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Article

Enhancing Clinical Assessment of Skin Ulcers with Automated
and Objective Convolutional Neural Network-Based
Segmentation and 3D Analysis
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Chiara Innocente 2 , Giorgia Marullo 2 , Elia Ricci 3, Jacopo Secco 1 , Enrico Vezzetti 2 and Luca Ulrich 2,*
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* Correspondence: luca.ulrich@polito.it

Abstract: Skin ulcers are open wounds on the skin characterized by the loss of epidermal
tissue. Skin ulcers can be acute or chronic, with chronic ulcers persisting for over six
weeks and often being difficult to heal. Treating chronic wounds involves periodic visual
inspections to control infection and maintain moisture balance, with edge and size analysis
used to track wound evolution. This condition mostly affects individuals over 65 years
old and is often associated with chronic conditions such as diabetes, vascular issues, heart
diseases, and obesity. Early detection, assessment, and treatment are crucial for recovery.
This study introduces a method for automatically detecting and segmenting skin ulcers
using a Convolutional Neural Network and two-dimensional images. Additionally, a
three-dimensional image analysis is employed to extract key clinical parameters for patient
assessment. The developed system aims to equip specialists and healthcare providers
with an objective tool for assessing and monitoring skin ulcers. An interactive graphical
interface, implemented in Unity3D, allows healthcare operators to interact with the system
and visualize the extracted parameters of the ulcer. This approach seeks to address the
need for precise and efficient monitoring tools in managing chronic wounds, providing
a significant advancement in the field by automating and improving the accuracy of
ulcer assessment.

Keywords: automatic segmentation; convolutional neural network; edge detection; 3D
analysis; interactive interface; chronic wound; clinical parameters

1. Introduction
Wound care is a specialized medical field focused on the assessment, treatment,

and management of wounds that fail to heal properly, such as chronic ulcers, burns,
or surgical wounds. It involves a multidisciplinary approach to promote healing, prevent
infection, and reduce complications, often incorporating techniques such as cleaning,
dressing, debridement, and advanced therapies like negative-pressure wound therapy or
the use of bioengineered skin substitutes [1]. Effective wound care aims to restore the skin’s
integrity while minimizing pain and improving the patient’s overall quality of life. It is a
condition that affects approximately 1–2% of the global population [2].

This medical field has long been considered a second-tier specialty but has gained
recognition as the importance of chronic wound management has grown, especially with
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aging populations and the rise of conditions like diabetes [3]. However, it has been rec-
ognized that the clinical pathway for the diagnosis and treatment of skin ulcers requires
particular attention. Skin ulcers are open wounds on the skin characterized by the loss of
epidermal tissue, often resulting from various underlying conditions such as poor circula-
tion, pressure, or infection [4]. They can be acute or chronic, with chronic ulcers persisting
for over six weeks and often being difficult to heal [5]. The management of skin ulcers is
complex and varies based on their etiology and severity, necessitating a comprehensive
understanding of their pathophysiology and treatment options. In addition, wounds that
do not respond to standard therapies have a significant impact causing discomfort in the
daily lives of patients and their caregivers and increasing the burden on the healthcare
system. Early detection, assessment, and treatment of the wound are crucial for patient
recovery. Estimates suggest that about 5–10% of individuals will suffer from this condition
during their lifetime, while the annual incidence ranges from 0.3% to 1.9% [6]. Further
studies have shown that after four weeks, there is a 30% chance that the injury will never
heal, in particular, a 50% chance of loss of the affected limb and a 50% probability of death
within the next five years [7].

Several interviews conducted with specialists in the field revealed an alarming sit-
uation regarding the scarcity of experts and the lack of standardized protocols for the
diagnosis and the definition of treatment plans. In particular, it was found that in clinical
practice, wound dressing and monitoring were typically performed by nurses and non-
specialist caregivers, who rotated in the care of the patient. This rotation often cannot ensure
continuity and adequate attention to each patient. These issues highlight the need for a
tool that supports clinicians and healthcare providers in the clinical evaluation of wound
status, providing fast, precise, and objective assessment. Although new opportunities are
emerging for the development of new innovative techniques in this field [8,9], gaining the
trust of physicians remains a challenge. Moreover, the high cost of technology and the
attachment to traditional visual methods for wound assessment continue to dominate the
clinical management of skin lesions [10]. On the other hand, it is important to consider that
traditional methods for extracting evaluation parameters are often rudimentary, imprecise,
and painful for the patient. Specifically, measuring the wound area is traditionally done
with simple tools such as a ruler [11], especially in homecare settings. This approach
can only measure regular shapes, such as the area of a square or a rectangle, leading to
measurement errors of up to 30%, as shown in Figure 1a.

(a) (b)

Figure 1. (a) The red outline describes a manual measurement of a generic wound, while the green
outline describes the automatic segmentation performed by the device. The area of the rectangle and
the area of the wound can have a difference of up to 30%. (b) A device for the acquisition, automatic
segmentation, and area calculation of a skin lesion. Adapted from [7].

Beyond the lack of precision in extracting wound parameters, manual measurement
also causes discomfort and sometimes pain to the patient due to direct contact with the
sensitive damaged skin.

Given these premises, the need clearly emerges to introduce and promote the use of
technologies capable of automatically and accurately providing information regarding skin
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ulcers, thereby offering a support tool for physicians to quickly provide a comprehensive
clinical picture of the patient and the status of the wound.

As the healthcare landscape continues to evolve, the integration of AI and digital tools
is revolutionizing traditional practices, setting new standards for efficiency and effective-
ness in all the phases of the clinical practice [12]. This shift highlights the limitations of
manual techniques and underscores the critical role of technology in advancing patient care.

In recent years, there has been increasing attention to this topic and the development
of new solutions for skin ulcer assessment that are more accurate and non-invasive. To this
end, a study was conducted by Biagioni et al. [13] to test a smartphone application capable
of calculating the wound area from a picture. That method allowed for a more precise
measurement by manually outlining the irregular shape of the lesion. However, it still
heavily depended on the operator’s experience and remained a time-consuming process.

An innovative aspect in the evaluation of chronic wounds is the development of new
approaches to standardize the accuracy of their measurement. For this reason, there is a
push towards various computer-aided solutions for the automatic segmentation of skin
ulcers, enabling more accurate and faster analysis [14]. Furthermore, several studies have
demonstrated that protocols enabling easy and continuous monitoring through standard-
ized data are key factors in preventing complications like infection and the occurrence of
necrotic tissue, which can lead to the need for surgical intervention [15,16]. This topic has
been studied by various research groups, which have developed artificial intelligence (AI)
algorithms demonstrating the reliability of such tools in the field of wound care [17].

Recent works [18,19] have also demonstrated the capability of automatically identi-
fying and determining the etiology of wounds through advanced computational means.
In particular, an approach was proposed by Secco et al. [20], who developed a technol-
ogy, shown in Figure 1b, integrating a memristive Discrete-Time Cellular Neural Net-
work (DT-CNN) capable of automatically identifying, classifying, and measuring wounds
through 2D wound images, with an accuracy of up to 90%. In another work, the actual
reliability of such a telemedical device for supporting the diagnosis and monitoring of skin
ulcers was demonstrated through a clinical trial that showed the clinical utility and effec-
tiveness of an AI-based tool capable of providing precise and reliable clinical information
to the physician in a telemedical setting [21].

Given the current state of the art, the purpose of this work was to integrate a three-
dimensional approach into the traditional two-dimensional methods for extracting wound
assessment parameters, providing a more comprehensive picture of the skin lesion con-
dition. Specifically, the goal was to develop an AI-powered tool for more accurate and
efficient monitoring of the wound progression to support the physician, enabling the XR
interaction and visualization of the patient’s clinical history alongside the wound’s two-
dimensional and three-dimensional parameters, such as its area and perimeter. Such a
tool provides the opportunity to support clinicians through automated and standardized
processes, leading to more efficient patient management by enabling a rapid and accurate
storage of clinical data.

The remainder of this paper is structured as follows: Section 2 outlines the imple-
mentation of wound detection and segmentation using a CNN, parameter extraction from
depth maps and 2D images, and the handling of 3D models within Unity3D. It also dis-
cusses the integration and functionality of the interactive graphical interface. Section 3
presents the obtained results. Section 4 discusses the results, addresses limitations, and
suggests potential future implementations of the technology. Finally, Section 5 provides
the conclusions.
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2. Materials and Methods
The current work aimed to develop a tool designed to assist physicians in the di-

agnosis and management of patients with skin ulcers. Specifically, earlier identification
and intervention reduce the risk of complications such as infections or wound worsening.
Moreover, improved detection accuracy leads to more reliable assessments, enabling tai-
lored treatment plans that can enhance healing outcomes and reduce recovery times. This
precision minimizes misdiagnoses, which can result in unnecessary treatments or delays
in addressing the underlying issue. The proposed procedure, summarized in Figure 2,
leverages AI and XR technologies to provide enhanced support by enabling the more
accurate identification of skin ulcers.

CNN-based wound 

segmentation

RGB-Depth wound 

mapping

Wound parameters 

evaluation

Wound visualization 

in Virtual Reality

Figure 2. Procedure workflow.

RGB images were used for the automatic wound segmentation based on the employ-
ment of a Convolutional Neural Network (CNN). After the coordinates identified on the
RGB images were mapped onto depth images, the area and perimeter parameters of the
wound were calculated based on the obtained 2D and 3D segmentation. Subsequently, the
3D point clouds were rendered within a custom-built XR application, after undergoing a
preprocessing stage designed to enhance the quality of the data.

The publicly available WoundsDB database [22] was utilized to develop the proposed
procedure. WoundDB includes images obtained from 47 patients with skin ulcers. Images
were captured in various modalities along the same axis, including RGB photography,
thermovision, stereovision, and depth perception. For the current application, the following
images were selected: RGB images, in png format, acquired with a FujiFilm X-T1 digital
camera equipped with Fujinon XF/XC lenses (FujiFilm, Tokyo, Japan); depth images, in
ply format, captured using a SwissRanger SR4000 time-of-flight camera (SwissRanger,
Neuchâtel, Switzerland); and thermal information acquired through a FLIR A300 thermal
camera (FLIR, Wilsonville, OR, USA).

The procedure description is detailed in the following subsections: First, Section 2.1
describes how the neural network was implemented with detection and segmentation tasks
for processing 2D RGB images of wounds. Once the network was trained, obtained lesions
contours were mapped onto the depth images, and the quantitative parameters for the
ulcer assessment were extracted, as outlined in Section 2.2. Finally, Section 2.3 presents the
development of an XR application for skin ulcer visualization.
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2.1. Automatic Skin Ulcer Segmentation

This section describes the process of automatically identifying and outlining the
boundaries of skin ulcers from standard digital photographs using advanced artificial
intelligence (AI) techniques. The primary goal of this process was to accurately and
objectively assess the wound’s characteristics without relying on manual methods, which
can be time-consuming, prone to human error, and often inconsistent. To achieve this, the
method employed a state-of-the-art AI model known as YOLOv8-seg, a neural network
specifically designed for tasks involving object detection and segmentation.

This AI model was trained on a dataset of wound images to recognize and distinguish
ulcer areas from the surrounding healthy skin or background. The training process involved
exposing the model to various wound images, augmented with techniques like blurring,
grayscale conversion, and contrast enhancement, to improve its ability to generalize across
different wound types and imaging conditions. Once trained, the model processed each
input photograph, identifying the wound and creating precise outlines or masks that
delineated its boundaries.

These automatically generated outlines served as a foundation for further analyses,
such as calculating wound dimensions and integrating the data into three-dimensional
models. By automating this initial step, the approach ensured a high degree of accuracy
and reproducibility, making it an essential component for advanced wound assessment
systems and clinical applications.

The YOLOv8-seg network [23] was chosen since it has demonstrated significant ef-
fectiveness when applied to various medical applications, such as cancer detection [24,25],
skin lesion segmentation [26], and pill identification [27]. These applications have led
to marked improvements in diagnostic accuracy, enabling more precise assessments and
earlier detection. Additionally, the integration of such models has streamlined treatment
processes, allowing for faster and more efficient therapeutic interventions. The underlying
architecture is based on a Region-based Convolutional Neural Network (R-CNN), struc-
tured with alternating convolutional layers, pooling layers, and activation functions to
extract relevant features from input data and perform object detection tasks.

For the current application, we utilized the YOLOv8-seg model, a state-of-the-art vari-
ant of the YOLO framework, pre-trained on the large Common Objects in Context (COCO)
dataset. This open-source model, available from Ultralytics, has been specifically designed
to address challenges in real-time object detection and segmentation. In particular, the
YOLOv8-seg version incorporates improvements for more precise object localization and
segmentation, making it well suited for tasks that require high accuracy in distinguishing
objects of interest within complex images. The Region Proposal Network (RPN) employed
by YOLOv8-seg performs a critical function by first localizing the object of interest within
an image using a bounding box. Once the object is localized, the network segments it from
the background or other surrounding elements. This two-stage process, which involves
object localization and segmentation, ensures that the model can effectively distinguish
the target object with a high precision degree, even in cluttered environments. YOLOv8
uses the max pooling operation in its pooling layers to help reduce the spatial dimen-
sions of the feature maps, which aids in capturing essential information while minimizing
computational complexity. The intermediate layers of the network utilize the Sigmoid
Linear Unit (SiLU) as the activation function, which introduces non-linearity and helps
the network learn complex patterns more effectively (1). In the final layer, the sigmoid
activation function is applied to produce the output of the model, ensuring that the results
are appropriately scaled for binary classification tasks, such as determining the presence or
absence of an object within a given region (2).

SiLU(x) = x ∗ σ(x), (1)
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σ(x) =
1

1 + e−x , (2)

Furthermore, during the learning phase, the network implements a loss function
with three assigned weights: one concerning the loss component on the bounding box
that identifies the object of interest, the second one related to the loss component on the
segmentation task, and the last one related to the loss component on the predicted object
class, if the objective includes an object classification task.

The standard hyperparameters of the model, shown in Table 1, were chosen, except for
the number of training epochs, which was set to 150 due to the limited size of the available
dataset, and the patience parameter, which was set to 30 epochs to avoid over-fitting on the
Training Set.

Table 1. Network’s main hyperparameter set for YOLO network training. These parameters regulate
the learning rate, the number of samples to be processed in a forward pass, the extent of the resizing
to be applied to the images, the number of training epochs, and the number of epochs to wait without
improvements before early stopping the training, respectively.

Learning Rate Batch Image Size Epochs Patience

0.01 16 640 150 30

Additionally, data augmentation was applied to the dataset by means of the albu-
mentations library in order to enhance the model’s robustness and generalization ability.
Several image transformation techniques were used to augment and preprocess images:
blur, to improve the robustness of models to slight variations in sharpness and focus by
applying a blur effect; median blur, for removing salt-and-pepper noise while keeping the
edges of objects relatively sharp; grayscale, helpful for simplifying color information and
focusing on the structure and features of the image, reducing computational complexity and
making models more robust to variations in color; Contrast-Limited Adaptive Histogram
Equalization (CLAHE), to enhance features in areas with subtle variations, by improving
the contrast of the image, especially in regions with a poor one. Selected parameters are
reported in Table 2.

Table 2. Data augmentation parameters applied to the training images. p is the probability with
which the transformation is applied to the image.

Blur Median Blur ToGray CLAHE

p = 0.01
blur_limit = (3, 7)

p = 0.01
blur_limit = (3, 7)

p = 0.01 p = 0.01
clip_limit = (1, 4)

After further consideration, it was decided to expand the available dataset of RGB
images, as it was too limited in the number of images for the current work. Therefore, an
additional dataset containing 319 RGB images acquired through the Wound Viewer (WV)
device was used [20]. Such data were anonymized and used for research purposes.

For the network training and validation, 84 RGB images were extracted from the
WoundsDB database to create Dataset A. As depicted in Figure 3a, that dataset was initially
split into a Construction Set and a Test Set. Approximately 70% of the images were allocated
to the Construction Set, with the remaining assigned to the Test Set. Within the Construction
Set, a further division was made: 60% for the Training Set, used to train the network and
40% for the Validation Set, employed to fine-tune network parameters.
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(a) (b)

Figure 3. (a) Initial Dataset A split for network training and validation. (b) Updated Dataset B
obtained by adding WV images for the training and fine-tuning of the network. In the Test Set, the
initial images from WoundsDB, necessary for the subsequent purposes of this work, were maintained,
while the Training Set and Validation Set were expanded.

After evaluating the segmentation performance on the Test Set of Dataset A, Dataset B
was created by incorporating additional images acquired through the WV device. Figure 3b
illustrates the updated dataset. The additional images augmented the Training and Val-
idation Sets, while the Test Set retained only the original WoundsDB images, crucial for
subsequent ulcer parameter calculation and visualization in the Unity3D environment.

The initial splits used for the WoundsDB were preserved, with no new images added
to the Test Set, ensuring a high representation of this dataset in the network’s training
examples. This decision was driven by the study’s focus on achieving robust segmentation
performance specifically on WoundsDB images.

For training, the network required a ground-truth text file for each image in the
Training and Validation Sets and given the dataset’s size constraints, a single-class training
approach was adopted, with “Ulcer” designated as the sole object of interest to recognize.
Creating the ground truth required the following steps: (1) manual segmentation of each
image; (2) creation of the binary masks to identify the regions of interest; (3) extraction
of the object contour coordinates; (4) creation of text files, where each line contained the
class identification number of the object and the corresponding extracted coordinates of
the contour.

Once the network was trained with lesion detection and segmentation tasks, inference
was performed on the Test Set. Different metrics were considered to quantify network
performance. The Intersection over Union (IoU) evaluated the degree of overlap between
the objects contained in the two masks and was calculated as follows:

IoU =
X ∩ Y
X ∪ Y

(3)

where X is the set of white pixels belonging to the manual mask and Y is the set of white
pixels belonging to the automatic mask. This metric ranges from 0 to 1.

The counting error was computed as reported below:

Error = Nmanual − Nautomatic (4)

where Nmanual represents the number of objects contained in the manual mask, and
Nautomatic is the number of objects detected in the automatic mask.

Finally, to quantify the performance improvement obtained by training the network
on Dataset B, the percentage increase in the average IoU was computed as:
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Improvement =
IoUB − IoUA

IoUA
(5)

where IoUA is the average IoU calculated from the inference performed with the weights
trained on Dataset A, and IoUB is the average IoU calculated from the inference performed
with the weights trained on Dataset B. Comparing the performance achieved using datasets
of varying sizes is essential for quantifying the actual improvement that comes with
increased data availability. This type of analysis allows for a precise evaluation of the
impact that expanding the dataset has on model performance, highlighting how much the
increase in available data can influence the quality of the results obtained. Especially in the
medical field, various factors may limit the use of large datasets, such as privacy concerns
and data security. Therefore, this type of analysis can serve as a guide for future research,
helping to navigate these challenges while assessing the potential benefits of increased
data availability.

2.2. Skin Ulcer Parameter Extraction

The following steps for surface segmentation and parameter extraction were carried
out using the output from the inference performed on the Test Set, which contained only
WoundsDB images and their associated depth information. Starting from the binary mask
obtained through the CNN automatic segmentation, the coordinates of the 2D ulcer contour
and its internal pixels were extracted.

Before proceeding with the 3D segmentation, a preprocessing of the 3D point cloud
was performed to ensure the alignment of the RGB and depth Field of Views (FOVs). This
process was carried out through the color thermal information that was superimposed on
the 3D object only in the common area. Therefore, grayscale vertices were excluded. In
particular, processing of the input point cloud was performed by removing points with
identical color information across red, green, and blue channels, indicating grayscale values.
Finally, further refinement was achieved by excluding isolated vertices representing noise.

To convert the automatic 2D segmentation obtained with the CNN into a 3D seg-
mentation, pixel coordinates of the 2D image were uniquely associated with the X and
Y coordinates of the 3D point cloud. First, the 3D coordinates were sorted in descending
order, and a median filter was applied using a non-overlapping sliding kernel, resampling
the axes to 240 × 320 for Y and X. Then, 2D segmentation coordinates, extracted from the
binary mask, were converted into 3D coordinates by obtaining the corresponding Z values
through linear interpolation with the original point cloud. A further translation of −20
along the x-axis and −5 along the y-axis was applied for refinement. Subsequently, the 3D
segmentation contour coordinates extracted were stored in a txt file for the visualization
step. Similarly, the internal points of the 3D graphic object within the segmented wound
were obtained for area computation and wound visualization.

After the preprocessing step and the calculation of the lesion’s 3D coordinates, the 3D
point cloud was reconstructed into a surface using the Screened Poisson Surface Reconstruc-
tion (SPSR) technique [28], while for the ulcer area, the Ball Pivoting method was employed
to preserve the number of vertices [29]. Once the lesion segmentation process was com-
pleted, it was possible to calculate the area and parameter in both three-dimensional and
two-dimensional coordinates.

The 3D and 2D perimeters were computed by summing the Euclidean distances be-
tween consecutive contour points (Xc, Yc, Zc), with or without considering the Z dimension,
as shown in Equation (6).

P =
N−1

∑
i=1

√
(Xc

i+1 − Xc
i )

2 + (Yc
i+1 − Yc

i )
2 + (Zc

i+1 − Zc
i )

2, (6)
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where i = 1, 2, . . . , N − 1 identifies the contour point, and N is the total number of points.
The 2D area was evaluated using Delaunay triangulation [30], while the 3D area was

calculated by summing the areas of the obtained triangular faces, whose coordinates were
retrieved from the ply file.

2.3. XR Environment for Skin Ulcer Visualization

An environment conceived to identify ulcers through AI-powered automatic recogni-
tion can greatly benefit from the integration of XR. By incorporating XR, the application
can enhance visualization and interaction with 3D information, making it more precise
and intuitive for users. A user-centered design approach is crucial in this context, as it
ensures the tool is tailored to the specific needs and workflows of its users, i.e., the health-
care professionals. This approach highlights the necessity for a visualization system that
not only provides accurate 3D representations of ulcers but also allows for seamless and
user-friendly manipulation of the data. XR can enable users to explore the ulcer’s mor-
phology, size, and spatial characteristics in a more natural and immersive manner, thereby
improving diagnostic accuracy and facilitating effective decision-making. The result is a
tool that bridges the gap between complex AI outputs and practical, real-world usability.

In this sense, a preliminary XR environment exploiting automatic skin ulcer identifica-
tion was developed. The prototype of the designed environment’s Graphical User Interface
(GUI) is shown in Figure 4.

Skin ulcer

RGB image

Patient’s

metadata

Skin ulcer

3D model

Skin ulcer 

parameters

Patient’s anamnesis 

and medical history

Figure 4. GUI concept design of the proposed XR environment for skin ulcer identification.

As shown, the 3D model of the ulcer is positioned centrally in the user’s FOV. This
design choice was made to ensure that the potential of XR was aimed primarily at enhanc-
ing the presentation of the three-dimensional information while keeping the rest of the
visual field as uncluttered as possible. This approach minimizes distractions that could
negatively affect the user experience, a consideration that applies equally to virtual reality
and augmented reality environments [31]. On the left side of the interface, the upper
section displays the reference RGB image, which is used for automatic recognition based
on artificial intelligence. The lower section includes a window that displays patient-related
metadata, such as ID, gender, age, or medical record number. On the right side of the
interface, the upper section presents a panel that allows users to adjust the properties of the
3D ulcer model, such as color and material, and access controls to calculate quantitative
parameters, including the perimeter and area of the ulcer. The 3D contour outlining the
ulcer’s perimeter was generated from the coordinates identified through the CNN-based
segmentation and mapped onto the 3D surface (Figure 5). Specifically, Blender (version 4.1)
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was used to generate a polygon from the interpolated coordinates of the depth map (z) and
the coordinates of the CNN segmentation (x, y).

Figure 5. The red line in the figure represent the perimeter generated on the Blender platform using
the previously extracted 3D coordinates of the contour.

Finally, the bottom section shows a final window containing the patient’s medical
history and clinical picture.

The designed GUI was implemented using the cross-platform game engine Unity3D
(version 2022.3.31f1), and the Mixed Reality ToolKit (MRTK) (version 2.8.3) was included
to support user interactions within the application. The MRTK framework offers a set of
components mainly intended for creating XR applications, including features for detecting
hand gestures, tracking head movements, and recognizing voice commands. The system
was designed to ensure a smooth and interactive user experience, with an emphasis on cus-
tomization and flexibility in interacting with the 3D model. To this end, interactive objects
inside the virtual scene, such as the 3D model of the ulcer, were equipped with specific
components to enable direct manipulation through gestures and physical interactions. In
addition, constraints were applied to properly handle transformations, such as translation,
rotation, and scaling, ensuring the intuitive and precise management of 3D objects in the
virtual environment. In addition, a material derived from the 3D model of the thermal
map was applied to the ulcer model for color extraction. However, users are provided with
the option to modify the color, including a toggle feature that allows switching between
heatmap rendering and a neutral color scheme.

3. Results
This section emphasizes the most significant aspects that contribute to the accurate

identification of the ulcer-affected region. First, the outcomes of the automatic ulcer
recognition process are analyzed, showcasing how effectively the system identifies and
delineates the ulcer area from the input data. This step is critical, as it lays the foundation
for the subsequent analyses and ensures that the identified region is precise and reliable.

Next, attention is given to the performance of the 3D reconstruction phase. This
involves evaluating how accurately the system reconstructs the three-dimensional mor-
phology of the ulcer and how well it supports the extraction of quantitative parameters,
such as area and perimeter. These parameters are essential for assessing the severity
and progression of the condition, making their accuracy and reliability pivotal for both
diagnostic and monitoring purposes.

Finally, the development of a preliminary user interface is discussed. This interface is
designed to visualize the results clearly and intuitively, tailored to the needs of healthcare
professionals. The goal is to present the extracted information, both in terms of visual
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models and quantitative data, in a way that maximizes its usability and supports clinical
decision-making. By integrating user-friendly design principles, the interface ensures
that complex data are made accessible, reducing cognitive load and allowing healthcare
providers to focus on delivering optimal patient care.

3.1. Segmentation Assessment

Following the training of YOLO with both datasets, the loss functions were evalu-
ated on the segmentation task to ensure that the number of epochs and patience settings
were appropriate.

Figure 6 shows the trend in the segmentation loss function in both training sessions.
In the case of Dataset A (Figure 6a), training was stopped at epoch 101 because no im-
provement in validation metrics had been observed in the last 30 epochs. For Dataset B
(Figure 6b), the training continued until epoch 150, as there were slight improvements up
to that threshold. However, the number of training epochs set to 150 was appropriate, as
the loss function reached a plateau beyond which no further decrease was likely to occur.

(a) (b)

Figure 6. (a) YOLO segmentation loss function on the Validation Set of dataset A. (b) YOLO segmen-
tation loss function on the Validation Set of dataset B. In the case of Dataset A, early stopping occurred
at epoch 101. For Dataset B, the training continued until epoch 150, with slight improvements still
being observed.

After training and tuning the network, the segmentation performance was evaluated
by running inference on the Test Set with the weights obtained from both training sessions.
Figure 7 shows an example of the output results from the trained network, given as
input the example RGB image (Figure 7a). The object of interest was detected through a
bounding box reporting the confidence level (Figure 7b). Subsequently, each pixel within
the bounding box was classified as either belonging or not belonging to the object of interest,
resulting in the segmentation of the detected lesion. From the YOLO network’s inference
output, a binary mask was obtained for further analysis, as shown in Figure 7c.

(a) (b) (c)

Figure 7. (a) The RGB image provided as input to the network to perform inference. (b) Network
output. (c) Binary mask obtained from the automatic segmentation returned by the network. These
figures show an example of YOLO network inference for an RGB image of the Test Set.
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For the evaluation of the detection and segmentation performance, the IoU and count-
ing error values were obtained for each image. The results obtained with the training on
Dataset A are shown in Figure 8a, with an average IoU of 0.56 ± 0.23, a median value of
0.62, and five images where the network failed to detect any lesions.

(a)

(b)

Figure 8. (a) Network trained on Dataset A. (b) Network trained on Dataset B. This figure shows
YOLO segmentation performance (IoU) for each image. The median value is drawn in black, while
the mean value is drawn in orange

Using Dataset B instead, the results shown in Figure 8b were obtained, with an average
IoU of 0.66± 0.25, a median value of 0.77, and only two images where no detection occurred.
The counting errors on individual images were also lower, with 18 images having no error
in the number of detected lesions, compared to 11 with the initial dataset. Overall, the
increase in the number of training and tuning examples, even with wound images acquired
using devices with different characteristics, led to an 18% improvement in segmentation
performance in terms of average IoU.

3.2. Surface Segmentation and Parameter Evaluation

The identification of the region of interest began with an essential preprocessing step
involving the cleaning of the point cloud. This process was aimed at removing noise,
outliers, and irrelevant data points that could otherwise interfere with the accuracy of the
subsequent 3D reconstruction. By refining the point cloud, the quality and precision of
the generated mesh were significantly improved, ensuring that the reconstructed surface
accurately represented the ulcer region. This step was critical for maintaining the integrity
of the data and for enabling a reliable analysis in later stages, such as the extraction of
quantitative parameters or the visualization of the 3D model.

Figure 9a shows the initial point cloud corresponding to the analyzed ulcer. The
preliminary preprocessing method implemented resulted in a mostly accurate alignment of
the FOV with respect to the RGB camera, as depicted in Figure 9b.
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(a) (b)

Figure 9. (a) Raw Point cloud. (b) Cleaned point cloud. The cleaning step on the points of no interest
is shown, focusing solely on the area aligned with the corresponding 2D image highlighted with the
thermal color map.

Surface reconstruction of the cleaned depth 3D image yielded the result shown in
Figure 10a. Furthermore, internal ulcer points were leveraged to isolate and reconstruct the
ulcer surface shown in Figure 10b.

(a) (b)

Figure 10. (a) Total surface reconstruction of the cleaned depth 3D image corresponding to the
2D image. (b) Skin ulcer 3D surface reconstruction obtained by isolating internal points of the
ulcer contour.

The quantitative parameters of the perimeter and area were then extracted as support
for the clinical evaluation of the wound. The results are shown in Table 3 which summarizes
the considered ulcer parameters.

Table 3. Extracted parameters for the example RGB image.

Area [cm2]
Delaunay

Perimeter [cm]

2D 67.9 39.5

3D 123.1 66.8

The 3D perimeter resulted in a value of 66.8 cm, which would have been strongly
underestimated if measured in the 2D domain, yielding 39.5 cm. The 3D area computation
followed a similar trend, showing almost a doubled value compared to the 2D measure-
ments. The importance of 3D information lies in its ability to capture the true geometry
and spatial characteristics of complex surfaces, which are often oversimplified in 2D repre-
sentations. In the case of the ulcer measurements, the 3D perimeter and area significantly
exceeded their 2D counterparts, illustrating how flat, two-dimensional approximations can
underestimate the true extent of irregular or curved regions. By incorporating 3D data, it
becomes possible to account for variations in surface topography and depth, providing
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a more accurate and comprehensive assessment of the ulcer’s dimensions. This level of
precision is crucial for clinical applications, where reliable measurements are necessary
for diagnosis, treatment planning, and monitoring the progression or healing of the con-
dition. Without 3D information, critical details may be missed, leading to suboptimal
clinical outcomes.

3.3. XR Environment Setup

The XR environment was developed to enhance visualization and interaction with the
results obtained from the segmentation of RGB images related to ulcers. It was designed
to offer a clear and intuitive representation of the segmented regions, allowing users
to better analyze and understand the affected areas. Additionally, it facilitated access
to the quantitative parameters extracted during the analysis, such as the ulcer’s area
and perimeter, which are critical for accurate assessment and monitoring. By combining
advanced visualization capabilities with user-friendly interaction, this solution aimed to
improve the evaluation process, supporting healthcare professionals in making informed
decisions and enhancing patient care.

The resulting XR environment (Figure 11) offers a comprehensive view by presenting
the patient’s demographic information, including their age, gender, and medical record
details, alongside a summary of the wound’s anamnesis. It features three interactive
buttons that enable users to independently visualize specific aspects of the ulcer: the
estimated perimeter, the calculated area, and a thermal map overlaid on the 3D model
of the leg. These functionalities provide clinicians with the flexibility to analyze various
parameters of the wound in detail. In addition to the 3D model, the corresponding RGB
image of the wound is displayed, further enhancing the analysis by incorporating rich
color information. This integration allows physicians to correlate the spatial data with the
visible characteristics of the ulcer, such as coloration and texture, offering a more holistic
perspective on the wound’s condition.

Figure 11. Final interactive Unity3D workspace displaying the patient’s demographic data and the
qualitative and quantitative parameters of the wound.

4. Discussion
The current work aimed to propose a semi-automatic and objective system to support

the diagnosis and monitoring of chronic wounds and to address the numerous limitations
identified in the treatment process of individuals suffering from this pathology. Among
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these limitations, the shortage of wound care experts, the lack of standardized protocols,
and the difficulties in ensuring continuous monitoring and patient-specific therapy play a
crucial role.

The first contribution of the work consisted in automatically segmenting the wound
from a two-dimensional image through the implementation of a CNN. By training the
network on the dataset expanded with additional 319 WV images, an 18% increase in
performance on the Test Set was achieved, reaching an average IoU of 66%. In addition to
average values, the median IoU was also assessed, scoring 77% for the expanded dataset,
indicating most images were recognized with high IoU values, while a few lower-quality
images affected the average value.

The extraction of the wound contour from two-dimensional images enabled the subse-
quent implementation of 3D lesion parameter calculation and the visualization of the results
in the XR environment. Two-dimensional measurements obtained during the current work
aligned with prior studies on ulcer size evaluation [32]. Moreover, further studies such as
the one by Jørgensen et al. [33] found that changes in 3D area were significantly larger than
2D area measurements, particularly for larger wounds. They proved that 3D ulcers’ bed
area monitoring captured changes in ulcer dimensions more accurately compared to 2D
images. Thus, integrating depth information for skin ulcer assessment and monitoring can
lead to many advantages over traditional 2D methods, providing information about the
extent of the internal area of the wound and consequently, an indication of its depth. Previ-
ous studies have demonstrated the superiority of a 3D measurement method over the 2D
method for calculating wound areas, especially in complex or curved anatomical regions,
showing greater precision and reliability in shape and temperature measurements [34–36].
Along the same lines, the values obtained in this study suggest that they carry informative
content also regarding the depth of the wound, as the 3D parameter computation yielded
higher values compared to those calculated from 2D images.

Another contribution of the current study is the integration of the skin ulcer assessment
methodology within an XR environment, while past research focused only on parameter
extraction. The proposed tool aimed to support clinicians for enhanced clinical decision-
making and patient care, by consulting 2D images and 3D models of the skin ulcer along
with quantitative data such as its area and perimeter parameters. Additionally, thermal
data indicating infection status and microvascularization in the wound and surrounding
tissues was overlaid for surface visualization, as it has been shown that the assessment of
microvascularization aids in predicting wound progression [37]. The obtained Unity3D
XR design was reviewed by two dermatology specialists, who emphasized the need for
analyzing the ulcer’s edge and base separately for accurate assessment and therapeutic
insights. Experts valued combining 2D and 3D information and the patient’s clinical history
to facilitate initial evaluation and enhance and speed up treatment decisions.

Despite the promising results, this study has certain limitations that deserve consid-
eration. First, the dataset, which included RGB and their matching depth images, was
restricted in size. This limitation may have influenced the 2D segmentation performance,
which might be considerably improved with a larger dataset. Indeed, the study found that
expanding the dataset resulted in significant gains in segmentation accuracy, highlight-
ing the importance of larger and more varied datasets in improving model performance.
Furthermore, the WoundsDB 2D pictures suffered from low resolution and suboptimal
framing, raising challenges for the network’s training process and consequently affecting
the recognition accuracy. Addressing these challenges through higher-quality image collec-
tion and improved framing is expected to significantly improve automated segmentation
skills in future developments of this study.
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In addition, the lack of ground-truth data for the direct evaluation of 3D segmentation
accuracy limits the final validation of the results. Future research should prioritize reli-
able ground-truth data to conduct more comprehensive assessments of 3D segmentation
accuracy and evaluate the practicality of the suggested methodologies.

Finally, clinical validation is an important step in future development. While this
study provides a solid technological foundation, its ultimate significance will be assessed
by its effectiveness and reliability in real-world clinical situations. A thorough evaluation
across a wide range of patient groups and wound types should be conducted in future
works to verify that the suggested procedures are both accurate and practicable for use
in clinical settings. This validation procedure will validate the system’s effectiveness in
supporting healthcare professionals and suggest possible areas for further improvement
to optimize its application in wound evaluation and treatment. Clinical validation will
be fundamental in establishing the system as a trustworthy tool for improving patient
outcomes by bridging the research–practice divide.

5. Conclusions
The implementation of advanced image processing techniques, including automatic

detection and segmentation of skin ulcers using a CNN and 3D image analysis, marks a
significant advancement in skin ulcer management. This study introduced an automated
and accurate tool for clinical assessment, improving the monitoring of wound evolution
and consequently enhancing patient care. The methodology supported early detection,
accurate assessment, and monitoring, benefiting elderly individuals and those with chronic
diseases. The graphical interface in Unity3D allowed the easy interaction of healthcare op-
erators with the interface, enabling the visualization of the wound along with its extracted
parameters and comprehensive care management. Overall, integrating the implemented
methodologies in clinical settings represents a substantial improvement, introducing a
3D analysis approach compared to traditional methods. Future directions will include
acquiring a larger number of images of ulcers to improve the segmentation performance
and to carry on a clinical validation of the procedure. Moreover, depending on the number
of available images, skin ulcers could also be classified according to the varying wound
severity, which would enable the performance of a secondary classification according to
the Wound Bed Preparation (WBP) scale. By providing a reliable means of assessing and
monitoring skin ulcers, this technology supports healthcare providers in delivering timely
and precise care, ultimately improving patient outcomes.
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