y direction.
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In Table 2 are summarized the parameters defining the bilinear PD model. By assuming
∆ = 5.0 mm, δ0 becomes equal to 15.075 mm. c is computed according to Equation (4) and
resulting equal to 2.30 (10)14 N/m6. The parameter sp is computed according to Section 2.1,
that is, the strain in correspondence of the elastic limit (see details in Friedrich et al. [46]).
δ′ is computed according to Equation (17), where LE, according to [46], is assumed to be
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equal to three times the average grain size of the EPS and resulting equal to 40 mm. s′,
computed according to Equation (12), is equal to 0.0395. Therefore, Kr computed according
to Equation (13), is equal to 71.76.

Table 2. Parameters defining proposed bilinear law.

∆
[mm]

δ0
[mm]

c
[N/m6]

sp
[-]

δ′

[mm]
s′

[-]
Kr
[-]

Equation (3) [48] Equation (17) Equation (12) Equation (13)
5.0 15.075 2.3 (10)14 0.0076 40.0 0.0395 71.76

Relatively to the 3D random field of the fracture energy, lcx = lcy = lcz = ∆/2. The
coefficient of variation, CVGf, is taken to be equal to 30%. The above field was randomly
generated four times for each beam size.

4. Results and Discussion
4.1. Global Behavior

The comparison between the experimental and numerical results is shown in Figure 6
in terms of flexural stress (σ) against flexural strain (ε) computed as:

σ = 6FS/tb2 (19)

ε = 6vb/S2 (20)

where F is the load and v is the deflection measured by the displacement applied by the
test machine. The curves No. refers to the different G f random field generated.

In Table 3, the average flexural strength (σ) and the strain in correspondence to the
above strength (ε) for the experimental tests and numerical simulations, together with their
standard deviations, are reported. The error of the numerical results computed with respect
to the average experimental ones (that is, error = (Exp − Num)/Exp) are presented as well.
It can be observed that the numerical results are in good agreement with the experimental
data in terms of both flexural strength and flexural strain. More precisely, the maximum
errors for flexural strength and flexural strain, in absolute values, were achieved by the M
beam size and are equal to 3.57% and 7.22%, respectively.

Moreover, a comparison of the experimental and numerical results reveals that the
numerical results are valid up to the maximum flexural load, as evidenced by the greater
softening observed in the experimental results, which is not reflected in the numerical data.
This suggests that additional damage mechanisms may be at play, which the PD model is
unable to fully capture.

Table 3. Experimental and numerical results in terms of flexural strength, σ, and flexural strain, ε,
together with error of numerical values computed with respect to experimental ones.

S M L

σ
[MPa]

Exp. 0.0978 ± 0.0041 0.0931 ± 0.0025 0.0853 ± 0.0011
Num. 0.1000 ± 0.0018 0.0898 ± 0.0008 0.0846 ± 0.0003
Error −2.24% 3.54% 0.82%

ε
[-]

Exp. 0.103 ± 0.0059 0.084 ± 0.0045 0.057 ± 0.0037
Num. 0.097 ± 0.0062 0.078 ± 0.0004 0.056 ± 0.0014
Error 5.82% 7.14% 1.75%
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In Figure 7, the ductile-to-brittle transition behavior is presented by exploiting a
representative numerical force–deflection curve of each beam size. In order to measure the
brittleness of the structure, a dimensionless parameter named stress brittleness number, n f ,
proposed by Carpinteri [62], is here employed. Such a parameter is computed, in terms of
the fracture energy, as:

n f =

(
G f E

)0.5

σ0
√

b
(21)

Based on experimental data and numerical simulations [63–67], the stress brittleness
number values indicating brittle and ductile fracture behavior are n f < 1.0 and n f > 1.5,
respectively.

By assuming b equal to the depth of the beam (see Table 1) and σ0 equal to the average
numerical flexural strength (see Table 3), the stress brittleness number, computed according
to Equation (21), is equal to 1.68, 1.33, and 1.02 for S, M, and L size, respectively. Therefore,
the behavior presented in Figure 6 and also that presented in Figure 5 for both experimental
and numerical results are in agreement with respected to the predicted brittleness observed.

In Friedrich et al. [46], the previous Equation (21) was written in terms of the BPD
model parameters as:

nPD
f =

√
δ′

Rb
(22)
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It is worth noting that the PD approach employed in this work considers the horizon
as a material property, δ′, such as a specifically critical crack length, as well as presented
in Section 2.2. Therefore, by assuming R = 1.0 in Equation (22) and exploiting the stress
brittleness number concept, the global behavior can be predicted by comparing the horizon
material property value with the structural size, b. This exemplifies one of the great
capabilities of the bilinear PD model proposed by Cabral et al. [43] and Friedrich et al. [46].
More precisely, with δ′ equal to 40 mm and b the depth of the beam (see Table 1), then:

• It can be observed that only the L beam is capable of containing an internal crack of
such a size, indicating an unstable crack propagation;

• On the other hand, the S beam size, cannot have an internal critical crack size (δ′)
equal to 40 mm, and therefore an unstable crack propagation is not allowed, being a
ductile fracture behavior reported;

• Finally, since the M beam size has a characteristic size close to δ′, a transitional behavior
is reported.

Assuming that nPD
f is equal to n f (see the values presented above), the value of δ′, by

using Equation (22), is equal to 67 mm, 70 mm, and 82 mm for the S, M, and L samples,
respectively. Consequently, a value of the same order is found by this approach when
compared with that obtained by Equation (17).

Figure 8 shows the kinetic, elastic, and damage energies normalized with respect to
the maximum elastic energy against the normalized time (being the normalized time equal
to 1.0 corresponding to the end of the simulation) for each beam size obtained numerically
and presented in Figure 6. It can be observed that the ratio between elastic and damage
energy decreases when the ductile-to-brittle transition occurs. In fact, the L beam size is
the only one that records a peak of kinetic energy at the moment of rupture, indicating an
unstable crack propagation.

Figure 9 shows the fracture configuration for both the experimental and numerical
L samples. For the numerical model, Figure 9b shows only the material particles with a
damage index greater than 0.25. In both cases, the main crack starts in the lower central
region and propagates vertically up to the upper part. The numerical results are in good
agreement with experimental fracture configuration.
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Figure 9. Final fracture configuration for the L beam size: (a) experimental and (b) numerical.

Figure 10 shows the experimental fracture surface observed for each one of the beam
sizes under analysis. It can be observed that in the case of the S samples, which exhibited
ductile fracture, a kind of transgranular fracture is evident, where only the grains had
become detached from each other. In contrast, the L sample exhibits intergranular fractures
in some regions of the cross-sectional area.

Details in Figure 10 show one of these regions, with the cut grains indicated by the
red arrows. At these locations, the grains have been fractured, suggesting a link of this
failure mechanism with the brittle fracture mode. These different failure mechanisms can
be investigated through the application of various techniques, including Acoustic Emission
(AE) [68,69]. Such a technique enables the identification of different sources, including
cracks in opening mode (mode I) and shear mode (mode II) in concrete [70], as well as the
fracture of fibers and matrix in composite materials [71].
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4.2. Size Effect
Fractal Exponents

The fractal approach is one of the most widely used approaches to determine how
material properties of quasi-brittle or disordered materials vary with scale. According
to Lacidogna et al. [21], three mechanical properties can be evaluated from three-point
bending tests: flexural strength, fracture energy, and angle of rotation. The measure of the
variation of such properties with respect to their scale is determined by the so-called fractal
exponents. In the following, these exponents are computed to the above properties and the
experimental and numerical results are compared.

In Figure 11, the flexural strength vs. specimen size (beam depth-b) corresponding
to the average value of each size (see Table 1) are presented in a bi-logarithm plot for the
experimental and PD results. The scaling law is given by:

ln σ = ln σ∗ − dσ ln b (23)

where σ∗ is the fractal flexural strength, which is a scale invariant material property. Thus,
according to Figure 11, there is a flexural strength exponent dexp

σ = 0.098 for the experimental
results and dNum

σ = 0.129 for the numerical simulations. This results in a fractal domain
(∆σ = 2 − dσ) that is equal to ∆σExp = 1.902 for the experiments and ∆σNum = 1.871 for the
PD simulations.

The fractal domain indicates that the flexural strength occurs over a ligament area
smaller than a surface due to the presence of material defects. In the case of EPS, it can
represent the voids between the spheres that make up the material. The influence of the
heterogeneity of the material tends to decrease as the beam becomes increasingly larger.
From a fractal point of view, lacunar sets can be associated with this type of result, such as
the Cantor set [10].

To find the scale effect on the fracture energy, G f , firstly the dissipated energy (W)
should be computed. According to [21], it is defined by considering the area of the F − v
diagram, as shown in Figure 12. Due to the uncontrolled post peak behavior in both
experimental test and numerical simulations, the area considered is that up to the peak load.
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Table 4 shows the average values of the dissipated energy for the experimental and
numerical results, together with its standard deviation. The error of the numerical results
with respect to the experimental ones are presented as well. It can be observed that the
sample size M presents the largest error when comparing the numerical results in relation
to the experimental results. The greatest dispersion of results is observed for beams of
size S, as can be seen from the standard deviation of these samples, both experimental
and numerical.

Table 4. Dissipated energy (W in [J]) for experimental and numerical results.

Dissipated Energy [J] S M L

Exp. 0.0466 ± 0.0062 0.293 ± 0.0098 1.590 ± 172.35
Num. 0.041 ± 0.0017 0.246 ± 0.0032 1.475 ± 16.81
Error 12.01% 16.04% 7.23%

The fracture energy is computed as the ratio of the dissipated energy by the cross-
section beam area, A, that is G f = W/A. It is worth mentioning that in both the work of Colpo
et al. [72] and Kosteski et al. [73], where simulations based on the Lattice Discrete Element
Method were performed, an energy balance method was employed as an alternative to
calculate the Gf value. More precisely, taking into account the recorded energies (damage,
elastic, and kinetic) involved in the fracture process, as presented, for example, in Figure 8
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for PD simulations, different considerations were evaluated to identify the best way to
calculate the fracture energy and its relationship with samples of different sizes.

The corresponding fractal scaling law is presented in Figure 13 by plotting the fracture
energy vs. beam size (beam depth-b) on a bi-logarithmic scale:

ln G f = ln G∗
f − dG ln b (24)

where G∗
f is the fractal fracture energy, which is a scale invariant material property. Figure 13

shows dexp
G = 0.546 and a fractal dimension (∆G = 2 + dG) ∆GExp = 2.546 for experimental

results and dNum
G = 0.587 with a fractal dimension equal to ∆GNum = 2.587. The dG exponents

show that energy is dissipated over a region larger than a surface, which can be described,
from a fractal point of view, by invasive fractal sets, such as the von Koch triadic curve,
for example.
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In three-point bending tests, the fractal kinematic parameter considered, which has
the same meaning as the critical displacement in a tensile test, is the localized rotation at
the beam midspan. This parameter, at the point of view of failure, is defined as (see the
variables in Figure 14):

ϕc =
vc

l/2
(25)
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The corresponding fractal scaling law of the critical rotation angle on a bi-logarithmic
scale is given by:

ln ϕc = ln ϕ∗
c − dχ ln b (26)

where ϕ∗
c is the fractal critical rotation angle (invariant material property) and dχ is the

fractal exponent of the rotation angle. Figure 15 shows for the experimental tests an
exponent of dExp

χ = 0.343 and for PD one of dNum
χ = 0.269. Carpinteri and Accornero [20]

explain that the kinematic parameter is between the dimension of the rotation angle [L]0

and a curvature [L]1, that is, the parameter moves from a generalized displacement to
a deformation. From the fractal point of view, the decrease in the kinematic parameter
represents the curvature, located in the beam span, as a lacunar fractal consisting of infinite
radial cracks converging to the center of curvature.
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Finally, according to the fractal size effect law, presented by Carpinteri and col-
leagues [7], the fundamental relationship between the fractal exponents is defined by:

dσ + dχ + dG = 1 (27)

In the context of this work, the experimental tests provide for Equation (27) a value
of 0.988, whereas the numerical results provide a value equal to 0.979, that is, an error,
computed with respected to the theoretical one, equal to −1.20% and −2.10%, respectively.
Therefore it is clear that the experimental and numerical results are in agreement with the
fractal approach of the size effect.

It is worth noting that in previous studies carried out by some of the authors of this
work, using a version of the Discrete Element Method (DEM) [73,74], it was demonstrated
that the scale effect in quasi-brittle materials can be obtained by considering a bilinear
relationship together with the implementation of random fields. The same approach has
also been used in the PD simulations presented in this work, again demonstrating its
effectiveness in capturing the scale effect. In both cases (DEM and PD simulations) the
results are consistent with those predicted by the fractal size effect theory.

The numerical results obtained in this work on the scale effect in quasi-brittle materials
are of great importance for researchers whose work is based on PD theory, since it has
received unfair criticism, such as those presented by Bazant et al. [49]. Based on the findings
of this work, it will be possible to extend the studies to increasingly larger scales with the
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use of new parallel programming techniques and software, thus assisting engineers in the
design of new structures.

4.3. Dimensional Analysis for the Size Effect Based on the BPD Model Parameters

The scale effect presented above reflects the dependence of some mechanical quantities
on a small range of scales, more precisely, the laboratory scale. However, when the scales
are particularly small or large, a power relationship between the mechanical quantity and
size is no longer observed. Based on this, the classical dimensional analysis is employed to
demonstrate that the scale effect is naturally described by the parameters of the BPD model.

According to Zohuri [75], the dimensional analysis is a method by which informa-
tion about a phenomenon is derived from the single premise that a phenomenon can be
described by a dimensionally consistent equation of certain variables. As described by
Barenblatt [76], the functional relationship between a studied quantity and its governing
parameters can be expressed using the following equation:

a = F(a1, . . . , ak, b1, . . . , bm) (28)

where a is the quantity being determined in the study, a1:k represent the governing parame-
ters with independent physical dimensions, b1:m represent the governing parameters with
dependent dimensions, that is, their dimensions can be written in terms of the dimensions
of the parameters a1:k, and F is the function which represents the functional relationship
that exists between the parameters and the quantity studied. In the context of physical
phenomena in mechanics, the physical quantities are typically represented in the MLT
system, that is mass, length, and time. In this case, the independent physical dimensions are
three, which implies k = 3. The theorem of groups ∏, originally presented by Buckingham
in 1914 [77], allows for the expression (28) to be presented in an alternative form as:

∏ = Φ
(
∏1, . . . , ∏m

)
(29)

with
Π =

a
ap

1 . . . ar
k

and Πi=1:m =
bi

api
1 . . . ari

k
(30)

where the exponents (p and r) of the governing parameters with independent dimensions
are chosen such that all the parameters ∏, and ∏1:m are dimensionless. The function Φ
represents the functional relationship that exists between these dimensionless parameters.

According to Barenblatt [76], these results lead to the central theorem in dimensional
analysis, the so-called ∏-theorem: a physical relationship between some dimensional (gen-
erally speaking) quantity and several dimensional governing parameters can be rewritten
as a relationship between a dimensionless parameter and several dimensionless products
of the governing parameters; the number of dimensionless products is equal to the total
number of governing parameters minus the number of governing parameters with inde-
pendent dimensions. The term ‘physical relationship’ is used to emphasize that it should
be valid in all systems of units.

Barenblat [76] shows that expression (29) can be written as follows:

Π = C (Π1)
α1(Π2)

α2 . . . . . . (Πm)
αm (31)

where C and α1:m are coefficients that must be determined depending on the specific case
analyzed. In Refs. [75,76], different technics have been proposed in order to reduce the
number of dimensionless parameters or to determine the coefficients α1:m.
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Taking into account the BPD model parameters, an analysis of the mechanical prop-
erties affected by the scale effect will be conducted using the dimensional analysis. This
analysis can be done for the case of three-point bending tests; however, for simplicity, we
will consider a plate with dimensions bxb and thickness e under tension. Therefore, the size
effect on the tensile strength (σu), the fracture energy available to break the specimen when
σu is reached (Gf), and the ultimate strain (εu), which corresponds to σu, will be examined.

By considering the MLT system (then k = 3), the following govern model parameters are
defined: young modulus, E (a1), the characteristic plate dimension, b (a2), and the material
density, ρ (a3). The dependent model parameters are assumed as: G f , δ′, CVG f , Lcorr. G f is
an input data; a measure of the fracture energy, independent of the body size, linked with
the energy below the bilinear relationship.

Equation (28) for σu, Gf, and εu could be expressed as:

σu = X(a1, a2, a3, b1, b2, b3, b4) = X(E, b, ρ, G f , δ′, CVG f , Lcorr) (32)

G f = Y(a1, a2, a3, b1, b2, b3, b4) = Y(E, b, ρ, G f , δ′, CVG f , Lcorr) (33)

εu = Z(a1, a2, a3, b1, b2, b3, b4) = Z(E, b, ρ, G f , δ′, CVG f , Lcorr) (34)

By employing the technique of dimensional analysis, the ∏ terms can be written
as follows:

Πσu = Φσu(Π1, Π2, Π3, Π4) = Cσu(Π1)
α1(Π2)

α2(Π3)
α3(Π4)

α4 (35)

ΠG f = ΦG f (Π1, Π2, Π3, Π4) = CG f (Π1)
β1(Π2)

β2(Π3)
β3(Π4)

β4 (36)

Πεu = Φεu(Π1, Π2, Π3, Π4) = Cεu(Π1)
γ1(Π2)

γ2(Π3)
γ3(Π4)

γ4 (37)

where,
Πσu = σu/(E1b0ρ0) = σu/E
ΠG f = G f /(E1b1ρ0) = G f /(Eb)
Πεu = εu/(E0b0ρ0) = εu

(38)

From Equations (35)–(37), it’s possible to write:

Π1 = G f /(E1b1ρ0) = G f /(E b) (39)

Π2 = δ′/(E0b1ρ0) = δ′/b (40)

Π3 = CVG f /(E0b0ρ0) = CVG f (41)

Π4 = Lcorr/(E0b1ρ0) = Lcorr/b (42)

In this preliminary study, the analysis will be limited to the interaction between the
size effect and the parameters ∏1 and ∏2. The dimensionless variables ∏3 and ∏4 will not
be addressed at this stage, as they are not the focus of this investigation.

By rewriting the expression (35)–(37), and combining them with (39) and (40), it is
possible to obtain:

σu/E = Cσu

(
G f /(E b)

)α1
(δ′/b)α2 (43)

G f /(E b) = CG f (G f /(E b)β1(δ′/b)
β2 (44)

εu = Cεu(G f /(E b))γ1(δ′/b)γ2 (45)

The next step is to perform dimensional analysis for each of the mechanical quantities
affected by scale under tension for samples that exhibit a tendency towards a small scale
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(when b → 0), as well as those that show a tendency towards larger structures (when
b → ∞ ). For simplicity let us assume in the following that G f = G f .

For the tensile strength, the expression (43) is rewritten as follows:

σu = CσuE
(

G f /(E b)
)α1

(δ′/b)α2 (46)

By considering α1 = 0.5 for all the structural sizes (b), the following analisys can be
perfomed in order to defined the size effect on the tensile strength:

• when b → 0 , assuming α2 = −0.5 and considering Equation (12) with R = 1.0,
Equation (46) becomes:

σu = CσuE
(

G f /(E b)
)0.5

(δ′/b)−0.5 (47a)

σu = CσuE
(

G f /
(
E δ′

))0.5
(47b)

σu = CσuEs′ (47c)

σu ∝ b0.0 (47d)

• when b → ∞ , assuming α2 = 0.0 and considering Equation (12) with R = 1.0,
Equation (46) becomes:

σu = CσuE
(

G f /(E b)
)0.5

(δ′/b)0.0 (48a)

σu = CσuE
(

G f /(Eb)
)0.5

(δ′/δ′)
0.5 (48b)

σu = CσuEs′(δ′/b)0.5 (48c)

σu ∝ b−0.5 (48d)

Therefore, the dimensional analysis returns the trend presented in Figure 16a for the
size effect for the tensile strength.

It should be noted that the relationship presented in Equation (48a) can also be rear-
ranged as follows:

σu = Cσu(G f E/b)0.5 = CσuKIC/b0.5 ∴
KIC
b0.5 ∝

KIC

(πa)0.5 (49)

Therefore, for large structures, the tensile strength scaling law follows the LEFM.
The trends of the tensile strength scaling law (Figure 16a) indicates that for smaller

samples, a homogeneous regime should be assumed, where there is no variation of the
strength with respect to the dimensions of the sample (dσu = 0.0). On the other hand, for
larger samples, it is evident that the tensile strength is governed by the LEFM (see Equation
(49)), resulting in a scaling exponent (dσu) equal to 0.5.

By considering in Equation (44) β1 equal to 1.0 for all the structural sizes (b), the fol-
lowing analysis can be performed in order to defined the size effect on the fracture energy:

• when b → 0 , assuming β2 = −1.0,

G f = E bCG f (G f /(E b))1
(δ′/b)−1 (50a)
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G f = E bCG f (G f /
(
E δ′

)
) (50b)

G f = CG f bEs′2 (50c)Mathematics 2025, 13, x FOR PEER REVIEW 23 of 28 
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By remembering the relationship between the Crack Tip Opening Displacement
(CTOD) [78] and G f (that is, G f = σuCTOD) and assuming in Equation (50c), Es′ a stress at
failure, σu, then the CTOD, and consequently G f , is proportional to s′b, that is,

G f ∝ b1.0 (50d)

• when b → ∞ and assuming β2 = 0.0,

G f = E bCG f (G f /(E b))1
(δ′/b)0 (51a)

G f = E bCG f (G f /(E b))1
(δ′/δ′)1 (51b)

G f = E CG f (G f /
(
E δ′

)
)

1
δ′ (51c)

G f = E CG f s′2δ′ (51d)
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By recalling the Gf and CTOD relationship presented above, and combining it with
Equation (12), being R = 1.0 and σu = Es′ in Equation (51d), then the CTOD and consequently
G f , is proportional to s′δ′, that is,

G f ∝ b0.0 (51e)

Equations (50d) and (51e) return the trend present in Figure 16b for the fracture energy
scaling law. Figure 16c shows a schematic representation of the fracture energy scaling law,
taking into account different body sizes, b, under a given boundary condition and loading
(qc). The representation of the CTOD is presented as well. More precisely, for samples of a
relatively small size, the CTOD value is proportional to the sample size, b (dGf = 1.0). This
means that for any small body with a crack (which will appear at the moment of fracture),
the CTOD, and consequently the critical crack size, is restricted to size of the sample. On
the other hand, for large samples, the CTOD, and consequently the critical crack size, are
governed by δ′, and therefore constant, that is dGf = 0.0 (see Figure 16b).

Finally, by considering in Equation (45) γ1 equal to 0.5 for all the structural sizes (b), the
following analysis can be performed in order to defined the size effect on the critical strain:

• when b → 0 , assuming γ2 = −0.5 and considering Equation (12) with R = 1.0,

εu = Cεu(G f /(E b))0.5
(δ′/b)−0.5 (52a)

εu = Cεu(G f /
(
E δ′

)
)

0.5 (52b)

εu = Cεus′ (52c)

εu ∝ b0.0 (52d)

• when b → ∞ , assuming γ2 = 0.0 and considering Equation (12) with R = 1.0,

εu = Cεu(G f /(E b))0.5
(δ′/b)0.0 (53a)

εu = Cεu(G f /(E b))0.5
(δ′/δ′)0.5 (53b)

εu = Cεus′(δ′/b)0.5 (53c)

εu ∝ b−0.5 (53d)

Therefore, dimensional analysis returns for the critical strain scaling law trend are
presented in Figure 16a. When b → 0 , a homogeneous regime is expected (exactly as in
tensile strength), the strains being diffuse, that is, occurring throughout the volume of the
body. Consequently, there is no scale effect on the critical strain, dεu = 0.0. When b → ∞ ,
the strain will be in accordance with the behavior of the tensile strength up to the peak
stress, which is governed by the LEFM. Consequently, the scale effect will follow the same
trend, that is, dεu = 0.5.

It is worth noting that the sum of three fractal exponents will be equal to 1.0 from the
scaling laws derived from dimensional analysis employing the BPD model parameters.
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5. Conclusions
In the present work, the problem of size effect is analyzed from a fractal point of

view in EPS beam specimens subjected to three-point bending tests and PD simulations.
More specifically, three scaled beams are considered and the size effect on flexural strength,
fracture energy and critical angle of rotation is investigated.

It was found from the global behavior analysis that the maximum absolute errors,
calculated with respect to the experimental values, are:

• On average, flexural strength equal to 3.54%;
• On average, flexural strain equal to 7.14%;
• On average, dissipated energy equal to 16.04%.

Regarding the size effect analysis, the sum of the fractal exponents shows an error,
calculated with respect to the theoretical one, equal to −1.20% and −2.10% for the ex-
perimental and numerical results, respectively. Moreover, the ductile-to-brittle transition
behavior is observed in both experimental and numerical results, a clear signature of the
size effect in quasi-brittle materials.

By employing the classical dimensional analysis, the size effect on the mechanical
properties of quasi-brittle materials based on the parameters that govern the BPD model
has been investigated. The results showed that the trends reported by dimensional analysis,
allowing the extrapolation of the results obtained from the BPD model to different scales
in addition to the laboratory ones analyzed in the work. More precisely, the results of
dimensional analysis show that:

• For the tensile strength and the critical strain, the same trends are observed, that
is, when b → 0 , no scale effect is reported, whereas when b → ∞ , these mechanical
properties are governed by the LEFM;

• For the fracture energy, when b → 0 , the size dependence is maximum, that is, directly
proportional to the structural size, whereas when b → ∞ , no scale effect is observed.

Future research work will examine the scale effect across a broader range of sizes
than those considered in this study. This will be achieved by implementing advanced
parallelization techniques to optimize computational time. Additionally, the analysis will
include the influence of quasi-brittle materials under different loading conditions, such as,
for example, traction and compression.
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